Table 1. Effective media for somatic embryogenesis of tea

<table>
<thead>
<tr>
<th>Explant</th>
<th>Type of somatic embryogenesis</th>
<th>Medium</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>Callus of apical bud</td>
<td>Indirect</td>
<td>Full strength MS + BAP (0.1 mg/l) + NAA (0.01 mg/l)</td>
<td>Semisolid medium in test tubes</td>
</tr>
<tr>
<td>Callus of axillary bud</td>
<td>Indirect</td>
<td>1/2 MS + BAP (0.5 mg/l) + NAA (0.1 mg/l)</td>
<td>Liquid medium in test tubes and Erlenmeyer flasks</td>
</tr>
<tr>
<td>Axillary bud</td>
<td>Direct</td>
<td>1/2 MS + BAP (1.0 mg/l) + 2iP (1.5 mg/l)</td>
<td>Liquid medium in test tubes having paper rafts</td>
</tr>
</tbody>
</table>

from apical buds needed full strength MS medium. Requirement of full strength MS medium was also found in case of apple5.

Efforts are on to further differentiate these somatic embryos into plantlets.

Onset of an arid climate at 3.5 ka in the tropics: Evidence from monsoon upwelling record

Pothuri Divakar Naidu
National Institute of Oceanography, Dona Paula, Goa 403 004, India

Studies on the variability of Southwest (SW) monsoon strength using the monsoon upwelling indices (fluxes of total planktonic foraminifera and Globigerina bulloides) from the western Arabian Sea reveal that the weakening phase of the SW monsoon started from 5 ka (ka = 1000 years). The intensity of monsoon returned to glacial strength at 3.5 ka, coinciding with the onset of arid climate elsewhere in the tropics. The onset of the weak phase of the monsoon and arid climate at 3.5 ka appears to be a primary reason for the decline of Indus Valley Civilization, major change in vegetation along the Western Ghats and decrease of river discharge from all major rivers during that period.

During the Northern Hemisphere summer, strong south-westerly monsoon winds blow across the Arabian Sea, causing offshore Ekman transport and intense seasonal upwelling along the Oman and Somalia margins and the Southwest coast of India1-4. The upwelling process brings cold, nutrient-rich waters from a few hundred meters depth to the surface and increases biological productivity in the euphotic zone. During the winter, the Northeast monsoon winds invoke onshore Ekman transport of surface waters, which suppresses upwelling and lowers the productivity along the continental margin of the western Indian Ocean. Thus the south-westerly and north-easterly winds produce a striking seasonal contrast in primary productivity5 and biogenic and lithogenic fluxes6 in the Arabian Sea. Distinctive plankton faunas and florae thrive in the upwelling waters and are eventually incorporated into the sediments on the sea floor, producing a geological record of upwelling. The sedimentary record in the Arabian Sea is thus linked to the strength of the SW monsoon winds and associated rainfall in southeast Asia. The biogeochemical studies on these sediments therefore provide valuable information on the variability of monsoon upwelling and rainfall in southeast Asian countries over geological time scales. Recently, we have documented the general variability of the SW monsoon for the last 19 ka and its sub-Milankovitch cyclicities5,6. The primary tasks leading to this communication were (i) to find out when the weakening phase of SW monsoon was set in within the late Holocene, and (ii) whether this time coincided with rapid climate shifts elsewhere in the tropics.

ACKNOWLEDGEMENTS. We thank C. C. Shroff Research Institute and Excel Industries Ltd., Mumbai for financial support.

Received 6 February 1996; revised accepted 16 October 1996
The upper 7.4 m of the Ocean Drilling Program (ODP) Hole 723A (Figure 1) was sampled at 10 cm interval, which gives an approximate time resolution of 250 years. Radio carbon dates obtained on Accelerated Mass Spectrometry (AMS) were used to establish the chronology (Table 1). High resolution upwelling indices data in conjunction with precise AMS radiocarbon chronology, permit a detailed interpretation of SW monsoon variability and climate change from the tropical Arabian Sea. The details about the AMS dates and upwelling indices are discussed elsewhere. Several planktonic foraminiferal indices of upwelling were identified in the Arabian Sea9-11. Fluxes of total planktonic foraminifera and *Globigerina bulloides* were used to measure the upwelling intensity in the western Arabian Sea and in turn the SW monsoon strength in south Asia.

It has been well established that the SW monsoon was weaker during glacial periods and stronger during interglacials12. Intensification of the SW monsoon started at 12 ka, i.e. after a weak phase during the last glacial period13. Within the Holocene, greater values of upwelling indices have been noted between 10 and 6 ka, reflecting a strong SW monsoon (Figure 2). The values of upwelling indices decrease abruptly at 5 ka, indicating a weakening of the SW monsoon. The lowest upwelling indices in the Holocene occurs between 3.5 and 1.2 ka (Figure 2), suggesting that upwelling and the SW monsoon intensity decreased during this period. At 3.5 ka the upwelling indices exhibit the same values as that at 12 ka, when the monsoon started its intensification after the last glacial period, and from 3.5 ka the upwelling indices decline further. Other evidences such as water levels in Ethiopian lakes14, palaeohydrological data from western Tibet15, benthic foraminifera record from eastern Arabian Sea16, pollen records from Northwest India17 and δ13C values of peat deposits18 also suggest a weaker SW monsoon during this time. A similar pattern of dry conditions during the late Holocene is also reported from Africa and the regions around Caribbean.

Independent evidences such as pollen studies from the eastern Arabian Sea19, and down core variations of calcium carbonate in the western Arabian Sea20 and δ18O data from Tibet lakes21 also document the arid climate during this time. This observation is further corroborated by an abrupt change in solar radiation, precipitation,
Table 1. Radiocarbon ages for ODP Site 723A determined using Accelerator Mass Spectrometer at The Svedberg Laboratory, Uppsala University, Sweden. After Naidu and Malmgren.

<table>
<thead>
<tr>
<th>Core</th>
<th>Section</th>
<th>Sampling depth (cm)</th>
<th>^{14}C ages (years BP)</th>
<th>Error years</th>
</tr>
</thead>
<tbody>
<tr>
<td>1H</td>
<td>1</td>
<td>3</td>
<td>950</td>
<td>± 55</td>
</tr>
<tr>
<td>1H</td>
<td>2</td>
<td>160</td>
<td>5,865</td>
<td>± 65</td>
</tr>
<tr>
<td>1H</td>
<td>3</td>
<td>290</td>
<td>9,100</td>
<td>± 90</td>
</tr>
<tr>
<td>1H</td>
<td>4</td>
<td>520</td>
<td>15,920</td>
<td>± 125</td>
</tr>
<tr>
<td>1H</td>
<td>5</td>
<td>740</td>
<td>19,130</td>
<td>± 275</td>
</tr>
</tbody>
</table>

dropped during that time. It was previously pointed out that neotectonism was responsible for the drying of the Sarasvati River24. This event could, however, also be attributed to drastic climatic changes at 3.5 ka. It is well established that the down fall of Chalcolithic Cultures (about one million BC) is ascribed to severe droughts in western and central India, similarly the decline of the Indus Valley Civilization around 3.5 ka could be due to the onset of arid climate at 3.5 ka.

An obvious, but provocative question is whether the onset of arid climate at 3.5 ka is traceable in other tropical regions of the world. Evidences such as ^{18}O/^{16}O ratios in ostracod shells from Caribbean lakes25 and pollen analysis from south Australia lake23 have also documented the onset of an arid phase at 3.5 ka. Thus the onset of arid climate at 3.5 ka appears to be a global event, prevailing throughout the late Holocene.

Coherent occurrence of an arid climate at 3.5 ka in the northern hemisphere (present study) and southern hemisphere26, and synchronous dropping and raising of water levels in Australia and China27 indicate that late Holocene climate in the tropics of both hemispheres was in phase.

Two theories, viz. Milankovitch orbital theory27 and deep water formation changes28 have been put forward to explain the causes of glaciation and deglaciation in the Quaternary period. The Milankovitch orbital theory explains the general envelope of past glacial climatic changes, but does not explain either the timing or the amplitude of short-term changes noticed in the present study and in ice core records29. On the other hand, deep water formation changes provide a more satisfactory hypothesis for explaining the ultra fast and abrupt climatic shifts in the ice cores30, and marine sediment records31.

It has been pointed out that thermohaline circulation changes have an influence on the rainfall in the tropics32. Deep water formations in the North Atlantic have a profound influence in causing the abrupt climatic shifts at high latitudes33 and probably in low latitudes too. Therefore, I suggest the missing link between the thermohaline circulation and/or deep water formations at high latitudes and monsoon intensity may be initiated to understand the onset of arid climate in the tropics and decrease of monsoon strength.

To conclude, high resolution data on upwelling indices, in conjunction with precise AMS radiocarbon chronology, permit a detailed interpretation of SW monsoon variability and climate change in the tropical Arabian Sea. The decreasing upwelling indices since 5 ka reflect a recent weakening of the SW monsoon, with the weakest phase taking place at 3.5 ka, which coincided with the onset of arid climate in other parts of tropics. The onset of arid climate during that time appears to be the main cause of declining vegetation and river discharge in the Indian subcontinent during that period. The drastic cli-
mate shift at 3.5 ka might be one of the reasons for the decline of Indus Valley Civilization.

ACKNOWLEDGEMENTS. I would like to thank E. Desa, Director and R. R. Nair, Deputy Director for their suggestions and support. Ocean Drilling Programme (ODP) supplied the samples for this study. The study was financially supported by Swedish Natural Science Research Council, Sweden.

Received 27 May 1996; revised accepted 30 September 1996

Precambrian–Cambrian boundary microfossils from the Chert Phosphorite Member of Tal Formation in the Korgai Syncline, Lesser Himalaya, India

Meera Tiwari
Wadia Institute of Himalayan Geology, Dehradun 248 001, India

Abundant and well preserved organic walled microfossils are recorded from the Chert–Phosphorite Member of the Tal Formation, in the Korgai Syncline, Lesser Himalaya. Two principal categories of microfossils including spheromorphic acritarch and small acanthomorphic acritarchs are present in the assemblage. Interesting among these two categories are Letospheriea sp., Mircbystridium regulare, M. sp. A, M. sp. B, M. sp. C, M. sp. D and Veryvachium sp. The appearance of large Mircbystridium population together with small shelly fauna has been used as a criterion to demarcate the Precambrian–Cambrian boundary in China where these microfossils have been discovered from the black chert in the phosphatic rocks of the lowest Kuanchuanpu Member in Ningqiange of southern Shaanxi.

The Korgai syncline is one of the five major synclines of the Krol belt where the Blaini–Krol–Tal sequence is well exposed. It is located 15 km southeast of Nigaliddar syncline and comprises an area of about 23.50 sq km. Prior to this communication no microbiota was reported from this syncline. The material for this study was collected from a trench located in the NE of Sataun (Figure 1) approximately 4 km from Bargoon on the mule track from Bargoon to Banana village (30° 35′ 16″; 77° 40′ 44″). Here, the Lower Tal Formation

Figure 1 a, b. a, Geological map of the area (after Auden, 1934) showing the fossil locality. A = Fossil locality, B = Chandpur and Naghat formations, C = Blaini Formation, D = Krol Formation, E = Lower Tal Formation, F = Upper Tal Formation; a, Litholog showing sample interval. a = dolomitic limestone, b = cherty phosphorite, c = sandy unit.

CURRENT SCIENCE, VOL. 71, NO. 9, 10 NOVEMBER 1996