Biomass and biochemical composition of zooplankton from northwest Bay of Bengal during January 1990

I. Krishna Kumari & S C Goswami
National Institute of Oceanography, Dona Paula, Goa 403 004, India
Received 13 April 1992, revised 25 January 1993

Information on biochemical fractions of zooplankton is of great importance in tracing physiological state, nutritive value and energy pathway in pelagic food web. Reports on the nutritive value of mixed zooplankton from the Bay of Bengal are meagre. This paper presents information on biomass and major biochemical fractions of assorted zooplankton from the coastal and oceanic surface waters of northwest Bay of Bengal.

Zooplankton samples were collected from 65 stations (Fig. 1) by surface hauls (10 min) using Heron-Tranter net (mouth area 0.25 m², mesh size 300 µm) during January 1990 on board R V Sanda Raut. Biomass (displacement volume) determined on board was converted to dry wt. Separate samples were taken from 47 out of 65 stations for biochemical estimation. Immediately after collection, the samples were cleaned of debris, washed with distilled water and dried at 60°C till constant weight. Protein, carbohydrate, lipid and organic carbon were estimated in triplicate. Caloric content was determined from major biochemical fractions. The stations were grouped into (i) day and night samples were taken during 0600 to 1800 hrs and 0600 to 0600 hrs respectively for day variability study; (ii) coastal and oceanic the stations within and beyond 200 m depth contour respectively and (iii) latitude-wise (at 2° interval) to evaluate the difference if any in biomass and biochemical composition of assorted zooplankton.

Biomass in terms of displacement volume and dry wt ranged from 0.05 to 0.96 ml m⁻³ and 0.58-65.95 mg m⁻³ respectively. In terms of carbon it varied from 1.16 to 18.69 mg C m⁻³. High value of 2.48 ml m⁻³ observed at st. 9 due to swarming of ostracods has not been considered for averaging. Night station supported high biomass (Fig. 2) in terms of dry wt (35.39 mg m⁻³) and organic carbon (20.11 mg C m⁻³). Significant difference (P < 0.001) was observed in biomass between day and night stations in terms of displacement volume, dry weight and carbon content. The coastal and oceanic stations showed significant difference (P < 0.001) in dry wt alone.

Protein ranged from 18.58 (st. 63) to 60.66% (st. 46) with a mean value of 44.87 ± 8.32%, while lipid and
carbohydrate varied from 4.1 (st. 63) to 23.28% (st. 11) and 1.49 (st. 50) to 12.26% (st. 38) respectively. Organic carbon and caloric content ranged from 16.21 (st. 50) to 39.27% (st. 51) and 1.75 (st. 63) to 5.31 kcal g⁻¹ dry wt (st. 24) respectively whereas on ash free dry wt basis the caloric content accounted to 6.42 kcal g⁻¹ dry wt. Mean caloric content was 4.05 kcal g⁻¹ dry wt. However mean caloric content based on percentage of organic carbon was 4.08 kcal g⁻¹ dry wt. Significant correlation was noticed between protein and caloric content ($r = 0.78; P < 0.001$).

Biomass, protein and organic carbon values (Fig. 3) were maximum at 14°-16°N while lipid was maximum at 12°-14°N followed by a sharp decrease resulting in very low levels at 18°-20°N. Lipid showed significant correlation with caloric content ($r = 0.77; P < 0.001$). In the present study L:P ratio varied from 0.15 to 0.65 (av. 0.33).

In general, copepods contributed maximum (79.57%) followed by ostracods (3.93%), decapod larvae (3.82%), chaetognaths (3.06%), amphipods (1.92%), appendicularians (1.89%), polychaete larvae (0.82%), fish eggs and larvae (0.72%), pteropods (0.6%), cladocerans (0.59%) and gastropod larvae (0.53%). However gelatogenous organisms like hydromedusae and siphonophores were in good numbers at sts 48 and 50. Though the average value of protein in the present study is comparable with Andaman Sea\(^1\)\(^{11}\) and Arabian Sea\(^2\), the value was slightly higher than from Arabian Sea off central west coast of India\(^1\)\(^{11}\). This may be due to the analytical technique adopted, time of collection, general composition of zooplankton and its physiological condition. Reciprocal relationship\(^1\)\(^{12}\) between protein and lipid at 14°-16°N and very low values at sts. 48, 50, 57 and 63 suggest that such a relationship is not applicable for the entire study area. Compared to carbohydrate and lipid, protein formed the major fraction, indicating its usefulness as energy reserve. Zooplankton utilize the protein as an additional source of energy at times of stress\(^1\)\(^{11}\). The lipid values recorded in the present study are slightly higher than those from west coast\(^2\)\(^{8-11}\). The low lipid

Fig. 2. Day (A) and night (B) variations in biomass (dry wt in mg m⁻³)

Fig. 3. Latitude-wise variations in biochemical composition, biomass, organic carbon, and chlorophyll a
in tropical zooplankton may be attributed to the availability of food throughout the year and also to the inhibition of lipid accumulation at high temperature. High lipid content at 12°-14°N can be due to the grazing of herbivorous zooplankton as indicated by maximum chlorophyll a at that region. Lipid protein ratio has been considered as an indicator of calories and L:P ratio > 0.7 represents high caloric content.

Though carbohydrate is the principal metabolic substrate in many marine organisms, very low levels in zooplankton due to oxidation of carbohydrate directly from food indicates its poor contribution as energy reserve as compared to lipid and protein. The amount of food available and the energy stored have been reported to influence carbon content of zooplankton. Very low levels of protein and lipid at 16°-20°N (Fig. 3) resulted in low carbon content. Calorific content in general is higher than reported earlier for Andaman Sea, west coast of India from lat. 11°-15°N. However, difference is not observed in calorific content when calculated from the biochemical component and percentage of carbon. Though protein forms the major fraction of biochemical component in tropical zooplankton, to what extent protein is used as a metabolic substrate is still uncertain.

Authors express their gratitude to Dr B N Desai and Dr A H Parulekar for facilities and encouragement.

References
6. Li-Wakeel S K & Riley J P. J Cons Perm Int Explor Mer. 22 (1957) 180
17. Raymont J E G & Gerner R J. Limnol Oceanogr. 6 (1964) 151