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Synopsis

The Gulf of Aden presents a unique ecosystem that deserves scientific attention. In

addition to its extraordinary biotic richness, the Gulf of Aden also serves as a highway

for international trade between east and west. At present, approximately 3 million barrels

of oil are being transported daily through the gulf. Traditionally, the Gulf of Aden has

provided considerable amounts of sea food for the inhabitants of the surrounding arid

lands. It will continue to do so in future if the fisheries are developed using modern

scientific knowledge and techniques. In spite of the importance of the Gulf of Aden, very

little information is available on its physical oceanography. Most of the investigations in

this area were either aimed at understanding the exchanges between the Red Sea and the

Gulf of Aden [Maillard and Soliman, 1986; Murray and Johns, 1997; Aiki et al., 2006],

or at the spreading of Red Sea outflow into the Gulf of Aden [Fedorov and Meshchanov,

1988; Bower et al., 2000, 2002, 2005; Ozgokman et al., 2003; Peters and Johns, 2005;

Peters et al., 2005] and its pathway into the Arabian Sea [Beal et al., 2000]. A few studies

have used the available hydrographic data to describe the water masses in the Gulf of Aden

[Rochford, 1964; Khimitsa, 1968; Piechura and Sobaih, 1986; Nasser, 1992; Mohamed

et al., 1996; Mohammed, 1997]. All these studies, however, are either localized in space

and time or have devoted themselves to describing the Red Sea outflow. Hence, they fall

short of providing a comprehensive picture of the structure of water masses in the Gulf of

Aden as they evolve round the year. These studies have also not succeeded in providing

quantitative estimates of the different types of water masses that occupy the Gulf of Aden.
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Often, the definition of water masses (the temperature–salinity–σθ ranges) vary drastically

depending on the limited data used for the study. Similarly, the earlier studies did not deal

in detail with the circulation and eddies in the Gulf of Aden.

This thesis aims at the synthesis of various data sets (hydrography, sea levels, winds,

and model outputs) to describe the circulation and water masses in the Gulf of Aden more

precisely than before. The main objectives of the study are: (i) to describe the seasonal

cycle of circulation and hydrography in the Gulf of Aden, (ii) to describe the interannual

variability of circulation in the Gulf of Aden, and (iii) to identify the possible mechanisms

that control the circulation.

After presenting an introduction to the thesis in Chapter 1, Chapter 2 deals with the

data used in this thesis. A new climatology of hydrography was prepared by assembling

the data available from the National Oceanographic Data Center (NODC), USA, Japanese

Oceanographic Data Center (JODC), and a few other data centres and individuals because

the existing climatology [Stephens et al., 2002; Boyer et al., 2002] was found to be insuf-

ficient for deciphering the fine features in the Gulf of Aden.

The satellite altimeter derived sea level data used in this thesis were obtained from

CLS Space Oceanography Division. The merged gridded TOPEX/Poseidon, Jason, and

ERS-1/2 sea level anomaly (SLA) data for January 1993 to December 2003 were available

for every 7 days on a 1/3 degree Mercator grid projection. These data have low mapping

errors and better spatial coverage than the TOPEX/Poseidon data alone [Ducet et al.,

2000; Volkov, 2005].

Chapter 3 describes the hydrography and water masses in the Gulf of Aden. The

newly prepared climatology of hydrography was used to identify and describe the water

masses in the Gulf of Aden and their variability in space and time. Four water masses

have been identified based on their θ–S characteristics. The Red Sea Water (RSW) that

flows from the Red Sea is the most prominent water mass in the Gulf of Aden; it occupies

about 37% of the total volume of the Gulf of Aden. The Gulf of Aden Surface Water (∼
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3%) forms as a mixture of local water and the water from western Arabian Sea during

winter and Red Sea Surface Water during summer. The intermediate water, identified as

Gulf of Aden Intermediate Water (GAIW), occupies about 9% of the total volume of Gulf

of Aden; a characteristic salinity minimum is associated with it at σθ = 26.50 kg m−3.

The northward spread of Sub–tropical Subsurface Water from the south appears to be the

major source of GAIW. The bottom water, named Gulf of Aden Bottom Water (GABW),

showed the least variability. It was formed by mixing of Red Sea Water and water of

southern origin. Mixing triangles have been used to analyze the composition of water in

the Gulf of Aden.

Chapter 4 deals with the seasonal and interannual variability of circulation in the Gulf

of Aden. Mean monthly variability of circulation in the Gulf of Aden is described us-

ing several data sets: hydrography, ship drifts, and satellite–derived sea levels. All data

sets showed the dominance of eddies in the seasonal cycle. During winter (November–

March), the net flow is westward all over the gulf, with a host of cyclonic and anticyclonic

eddies embedded in it. The flow inside the gulf during the transition periods, April and

October, is similar to that during the winter months. During May, the flow inside the

gulf is dominantly geostrophic because the Ekman drift is weak. During June, when the

summer monsoon establishes over the gulf and the northwestern Arabian sea, the flow is

eastward along the northern side of the gulf and is towards west along the southern side.

Later in July–September, an eastward flow establishes all over the gulf. An anticyclonic

eddy is seen at the centre of the gulf during June-September.

The vertical structure of circulation is described using the geostrophic currents derived

from hydrographic data. The circulation pattern at 300 and 600 m during November to

March is similar to that at the surface. The cyclonic and anticyclonic eddies seen at the

surface extend up to ∼ 600–800 m. During summer, the eastward flow extends till 600–

700 m during June, July and September, but only till 200 m in August. In August, the

flow below 200 m is westward.
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Merged altimeter SLA for 11 years is used to describe the interannual variability of

surface circulation. Several techniques are available to resolve the signals at different

periodicities hidden in the time series; wavelet analysis is one among them. To deter-

mine the dominant modes of variability in the SLA time series we have used the Morlet

wavelet. This method allowed us to estimate the wavelet power due to the variability in

SLA at different periods ranging from high–frequency (2 weeks) to interannual (5 years)

periods. The annual and high–frequency signals dominate the sea level variability in the

Gulf of Aden. The SLA variability in the gulf at interannual frequency is minimum and

insignificant at 99% confidence level. It is significant at 95% confidence level only over a

patchy area inside gulf. Since the variability in SLA is prudential to the geostrophic cur-

rents at the surface, the interannual variability in the surface geostrophic currents inside

the gulf also are insignificant at 95 and 99% confidence levels.

Chapter 5 describes the mesoscale eddies that influence the circulation in the gulf and

their origin. Inside the gulf, the eddies move at a speed of ∼ 6.0–8.5 cm s−1, compa-

rable to the first–mode baroclinic Rossby wave speed of 7.2 cm s−1. The eddies, which

enter the gulf from the Arabian Sea, owe their existence to more than one mechanism.

Local Ekman pumping in the western Arabian Sea is important during the summer mon-

soon (June–September). During the winter monsoon (November–March), the dominant

mechanism involves the westward propagating Rossby waves generated either in the Ara-

bian Sea by Ekman pumping or along the west coast of India by poleward propagating

Kelvin waves. These Rossby waves from the Arabian Sea propagate slower on entering

the gulf because of a shallower thermocline in the gulf. Analysis shows that the SLA sig-

nal consists of low (annual and inter–annual) and high (∼ 100–180 days) frequencies. The

low–frequency signal (mainly annual) shows a discontinuity between 52◦ E and 60◦ E.

Though the high–frequency signal is seen at all longitudes, a wavelet analysis shows that

it is significant only west of 60◦ E. An energy analysis, based on model simulations, sug-

gests that barotropic instabilities are important during the entire year and that baroclinic
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instabilities are also important during the summer monsoon.

The results described above are summarized in Chapter 6.
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