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SUMMARY

Diatoms constitute an important part of the microphytobenthic community in the 

intertidal sand flat. Intertidal sandflats are dynamic environments, where the tidally 

generated water movement and the associated processes of deposition and 

resuspension of sediment affect the composition and distribution of diatoms. In many 

studies, diatoms were only investigated in the top few centimeters of the sediment 

(Rizynk et al. 1978; Colijn and Dijkema 1981; Varela and Penas 1985; Lukatelich and 

McComb 1986). However, the presence of diatoms at a depth of 20 cm has also been 

reported (Steele and Baird 1968; Colijn and Dijkema 1981; de Jonge and Colijn 

1994), based on chlorophyll a estimations. In intertidal sandflats, a number of factors 

may be responsible for displacing the diatoms from the surface sediment layers to the 

deeper layers. Temporal and spatial variations in the viable diatom population of the 

microphytobenthic community revealed the presence of diatoms up to a depth of 15 

cm all along the intertidal zone, from the low tide to the high tide zone. Their 

rejuvenation in culture revealed that their viability was not affected by the conditions 

prevailing at this depth.  This depth harbored not only the pennate (epipsammic and 

epipelic) diatoms, some of which are permanent residents of this area, but also the 

centric diatoms of planktonic origin.  The occurrence of diatoms such as Amphora and

Navicula throughout the year in the sediments indicated that the two pennate forms 

were natives of this area.  The appearance of the centric diatom, Thalassiosira only 

upon incubation indicated the presence of their resting stages. These resting stages 

must have been carried to the study area with coastal sediments and redeposited in 

intertidal sediments.  

A number of physical, biological and chemical factors may be responsible for the 

temporal and spatial variation in the diatom abundance, diversity, diatom richness and 
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evenness. Grain size fractions which, served as predictors of some diatoms, differed

with depths at the low, mid and high tide zones. This depicts that factors other than 

grain size have a role to play in the temporal and vertical distribution of diatoms.

Wind stimulated the resuspension of the sediment along with pennate diatoms up to 5 

cm depth only at the low tide zone.  The depth up to which chlorophyll a could act as

indicators of both, the pennate and centric diatom abundance reduced from 10 cm

depth at the low tide zone to 5 cm at the mid tide zone and 0 cm at the high tide zone.

Skeletonema,
Chaetoceros

Diatoms viable up to 15 cms

Mid tide High tide

Coscinodiscus concinnus
&

Navicula crucicula

Low tide

Amphora, Navicula, Thalassiosira dominant genera

24 species 30 species 29 species

Pleurosigma
angulatum

Cyclotella sp., Achnanthes subsessilis, Cymbella
sp., Nitzschia closterium, Pinnularia sp.,

Raphoneis amphiceros, Tabellaria sp.

Microphytobenthic diatoms

Fig. 6.1 Variations in the microphytobenthic diatoms across the
intertidal zone

In the 0-5 cm depth, the ability of the pennate diatoms to remain attached to the

substrate may play an important role in this contribution whereas in centric diatoms

they may be the ones brought onto the sediments by the incoming tides. In the 5 to 10 

cm depth at the low tide zone, the positive correlation with chlorophyll a revealed that

resuspension was not effective up to this depth and the stock was securely placed. 
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However, a negative correlation of chlorophyll a with diatoms in the 10-15 cm depth 

and below 5 cm depth at the low and mid tide zones respectively, even when viable 

diatoms were found in appreciable numbers, suggests survival of these diatoms below 

physical disturbance level through the adoption of survival strategies such as 

heterotrophy or resting stage formation. The non-significant relationship at the high 

tide zone throughout the 15 cm depth may be due to the effects of desiccation when 

exposed for longer durations. However, they were viable as primary producers, when 

resurfaced and could play an important role in the benthic community (Fig. 6.1). 

Vertical migratory behavior of benthic diatoms is one of the adaptive strategies 

employed for a life in intertidal habitats. This self-initiated migration helps diatoms to 

move to the surface during low tides for photosynthesis and move down during high 

tides (Round and Palmer 1966; Round 1979; Joint et al. 1982; Paterson 1989). There 

exists a controversy regarding the reason for the vertical migration and the factors 

affecting it. Irradiance and tidal rhythm are the two variables considered to be 

governing the vertical migration (Round and Palmer 1966). Experiments carried out 

to delineate the influence of these factors in a tropical intertidal sand flat revealed that 

rising to the sediment surface for fulfilment of their light requirements for 

photosynthesis was the first priority. If not fulfilled during the low tide exposure, 

diatoms could withstand the tidal effects and stay up at the surface even during the 

high tide coverage. In summer, the surface cell abundance of epipelic diatoms was 

high only during the morning low tide whereas in winter it was found to be the 

highest during the mid-morning high tide and continued to be so even during the 

following evening low tide. This ability of microphytobenthos to migrate vertically 

within the surface sediment when their requirements are fulfilled may be considered 

as a form of behavioral photoacclimation, allowing cells to avoid potentially 
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damaging irradiance and temperature conditions (Kromkamp et al. 1998; Perkins et 

al. 2001). In the laboratory experiments wherein the effects of tides were removed, the 

endogenous clock continued to operate in a similar fashion as that in the field when 

provided with 12 h light: 12 h dark condition whereas continuous darkness brought in 

a tidal rhythm. Expression of a tidal rhythm may be attributed to an innate behavior. 

This behavior is otherwise superimposed by the diel rhythm in the presence of light. 

In continuous light, diatoms preferred to stay up at the surface longer than that 

observed in field. This indicates that there is an optimum duration up to which the 

diatoms can remain exposed to light. The above observations reveal that irradiance 

has an overriding effect over tides. Temporal differences in the irradiance and the 

resulting changes in diatom migration can have implications in the littoral primary 

productivity.

In this entire process of vertical migration, an important factor that needs 

consideration is the impact of physical forcing on the sediment caused by wind or 

tidal currents. Turbulence and shear stress generated by the incoming tide lead to 

suspension of the diatom cells into the overlying waters (Baillie and Welsh 1980; 

Delgado et al. 1991; de Jonge and Van Beusekom 1992, 1995; de Jonge and Van den 

Bergs 1987). This may be an additional factor responsible for the lowering of the 

surface diatom population, other than their positive geotrophic movement during 

immersion. However, the entire suspended population will not be lost to water 

column, since a part of it will start resettling at the beginning of emersion. This 

process will in turn contribute to the rise in cell numbers at the sediment surface 

during subsequent exposure, along with the upward migration from the deeper 

sediment layers. 
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Presence of diatoms in the water column is also reflected in the microfouling 

population of different types of substrata immersed in the sub-surface estuarine waters 

of the present study area. Diatoms, the early autotrophic colonizers, are an important 

constituent of the biofouling community in the marine environment. The diatom 

populations in the surrounding environment and that in the fouling community 

revealed that the diversity is not evenly reflected. Pennate diatoms were abundant in 

the fouling film than centric diatoms while the reverse was evident in case of the 

water column. This difference is attributed to the capability of the pennate diatoms to 

attach to surfaces with the help of a raphe. The diatom populations, both in the water 

and the biofilm were dominated by the pennate diatom, Navicula delicatula. The 

distribution of N. delicatula in the water column and the biofilm was found to be 

independent of the distribution of the other diatoms. In the surrounding waters, 32 

genera (20 centrics, 12 pennates) including 50 species (28 centrics, 22 pennates) were 

encountered. The abundance and diversity changed with the substratum. It was found 

to be higher on polystyrene than on stainless steel. Species such as Coscinodiscus

concinnus and cymbella sp. were found exclusively on polystyrene whereas 

Pinnularia sp. was encountered only on stainless steel (Fig. 6.2). Such substratum 

influences can differ with organisms and would need careful consideration in 

determining the factors that govern the diversity of microbial films. 

Although, a dominant pennate benthic diatom of the microphytobenthic community, 

Navicula delicatula representing the water column as the most abundant form 

indicates that it can extend its niche from the intertidal habitat to the ambient waters. 

Most of the pennate diatoms which are primarily encountered on the bottom 

sediments, are often found in the water column (de Jonge et al 1992; Tomas 1997) 
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through resuspension and it seems reasonable to assume that their primary production 

in the water column is as effective as it is on the tidal flats (de Jonge et al. 1995).

However, the other dominant diatom, Amphora coffeaeformis restricted its 

distribution to the intertidal sediments. Such a distribution reveals species-specific

differences in habitat selection. 

Fouling diatoms

Amphora &
Navicula spp.

dominant

Stainless steelPolystyrene

Navicula delicatula dominant species

64 species 60 species

Coscinodiscus &
Cymbella exclusive

Pinnularia exclusive

Fragilariopsis
& Synedra
dominant

Dominant on both panels: Grammatophora,
Planktoniella, Pleurosigma, Thalassiothrix &

Nitzschia

Fig. 6.2 Variations in the fouling diatom community
over polystyrene and stainless steel

Space as a resource is important to periphytic diatoms. However, limited availability

of space as compared to the vast diversity of species, leads to intense competition for 

this resource. Thus, diversity is controlled by the competitive strategies employed by 

each member of the community, whether a pioneer or a late arrival. In this struggle 

for existence, the fittest species can carve a better niche for itself, by exhibiting

competitive traits. The community structure is influenced by gain and loss processes
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and competitive ability of each member. In field, the gain factors are immigration of 

fresh recruit and their multiplication while the loss factors are grazing, death and

sloughing off. The study carried out to evaluate variations in the marine periphytic 

diatom diversity by eliminating fresh recruitment and grazing, components of the gain 

and loss processes respectively revealed three cases. These cases illustrated the

influences of intergeneric competition (case I), simultaneous inter and intrageneric

competition (case II) and competitive exclusion or co-existence (case III) (Fig. 6.3). 
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Fig. 6.3 Variations in the periphytic diatom community during
case I, case II and case III

In case I, where Navicula delicatula and Amphora coffeaeformis were the major

players, exclusion of N. delicatula was observed below the substratum carrying 

capacity levels, indicating a role of nutrient adequacy or allelopathy. Laboratory
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experiments revealed that the competitive influence of the population of A. 

coffeaeformis over N. delicatula is independent of the initial cell density, with 

capability to overtake its competitor species even at 1% initial inoculum. Time 

required by A. coffeaeformis to overtake N. delicatula reduced from 7 days (1% initial 

inoculum) to 3 days (20% initial inoculum). In case II, intrageneric competition was 

observed among three species of Amphora i.e., A. turgida, A. hyalina and A. 

coffeaeformis wherein the success of A. turgida was not influenced by the nutrient 

availability whereas that of other two species was nutrient dependent. A. turgida, A. 

hyalina and A. coffeaeformis can co-exist in nutrient enriched conditions, where the 

common nutrient supply is sufficient, whereas in nutrient limiting conditions, 

according to the resource competition theory, only one of the three species of 

Amphora, i.e., A. turgida proved to be a successful competitor. This species could 

possibly sequester the limiting nutrients at a faster rate thus making it unavailable to 

the other species of Amphora i.e., A. hyalina and A. coffeaeformis. This species was 

found to co-exist with N. delicatula, which could be due to a difference in nutrient 

requirements. A simultaneous intergeneric competition between N. delicatula and 

three species of Amphora was not nutrient dependent. In case III, capability of 

Nitzschia longissima to eliminate the other components was positively influenced by 

nutrient availability. Paucity of nutrients supported richer diversity. These three cases 

also illustrated that, competitive traits of a periphytic diatom species is switched on at 

an appropriate cell density ratio of the competitor and target species. Such traits will 

determine the community variations in oligo, meso and eutrophic conditions. 

Studies also showed that exposure to low temperature can result in morphological 

changes in diatoms. Low temperature influences the survival capabilities, which 

differed with species. A. coffeaeformis turned out to be a better survivor to low 
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temperature than N. delicatula. This study has implications in cryopreservation of 

Study of life cycle in Am

these diatoms (Fig. 6.4). 

phora coffeaeformis and Navicula delicatula revealed that

level.

rom culture, 

which was used to develop antisera. No cross reactivity was observed with unialgal 

sexual reproduction other than a mode of regaining normal cell size could be induced 

on sudden exposure to stress conditions such as salinity variations in pennate diatoms.

This may be a type of survival strategy adopted to overcome stress conditions. 

Generally morphological characters are used to classify diatoms to species

Frustule morphology, however, can change with environmental and culture

conditions. Also, considerable time and effort are required to identify a particular 

species when different morphological characteristics are difficult to distinguish under 

the light microscope. An alternative to microscopy identification is the use of

molecular probes, which can bind to either internal or external sites on the target

species and be visualized using fluorescence techniques. The specificity of the 

antigen-antibody reaction provides a powerful tool for the study of individual 

microorganisms in their natural environment. Navicula delicatula is a pioneer and 

most dominant diatom encountered in the biofilms. Antibodies directed against cell 

surface antigens of N. delicatula were developed for an easier and quicker

identification and to trace the relative abundance of this pennate diatom.

The antiserum could successfully label 100% of N. delicatula cells f

Fig. 6.4 Influence of low temperature on N. delicatula and A. coffeaeformis
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cultures of the same genera. However, on an average 50% of N. delicatula cells were 

labelled by the antisera among the field populations observed (Fig. 6.5).  It is evident 

that this method is not completely reliable for population studies and needs further 

validation. However, an important and interesting fact, which surfaced, is the

occurrence of more than one ‘serotype’ of a particular species in the natural

population. This indicates genetic diversity among the species and gives scope for 

population genetic studies and needs further attention.

100 % tagging

Field samples

Immunofluorescence techniqueImmunofluorescence technique

N. delicatula Mixed culture

Cultures

N. delicatula Field sample
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(N. closterium &
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Fig. 6.5 Results of immunofluorescence technique used for identification of N.
delicatula in culture and in field samples
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Chapter 2A 
Appendix 1 

Two-way ANOVA evaluating the variations in diatom abundance at the low tide zone with respect to 
months and core sections (0-15 cm) (* = P  0.001; ** = p  0.005; *** = p  0.025; **** = p  0.05; 
***** = p  0.01; NS = not significant) 

Navicula 
df SS MS Fs

Month 16 48.7 3.05 5.7* 
Depth 2 7.67 3.84 7.2** 
Month X Depth 32 26.5 0.83 1.6**** 
Within subgroup error 102 54.5 0.53 
Total 152 137.5 

Amphora 
df SS MS Fs

Month 16 49.6 3.11 10.97* 
Depth 2 4.02 2.0 7.09** 
Month X Depth 32 40.3 1.26 4.44* 
Within subgroup error 102 28.9 0.28 
Total 152 123 

Grammatophora 
df SS MS Fs

Month 16 21.8 1.37 9.36* 
Depth 2 2.11 1.0 7.23** 
Month X Depth 32 16.6 0.53 3.6* 
Within subgroup error 102 14.9 0.14 
Total 152 55.7 

Pleurosigma 
df SS MS Fs

Month 16 5.4 0.34 5.95* 
Depth 2 0.44 0.23 3.91*** 
Month X Depth 32 9.65 0.31 5.42* 
Within subgroup error 102 5.79 0.057 
Total 152 21.5 

Nitzschia
df SS MS Fs

Month 16 1.7 0.11 3.46* 
Depth 2 0.34 0.17 5.5***** 
Month X Depth 32 2.5 0.078 2.56* 
Within subgroup error 102 3.13 0.03 
Total 152 7.68 

Thalassiothrix 
df SS MS Fs

Month 16 8.37 0.53 8.9* 
Depth 2 2.32 3.36 19.8* 
Month X Depth 32 10.33 0.32 5.5* 
Within subgroup error 102 6 0.058 
Total 152 27



Cocconeis
df SS MS Fs

Month 16 27.7 1.73 13.8* 
Depth 2 4 2 14.8* 
Month X Depth 32 20.87 0.65 4.8* 
Within subgroup error 102 13.8 0.13 
Total 152 66.5 

Fragilaria 
df SS MS Fs

Month 16 23.6 1.47 36.17* 
Depth 2 0.58 0.29 7.17** 
Month X Depth 32 0.59 0.3 7.38* 
Within subgroup error 102 4.16 0.04 
Total 152 37.9 

Bellerochea
df SS MS Fs

Month 16 0.43 0.026 3.6* 
Depth 2 0.11 0.056 7.68* 
Month X Depth 32 0.85 0.026 3.6* 
Within subgroup error 102 0.74 0.007 
Total 152 2.12 

Thalassiosira 
df SS MS Fs

Month 16 25.6 1.6 6.76* 
Depth 2 12.2 6.11 25.8* 
Month X Depth 32 15.98 0.5 2.1** 
Within subgroup error 102 24.16 0.24 
Total 152 78

Biddulphia 
df SS MS Fs

Month 16 44.3 2.77 14.4* 
Depth 2 4.2 2.1 11* 
Month X Depth 32 15.4 0.48 2.5* 
Within subgroup error 102 19.6 0.19 
Total 152 83.5 

Coscinodiscus 
df SS MS Fs

Month 16 11.2 0.7 12.2* 
Depth 2 0.8 0.41 7.1** 
Month X Depth 32 7.98 0.25 4.3* 
Within subgroup error 102 5.86 0.06 
Total 152 25.6 

Melosira
df SS MS Fs

Month 16 9.8 0.61 9.7* 
Depth 2 4.48 2.24 35.6* 
Month X Depth 32 15.7 0.49 7.78* 
Within subgroup error 102 6.42 0.06 
Total 152 36.37 



Skeletonema 
df SS MS Fs

Month 16 12.9 0.81 9.6* 
Depth 2 0.29 0.15 1.75NS

Month X Depth 32 2.07 0.06 0.77 NS

Within subgroup error 102 8.54 0.08 
Total 152 23.8 

Streptotheca 
df SS MS Fs

Month 16 29.9 1.87 8.9* 
Depth 2 0.48 0.24 3.16 NS

Month X Depth 32 22.25 0.7 3.32* 
Within subgroup error 102 21.4 0.21 
Total 152 74.0 

Chaetoceros 
df SS MS Fs

Month 16 3.44 0.22 20.1* 
Depth 2 0.15 0.076 7.14** 
Month X Depth 32 2.45 0.076 7.17* 
Within subgroup error 102 1 0.011 
Total 152 7.13 



Chapter 2A 
Appendix 2 

Two-way ANOVA evaluating the variations in diatom abundance at mid tide zone with respect to months 
and core sections (0-15 cm) (* = p  0.001; ** = p  0.005; *** = p  0.025; **** = p  0.05; ***** = p 
0.01; NS = not significant) 

Navicula 
df SS MS Fs

Month 8 9.46 1.18 3.75**** 
Depth 2 6.14 3.07 9.72***** 
Month X Depth 16 10.98 0.69 2.18** 
Within subgroup error 54 17.04 0.32 
Total 80 43.62 

Amphora 
df SS MS Fs

Month 8 8.5 1.06 4.15**** 
Depth 2 1.93 0.96 3.77* 
Month X Depth 16 16.14 1.01 3.94***** 
Within subgroup error 54 13.81 0.26 
Total 80 40.38 

Grammatophora 
df SS MS Fs

Month 8 3.71 0.46 39.83***** 
Depth 2 0.53 0.26 22.76***** 
Month X Depth 16 9 0.56 48.37***** 
Within subgroup error 54 0.63 0.01 
Total 80 13.86 

Pleurosigma 
df SS MS Fs

Month 8 14.82 1.85 38.70***** 
Depth 2 5.78 2.89 60.36***** 
Month X Depth 16 9.61 0.60 12.55***** 
Within subgroup error 54 2.58 0.05 
Total 80 32.79 

Nitzschia
df SS MS Fs

Month 8 7.61 0.95 13.10***** 
Depth 2 17.08 8.54 117.55***** 
Month X Depth 16 10.32 0.64 8.88***** 
Within subgroup error 54 3.92 0.07 
Total 80 38.93 

Thalassiothrix 
df SS MS Fs

Month 8 44.54 5.57 38.72***** 
Depth 2 0.06 0.03 0.20 NS 
Month X Depth 16 15.42 0.96 6.70***** 
Within subgroup error 54 7.76 0.14 
Total 80 67.78 



Cocconeis
df SS MS Fs

Month 8 32.31 4.04 42.58***** 
Depth 2 2.02 1.01 10.62***** 
Month X Depth 16 28.45 1.78 18.75***** 
Within subgroup error 54 5.12 0.09 
Total 80 67.90 

Fragilariopsis 
df SS MS Fs

Month 8 2.57 0.32 37.96***** 
Depth 2 1.45 0.72 85.52***** 
Month X Depth 16 5.13 0.32 37.96***** 
Within subgroup error 54 0.46 0.01 
Total 80 9.60 

Bellerochea
df SS MS Fs

Month 8 27.82 3.48 40.02***** 
Depth 2 0.49 0.24 2.79 NS 
Month X Depth 16 2.28 0.14 1.64 NS 
Within subgroup error 54 4.69 0.09 
Total 80 35.28 

Thalassiosira 
df SS MS Fs

Month 8 21.96 2.75 13.34***** 
Depth 2 20.04 10.02 48.71***** 
Month X Depth 16 44.44 2.78 13.50***** 
Within subgroup error 54 11.11 0.21 
Total 80 97.55 

Biddulphia 
df SS MS Fs

Month 8 13.77 1.72 16.97***** 
Depth 2 6.19 3.09 30.50***** 
Month X Depth 16 25.63 1.60 15.78***** 
Within subgroup error 54 5.48 0.10 
Total 80 51.07 

Coscinodiscus 
df SS MS Fs

Month 8 10.41 1.30 45.35***** 
Depth 2 0.37 0.19 6.45**** 
Month X Depth 16 6.59 0.41 14.36***** 
Within subgroup error 54 1.55 0.03 
Total 80 18.93 

Melosira
df SS MS Fs

Month 8 13.13 1.64 29.27***** 
Depth 2 2.72 1.36 24.30***** 
Month X Depth 16 16.92 1.06 18.86***** 
Within subgroup error 54 3.03 0.06 
Total 80 35.79 



Achnanthes 
df SS MS Fs

Month 8 4.31 0.54 66.39***** 
Depth 2 1 0.50 61.48***** 
Month X Depth 16 11.54 0.72 88.78***** 
Within subgroup error 54 0.44 0.01 
Total 80 17.29 

Streptotheca 
df SS MS Fs

Month 8 15.69 1.96 61.76***** 
Depth 2 0.46 0.23 7.23**** 
Month X Depth 16 12.08 0.76 23.78***** 
Within subgroup error 54 1.72 0.03 
Total 80 29.95 

Cyclotella
df SS MS Fs

Month 8 26.42 3.30 38.96***** 
Depth 2 0.97 0.49 5.72*** 
Month X Depth 16 5.01 0.31 3.69***** 
Within subgroup error 54 4.58 0.08 
Total 80 36.97 

Pinnularia 
df SS MS Fs

Month 8 30.74 3.84 43.98***** 
Depth 2 1.73 0.87 9.93***** 
Month X Depth 16 6.78 0.42 4.85***** 
Within subgroup error 54 4.72 0.09 
Total 80 43.98 

Cymbella 
df SS MS Fs

Month 8 2.86 0.36 16.83***** 
Depth 2 0.41 0.21 9.66***** 
Month X Depth 16 6.94 0.43 20.42***** 
Within subgroup error 54 1.15 0.02 
Total 80 11.35 

Tabellaria 
df SS MS Fs

Month 8 13.70 1.71 41.45***** 
Depth 2 3.57 1.79 43.19***** 
Month X Depth 16 6.76 0.42 10.22***** 
Within subgroup error 54 2.23 0.04 
Total 80 26.27 

Raphoneis 
df SS MS Fs

Month 8 46.96 5.87 84.30***** 
Depth 2 0.03 0.02 0.24 NS 
Month X Depth 16 0.98 0.06 0.88 NS 
Within subgroup error 54 3.76 0.07 
Total 80 51.74 



Chapter 2A 
Appendix 3 

Two-way ANOVA evaluating the variations in diatom abundance at high tide zone with respect to months 
and core sections (0-15 cm) (* = p  0.001; ** = p  0.005; *** = p  0.025; **** = p  0.05; ***** = p 
0.01; NS = not significant) 

Navicula 
df SS MS Fs

Month 8 31.57 3.95 24.44***** 
Depth 2 1.41 0.71 4.37** 
Month X Depth 16 8.29 0.52 3.21**** 
Within subgroup error 54 8.72 0.16 
Total 80 49.99 

Amphora 
df SS MS Fs

Month 8 5.05 0.63 3.59**** 
Depth 2 18.03 9.02 51.27***** 
Month X Depth 16 18.03 1.13 6.41***** 
Within subgroup error 54 9.50 0.18 
Total 80 50.60 

Grammatophora 
df SS MS Fs

Month 8 1.09 0.14 29.60***** 
Depth 2 0.27 0.14 29.60***** 
Month X Depth 16 2.18 0.14 29.60***** 
Within subgroup error 54 0.25 0
Total 80 3.79 

Pleurosigma 
df SS MS Fs

Month 8
Depth 2
Month X Depth 16
Within subgroup error 54
Total 80 

Nitzschia
df SS MS Fs

Month 8 11.67 1.46 31.18***** 
Depth 2 3.21 1.60 34.29***** 
Month X Depth 16 10.82 0.68 14.45***** 
Within subgroup error 54 2.53 0.05 
Total 80 28.23 

Thalassiothrix 
df SS MS Fs

Month 8 8.18 1.02 43.62***** 
Depth 2 4.80 2.40 102.44***** 
Month X Depth 16 5.08 0.32 13.56***** 
Within subgroup error 54 1.27 0.02 
Total 80 19.33 



Cocconeis
df SS MS Fs

Month 8 34.63 4.33 80.50***** 
Depth 2 7.58 3.79 70.50***** 
Month X Depth 16 16.88 1.06 19.63***** 
Within subgroup error 54 2.90 0.05 
Total 80 62

Fragilariopsis 
df SS MS Fs

Month 8 0.94 0.12 30.78***** 
Depth 2 0.54 0.27 70.32***** 
Month X Depth 16 1.88 0.12 30.78***** 
Within subgroup error 54 0.21 0
Total 80 3.56 

Bellerochea
df SS MS Fs

Month 8 1.43 0.18 36.07***** 
Depth 2 1.41 0.71 142.66***** 
Month X Depth 16 2.86 0.18 36.07***** 
Within subgroup error 54 0.27 0
Total 80 5.98 

Thalassiosira 
df SS MS Fs

Month 8 25.80 3.22 28.42***** 
Depth 2 5.50 2.75 24.25***** 
Month X Depth 16 21.76 1.36 11.99***** 
Within subgroup error 54 6.13 0.11 
Total 80 59.18 

Biddulphia 
df SS MS Fs

Month 8 5.02 0.63 190.21***** 
Depth 2 0.72 0.36 108.91***** 
Month X Depth 16 12.18 0.76 230.86***** 
Within subgroup error 54 0.18 0
Total 80 18.10 

Coscinodiscus 
df SS MS Fs

Month 8 0.90 0.11 84.14***** 
Depth 2 0.23 0.11 84.14***** 
Month X Depth 16 1.80 0.11 84.14***** 
Within subgroup error 54 0.07 0
Total 80 3

Melosira
df SS MS Fs

Month 8 15.84 1.98 22.93***** 
Depth 2 9.35 4.68 54.18***** 
Month X Depth 16 13.87 0.87 10.04***** 
Within subgroup error 54 4.66 0.09 
Total 80 43.72 



Achnanthes 
df SS MS Fs

Month 8 2.91 0.36 9.92***** 
Depth 2 0.72 0.36 9.76***** 
Month X Depth 16 7.42 0.46 12.62***** 
Within subgroup error 54 1.98 0.04 
Total 80 13.03 

Streptotheca 
df SS MS Fs

Month 8 27.35 3.42 91.21***** 
Depth 2 5.29 2.65 70.58***** 
Month X Depth 16 10.14 0.63 16.91***** 
Within subgroup error 54 2.02 0.04 
Total 80 44.80 

Cyclotella
df SS MS Fs

Month 8 0.66 0.08 22.13***** 
Depth 2 0.17 0.08 22.13***** 
Month X Depth 16 1.33 0.08 22.13***** 
Within subgroup error 54 0.20 0
Total 80 2.36 

Pinnularia 
df SS MS Fs

Month 8 17.66 2.21 50.90***** 
Depth 2 5.30 2.65 61.07***** 
Month X Depth 16 8.63 0.54 12.44***** 
Within subgroup error 54 2.34 0.04 
Total 80 33.92 

Cymbella 
df SS MS Fs

Month 8 20.26 2.53 6.82***** 
Depth 2 2.59 1.29 3.48* 
Month X Depth 16 5.44 0.34 0.91 NS 
Within subgroup error 54 20.06 0.37 
Total 80 48.34 

Tabellaria 
df SS MS Fs

Month 8 4.85 0.61 88.91***** 
Depth 2 0.30 0.15 22.23***** 
Month X Depth 16 2.43 0.15 22.23***** 
Within subgroup error 54 0.37 0.01 
Total 80 7.95 

Raphoneis 
df SS MS Fs

Month 8 5 0.62 22.29***** 
Depth 2 4.99 2.49 88.97***** 
Month X Depth 16 10 0.62 22.29***** 
Within subgroup error 54 1.51 0.03 
Total 80 21.49 



Chapter 2B 
Appendix 1 

MANOVA for the temporal variation in total diatom abundance (a); Amphora coffeaeformis (b); 
Navicula delicatula (c); Chlorophyll a (d) in the low tide incubated cores of case I at different 
incubation conditions 
(*p  0.05; **p  0.025; ***p  0.01; ****p  0.005; *****p  0.001; NS – not significant)  

(a) Source of variation df SS MS F
Conditions 1 0.24 0.24 -
Incubation time 3 2.24 0.75 -
Depths 3 7.40 2.47 -

Conditions X Incubation time 3 0.41 0.14 13.81**** 

Conditions X Depths 3 0.07 0.02 2.27NS

Incubation time X Depths 9 2.18 0.24 24.5***** 
Conditions X Incubation time X Depths 9 0.09 0.01 -

(b) Source of variation df SS MS F
Conditions 1 2.63 2.63 
Incubation time 3 0.38 0.13 
Depths 3 7.70 2.57 

Conditions X Incubation time 3 1.07 0.36 4.79* 
Conditions X Depths 3 1.42 0.47 6.35** 
Incubation time X Depths 9 3.3 0.37 4.91* 
Conditions X Incubation time X Depths 9 0.67 0.07 

(c) Source of variation df SS MS F
Conditions 1 0.09 0.09 -
Incubation time 3 0.57 0.19 -
Depths 3 8.53 2.84 -
Conditions X Incubation time 3 0.25 0.08 4*

Conditions X Depths 3 0.13 0.04 2.1NS

Incubation time X Depths 9 2.02 0.22 10.73***** 
Conditions X Incubation time X Depths 9 0.19 0.02 -

(d) Source of variation df SS MS F
Conditions 1 0.03 0.03 -
Incubation time 3 0.12 0.04 -
Depths 3 0.25 0.08 -

Conditions X Incubation time 3 0.04 0.01 3.19NS

Conditions X Depths 3 0.04 0.01 3.08NS

Incubation time X Depths 9 0.03 0.003 0.88NS

Conditions X Incubation time X Depths 9 0.03 0.004 -
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Appendix 2 

MANOVA for the temporal variation in total diatom abundance (a); Amphora coffeaeformis (b); 
Navicula delicatula (c); Chlorophyll a (d) in the high tide incubated cores of case I at different 
incubation conditions 
(*p  0.05; **p  0.025; ***p  0.01; ****p  0.005; *****p  0.001; NS – not significant)  

(a) Source of variation df SS MS F
Conditions 1 0.003 0.003 -
Incubation time 3 1.82 0.61 -
Depths 3 5.59 1.86 -

Conditions X Incubation time 3 0.06 0.02 2.74NS

Conditions X Depths 3 0.07 0.02 2.84NS

Incubation time X Depths 9 1.88 0.21 26.69***** 
Conditions X Incubation time X Depths 9 0.07 0.008 -

(b) Source of variation df SS MS F
Conditions 1 1.07 1.06 
Incubation time 3 1.2 0.4 
Depths 3 6.47 2.16 

Conditions X Incubation time 3 0.24 0.08 0.86NS

Conditions X Depths 3 1.60 0.53 5.68** 
Incubation time X Depths 9 0.49 0.45 4.89* 
Conditions X Incubation time X Depths 9 0.84 0.09 

(c) Source of variation df SS MS F
Conditions 1 0.13 0.13 -
Incubation time 3 0.36 0.12 -
Depths 3 5.24 1.75 -
Conditions X Incubation time 3 0.7 0.23 17.98***** 

Conditions X Depths 3 0.05 0.018 1.38NS

Incubation time X Depths 9 0.63 0.07 5.41*** 
Conditions X Incubation time X Depths 9 0.12 0.013 -

(d) Source of variation df SS MS F
Conditions 1 0.016 0.016 -
Incubation time 3 0.032 0.011 -
Depths 3 0.13 0.05 -

Conditions X Incubation time 3 0.002 0.0008 0.15NS

Conditions X Depths 3 0.02 0.006 1.11NS

Incubation time X Depths 9 0.03 0.003 0.58NS

Conditions X Incubation time X Depths 9 0.051 0.005 -
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Appendix 3 

MANOVA for the temporal and depthwise variation in total diatom abundance (a); Amphora 
coffeaeformis (b); Navicula delicatula (c); Chlorophyll a (d) of case I in 12 h light: 12 h dark 
incubation for low and high tide incubated cores 
(*p  0.05; **p  0.025; ***p  0.01; ****p  0.005; *****p  0.001; NS – not significant)  

(a) Source of variation df SS MS F
Tides 1 0.78 0.78 -
Incubation time 3 1.57 0.52 -
Depths 3 5.32 1.77 -

Tides X Incubation time 3 0.33 0.11 1.24NS

Tides X Depths 3 0.05 0.015 0.17NS

Incubation time X Depths 9 1.15 0.13 1.44NS

Tides X Incubation time X Depths 9 0.80 0.09 -

(b) Source of variation df SS MS F
Tides 1 2.37 2.36 
Incubation time 3 0.18 0.06 
Depths 3 2.09 0.69 

Tides X Incubation time 3 0.1 0.04 0.52NS

Tides X Depths 3 0.03 0.01 0.16NS

Incubation time X Depths 9 0.48 0.05 0.84NS

Tides X Incubation time X Depths 9 0.57 0.06 

(c) Source of variation df SS MS F
Tides 1 1.06 1.06 -
Incubation time 3 0.46 0.15 -
Depths 3 5.43 1.81 -

Tides X Incubation time 3 0.15 0.05 0.67NS

Tides X Depths 3 0.10 0.034 0.45NS

Incubation time X Depths 9 0.97 0.11 1.45NS

Tides X Incubation time X Depths 9 0.67 0.074 -

(d) Source of variation df SS MS F
Tides 1 0.0012 0.0013 -
Incubation time 3 0.082 0.027 -
Depths 3 0.03 0.01 -

Tides X Incubation time 3 0.045 0.015 8.82**** 
Tides X Depths 3 0.22 0.072 42.09***** 

Incubation time X Depths 9 0.022 0.0024 1.42NS

Tides X Incubation time X Depths 9 0.015 0.0017 -
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Appendix 4

MANOVA for the temporal and depthwise variation in total diatom abundance (a); Amphora 
coffeaeformis (b); Navicula delicatula (c); Chlorophyll a (d) of case I in total dark incubation for low 
and high tide incubated cores 
(*p  0.05; **p  0.025; ***p  0.01; ****p  0.005; *****p  0.001; NS – not significant) 

 (a) Source of variation df SS MS F
Tides 1 2.04 2.04 -
Incubation time 3 1.63 0.54 -
Depths 3 7.75 2.58 -

Tides X Incubation time 3 1 0.33 5.14** 

Tides X Depths 3 0.03 0.01 0.16NS

Incubation time X Depths 9 1.68 0.19 2.87NS

Tides X Incubation time X Depths 9 0.58 0.06 -

(b) Source of variation df SS MS F
Tides 1 0.89 0.89 
Incubation time 3 0.92 0.31 
Depths 3 14.99 4.99 

Tides X Incubation time 3 0.32 0.1 0.77NS

Tides X Depths 3 0.09 0.029 0.21NS

Incubation time X Depths 9 0.4 0.044 0.33NS

Tides X Incubation time X Depths 9 1.21 0.13 

(c) Source of variation df SS MS F
Tides 1 0.94 0.94 -
Incubation time 3 0.62 0.21 -
Depths 3 8.24 2.75 -

Tides X Incubation time 3 0.67 0.22 6.62** 

Tides X Depths 3 0.19 0.062 1.85NS

Incubation time X Depths 9 1 0.11 3.39* 
Tides X Incubation time X Depths 9 0.3 0.033 -

(d) Source of variation df SS MS F
Tides 1 0.069 0.069 -
Incubation time 3 0.046 0.015 -
Depths 3 0.03 0.01 -

Tides X Incubation time 3 0.018 0.006 0.66NS

Tides X Depths 3 0.16 0.055 5.92** 

Incubation time X Depths 9 0.025 0.0028 0.3NS

Tides X Incubation time X Depths 9 0.083 0.0092 -
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Appendix 5

MANOVA for the temporal variation in total diatom abundance (a); Amphora coffeaeformis (b); 
Navicula delicatula (c); Chlorophyll a (d) in the low tide incubated cores of case II at different 
incubation conditions 
(*p  0.05; **p  0.025; ***p  0.01; ****p  0.005; *****p  0.001; NS – not significant)  
(a) Source of variation df SS MS F
Conditions 2 0.34 0.17 -
Incubation time 3 0.14 0.048 -
Depths 3 1.08 0.36 -

Conditions X Incubation time 6 0.95 0.16 1.35NS

Conditions X Depths 6 0.61 0.1 0.87NS

Incubation time X Depths 9 4.2 0.47 3.99***
Conditions X Incubation time X Depths 18 2.10 0.12 -
(b) Source of variation df SS MS F
Conditions 2 2.52 1.26 -
Incubation time 3 0.37 0.12 -
Depths 3 3.96 1.32 -

Conditions X Incubation time 6 1.5 0.25 1.92NS

Conditions X Depths 6 0.43 0.07 0.55NS

Incubation time X Depths 9 4.6 0.51 3.95***
Conditions X Incubation time X Depths 18 2.33 0.13 -

(c)  Source of variation df SS MS F
Conditions 2 1.01 0.51 -
Incubation time 3 0.76 0.25 -
Depths 3 3.26 1.08 -

Conditions X Incubation time 6 0.95 0.16 1.55NS

Conditions X Depths 6 0.33 0.05 0.54NS

Incubation time X Depths 9 3.6 0.4 3.92***
Conditions X Incubation time X Depths 18 1.83 0.1 -

(d) Source of variation df SS MS F
Conditions 2 6.62 3.3 - 
Incubation time 3 7.9 2.63 -
Depths 3 13.30 4.44 -

Conditions X Incubation time 6 7.9 1.32 1.23NS

Conditions X Depths 6 2.40 0.4 0.37NS

Incubation time X Depths 9 37.3 4.14 3.87***
Conditions X Incubation time X Depths 18 19.26 1.07 -

(e) Source of variation df SS MS F
Conditions 2 1.35 0.68 -
Incubation time 3 2.55 0.85 -
Depths 3 4.50 1.50 -
Conditions X Incubation time 6 7.17 1.19 7.89*****

Conditions X Depths 6 1.47 0.25 1.62NS

Incubation time X Depths 9 1.42 0.16 1.04NS

Conditions X Incubation time X Depths 18 2.73 0.15 -
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MANOVA for the temporal variation in total diatom abundance (a); Amphora coffeaeformis (b); 
Navicula delicatula (c); Chlorophyll a (d) in the high tide incubated cores of case II at different 
incubation conditions 
(*p  0.05; **p  0.025; ***p  0.01; ****p  0.005; *****p  0.001; NS – not significant)  
(a) Source of variation df SS MS F
Conditions 2 0.58 0.29 -
Incubation time 3 13.69 4.56 -
Depths 3 6.89 2.30 -

Conditions X Incubation time 6 0.51 0.08 2.23NS

Conditions X Depths 6 0.18 0.03 0.82NS

Incubation time X Depths 9 14.75 1.64 43.49*****
Conditions X  Incubation time X Depths 18 0.68 0.04 -
(b) Source of variation df SS MS F
Conditions 2 0.81 0.4 - 
Incubation time 3 20.15 6.72 -
Depths 3 6.92 2.30 -

Conditions X Incubation time 6 0.99 0.17 0.73NS

Conditions X Depths 6 1.21 0.2 0.88NS

Incubation time X Depths 9 8.86 0.98 4.31****
Conditions X  Incubation time X Depths 18 4.11 0.23 -

(c)  Source of variation df SS MS F
Conditions 2 0.43 0.22 -
Incubation time 3 30.45 10.15 - 
Depths 3 11.85 3.95 -

Conditions X  Incubation time 6 0.68 0.11 1.44NS

Conditions X Depths 6 0.35 0.06 0.75NS

Incubation time X Depths 9 19.73 2.19 28*****
Conditions X Incubation time X Depths 18 1.41 0.078 -

(c)  Source of variation df SS MS F
Conditions 2 0.43 0.22 -
Incubation time 3 30.45 10.15 - 
Depths 3 11.85 3.95 -

Conditions X  Incubation time 6 0.68 0.11 1.44NS

Conditions X Depths 6 0.35 0.06 0.75NS

Incubation time X Depths 9 19.73 2.19 28*****
Conditions X Incubation time X Depths 18 1.41 0.078 -

(e) Source of variation df SS MS F
Conditions 2 0.65 0.32 -
Incubation time 3 9.43 3.14 -
Depths 3 12.30 4.00 -

Conditions X Incubation time 6 1.4 0.23 1.4NS

Conditions X Depths 6 0.67 0.11 0.67NS

Incubation time X Depths 9 10.95 1.22 7.28*****
Conditions X Incubation time X Depths 18 3 0.17 -
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MANOVA for the temporal and depthwise variation in total diatom abundance (a); Amphora coffeaeformis
(b); Navicula delicatula (c); Chlorophyll a (d) of case II in 12 h light: 12 h dark incubation for low and 
high tide incubated cores 
(*p  0.05; **p  0.025; ***p  0.01; ****p  0.005; *****p  0.001; NS – not significant)  
(a) Source of variation df SS MS F
Tides 1 0.37 0.37 
Incubation time 3 3 1 
Depths 3 1.80 0.60 

Tides X Incubation time 3 2.9 0.97 3.8NS

Tides X Depths 3 0.99 0.33 1.3NS

Incubation time X Depths 9 2.25 0.25 0.98NS

Tides X Incubation time X Depths 9 2.29 0.25 
(b) Source of variation df SS MS F
Tides 1 0.017 0.017 -
Incubation time 3 2.4 0.8 -
Depths 3 6.07 2.02 -

Tides X Incubation time 3 1.66 0.55 1.68NS

Tides X Depths 3 0.27 0.092 0.28NS

Incubation time X Depths 9 4.18 0.46 1.4NS

Tides X Incubation time X Depths 9 2.97 0.33 -
(c) Source of variation df SS MS F
Tides 1 0.26 0.26 -
Incubation time 3 2.58 0.86 -
Depths 3 5.31 1.77 -

Tides X Incubation time 3 6.19 2.06 3.43NS

Tides X Depths 3 1.16 0.39 0.64NS

Incubation timeXDepths 9 4.48 0.5 0.83NS

Tides X Incubation time X Depths 9 5.42 0.6 -

(d) Source of variation df SS MS F
Tides 1 1.62 1.62 
Incubation time 3 8.34 2.78 
Depths 3 23.58 7.86 

Tides X Incubation time 3 8.29 2.76 3.1NS

Tides X Depths 3 4.38 1.46 1.64NS

Incubation time X Depths 9 23.42 2.6 2.92NS

Tides X Incubation time X Depths 9 8 0.89 
(e) Source of variation df SS MS F
Tides 1 0.14 0.14 -
Incubation time 3 3.68 1.23 -
Depths 3 2.09 0.70 -

Tides X Incubation time 3 0.15 0.05 0.2NS

Tides X Depths 3 1.05 0.35 1.37NS

Incubation time X Depths 9 3.92 0.44 1.7NS

Tides X Incubation time X Depths 9 2.3 0.26 -
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MANOVA for the temporal and depthwise variation in total diatom abundance (a); Amphora coffeaeformis
(b); Navicula delicatula (c); Chlorophyll a (d) of case II in total dark incubation for low and high tide 
incubated cores 
(*p  0.05; **p  0.025; ***p  0.01; ****p  0.005; *****p  0.001; NS – not significant)  
(a) Source of variation df SS MS F
Tides 1 0.09 0.09 
Incubation time 3 2.47 0.82 
Depths 3 2.00 0.67 

Tides X Incubation time 3 3.83 1.28 2.99NS

Tides X Depths 3 1.26 0.42 0.98NS

Incubation time X Depths 9 3.4 0.38 0.89NS

Tides X Incubation time X Depths 9 3.84 0.43 

(b) Source of variation df SS MS F
Tides 1 1.36 1.36 -
Incubation time 3 3.82 1.27 -
Depths 3 1.87 0.62 -
Tides X ncubation time 3 6.17 2.05 7.3***

Tides X Depths 3 0.50 0.17 0.59NS

Incubation time X Depths 9 1.96 0.22 0.78NS

Tides X Incubation time X Depths 9 2.53 0.28 -

(c) Source of variation df SS MS F
Tides 1 0.64 0.64 -
Incubation time 3 4.35 1.45 -
Depths 3 3.58 1.19 -
Tides X Incubation time 3 7.26 2.42 6.99**

Tides X Depths 3 0.85 0.28 0.82NS

Incubation time X Depths 9 2.31 0.26 0.74NS

Tides X Incubation time X Depths 9 3.12 0.35 -

(d) Source of variation df SS MS F
Tides 1 0.82 0.83 
Incubation time 3 2.57 0.86 
Depths 3 9.41 3.14 
Tides X Incubation time 3 17.00 5.7 3.88*

Tides X Depths 3 2.28 0.76 0.52NS

Incubation time X Depths 9 7.33 0.82 0.56NS

Tides X Incubation time X Depths 9 13.15 1.46 

(e) Source of variation df SS MS F
Tides 1 0.006 0.006 -
Incubation time 3 4.07 1.36 -
Depths 3 8.66 2.89 -
Tides X Incubation time 3 9.08 3.02 6.36**

Tides X Depths 3 0.23 0.076 0.16NS

Incubation time X Depths 9 2.16 0.24 0.5NS

Tides X Incubation time X Depths 9 4.28 0.47 -
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MANOVA for the temporal and depthwise variation in total diatom abundance (a); Amphora coffeaeformis
(b); Navicula delicatula (c); Chlorophyll a (d) of case II in total light incubation for low and high tide 
incubated cores 
(*p  0.05; **p  0.025; ***p  0.01; ****p  0.005; *****p  0.001; NS – not significant)  
(a) Source of variation df SS MS F
Tides 1 0.04 0.04 
Incubation time 3 3.14 1.04 
Depths 3 3.98 1.33 

Tides X Incubation time 3 2.68 0.89 3.45NS

Tides X Depths 3 0.81 0.27 1.05NS

Incubation time X Depths 9 3.33 0.37 1.43NS

Tides X Incubation time X Depths 9 2.33 0.26 
(b) Source of variation df SS MS F
Tides 1 0.23 0.23 -
Incubation time 3 4.03 1.34 -
Depths 3 3.57 1.19 -
Tides X Incubation time 3 4.92 1.64 9.81****

Tides X Depths 3 0.23 0.07 0.45NS

Incubation time X Depths 9 3.36 0.37 2.23NS

Tides X Incubation time X Depths 9 1.5 0.17 -

(c) Source of variation df SS MS F
Tides 1 0.68 0.68 -
Incubation time 3 4.74 1.58 -
Depths 3 3.82 1.27 -
Tides X Incubation time 3 7.7 2.57 5.26**

Tides X Depths 3 1.07 0.36 0.73NS

Incubation time X Depths 9 3.89 0.43 0.89NS

Tides X Incubation time X Depths 9 4.39 0.49 -

(d) Source of variation df SS MS F
Tides 1 1.58 1.58 
Incubation time 3 7.58 2.52 
Depths 3 5.59 1.86 
Tides X Incubation time 3 12.20 4.05 9.17****

Tides X Depths 3 4.27 1.42 3.22NS

Incubation time X Depths 9 8.08 0.89 2.03NS

Tides X Incubation time X Depths 9 3.97 0.44 

(e) Source of variation df SS MS F
Tides 1 0.33 0.33 -
Incubation time 3 1.91 0.64 -
Depths 3 5.58 1.86 -

Tides X Incubation time 3 1.55 0.52 2.48NS

Tides X Depths 3 1.55 0.52 2.48NS

Incubation time X Depths 9 3.42 0.38 1.83NS

Tides X Incubation time X Depths 9 1.87 0.21 -
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Appendix 7. Multidimensional scaling (MDS) ordinations for the one day old, case I
periphytic diatom community incubated in AS (a-d) and ES (e–h) based on Bray-Curtis
similarities. Increasing size of circles indicate increasing abundance of a species (Stress
= 0). Hatched lines indicate groups of species.



Appendix 8. Multidimensional scaling (MDS) ordinations for the two day old,
case I periphytic diatom community incubated in AS (a-f) and ES (g–l) based on
Bray-Curtis similarities. Increasing size of circles indicate increasing abundance
of a species (Stress = 0). Hatched lines indicate groups of species.



Appendix 9. Multidimensional scaling (MDS) ordinations for the three day old,
case I periphytic diatom community incubated in AS (a-f) and ES (g–l) based on
Bray-Curtis similarities. Increasing size of circles indicate increasing abundance of
a species (Stress = 0). Hatched lines indicate groups of species.



Appendix 10. Multidimensional scaling (MDS) ordinations for the four day old, case I
periphytic diatom community incubated in AS (a-d) and ES (e–h) based on Bray-
Curtis similarities. Increasing size of circles indicate increasing abundance of a species
(Stress = 0). Hatched lines indicate groups of species.



Appendix 11. Multidimensional scaling (MDS) ordinations for the one day old, case II
periphytic diatom community incubated in AS (a-d) and ES (e–h) based on Bray-Curtis
similarities. Increasing size of circles indicate increasing abundance of a species (Stress
= 0). Hatched lines indicate groups of species.



Appendix 12. Multidimensional scaling (MDS) ordinations for the two day old,
case II periphytic diatom community incubated in AS (a-f) and ES (g–l) based on
Bray-Curtis similarities. Increasing size of circles indicate increasing abundance
of a species (Stress = 0). Hatched lines indicate groups of species.



Appendix 13. Multidimensional scaling (MDS) ordinations for the three day old,
case II periphytic diatom community incubated in AS (a-f) and ES (g–l) based
on Bray-Curtis similarities. Increasing size of circles indicate increasing
abundance of a species (Stress = 0). Hatched lines indicate groups of species.



Appendix 14. Multidimensional scaling (MDS) ordinations for the four day old, case II
periphytic diatom community incubated in AS (a-d) and ES (e–h) based on Bray-Curtis
similarities. Increasing size of circles indicate increasing abundance of a species (Stress =
0). Hatched lines indicate groups of species.



Appendix 15. Multidimensional scaling (MDS) ordinations for the one day old, case III
periphytic diatom community incubated in AS (a-d) and ES (e–h) based on Bray-Curtis
similarities. Increasing size of circles indicate increasing abundance of a species (Stress =
0). Hatched lines indicate groups of species.



Appendix 16. Multidimensional scaling (MDS) ordinations for the two day old,
case III periphytic diatom community incubated in AS (a-f) and ES (g–l) based
on Bray-Curtis similarities. Increasing size of circles indicate increasing
abundance of a species (Stress = 0). Hatched lines indicate groups of species.



Appendix 17. Multidimensional scaling (MDS) ordinations for the three day
old, case III periphytic diatom community incubated in AS (a-f) and ES (g–l)
based on Bray-Curtis similarities. Increasing size of circles indicate increasing
abundance of a species (Stress = 0). Hatched lines indicate groups of species.



Appendix 18. Multidimensional scaling (MDS) ordinations for the four day old, case III
periphytic diatom community incubated in AS (a-d) and ES (e–h) based on Bray-Curtis
similarities. Increasing size of circles indicate increasing abundance of a species (Stress
= 0). Hatched lines indicate groups of species.


