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Abstract

A computer program has been developed for the construction
of geodesic path between two pqints on the spheroidal surface for
application in long range acoustic propa?ation in the ocean.
Geodetic equations have been integrated numerically upto the
distance of interest subject to initial conditions and a azimuth
{forward problem). Inverse problem has been solved iteratively
based on the spheroidal geometry to supplement the initial
conditions to the forward problem. The algorithm has been test
validated. Program listing along with sample output is also
appended.
Introduction

For acoustic propagation studies over long ranges in the
ocean, the path traversed by a sound signal between a traﬂsmitter
and a receiver needs to be modelled to predict the signal arrival
time before hand. This 1is required to select suitable
experimental site(s) such that optimum site configuration can be
obtained for better signal .reception. Also the collection of
environmental data along the Geodesic is a pre-requisite for the

acoustic modelling of signal trajectory. Though the difference

in the range between the great circle and geodesic path may not



be significant, the departure between them may be gquiet large
which is not negligible for long range propagation studies.

Considering the earth to be a sphere, a great circle path
represents the shortest-distance between any two points on the
surface. A great circle path ig generated on the surface of the
sphere when the sphere is intersected by an imaginary plane auch
that the terrestrial points under consideration and the center of
the sphere are in that plane. Examples of such great circle are
the Equator and all meridians. This line is also called a normal
section, for it contains the local normal (plumb line) at the
terrestrial point. However the actual shapef of the earth is not a
perfect sphere but an ellipsoid - generated by the revolution of
the ellipse about its minor axis. For an'ellipsoid the proslem of
computing shortest path on the surface gets more complicated. It
18 no longer possible to connect two points with a unique normal
section. There will be two such normal sections when the
computations  are  reversed between  the pointu. Si1nce our
reguirement is to determine the shortest path ( which is unique)
between two points on the earth, a great circle path will not be
sufficient and a geodesic has to be computed. The properties of
a geodesic are as follows.

- A line on a surface is a geodetic line, if its osculating
plane to the curve contains the normal of the surface.

- It is the shortest connection between two points and has
the same angle forward and backward.

- The geodetic curvature is zero everywhere. It 1is a line

produced by continuous layout of a 180° angle by transit.
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The geodesic computations involve i) the direct problem and
ii) the inverse problem. The airect proslem uses the coordinates
of the initial point 'A' along with a distance and azimuth to an
unknown point 'B' to compute the coordinates of the later. In the
inverse problem the coordinates of two points are used to
egstimate the geodesic distance and azimuth.

In the geodesic problem the role of the inverse problem is
to supplement the the initial conditions in the form of azimuth
and distance to the direct problem for obtaining the required
gsolution. .

Present report covers the mathematical‘equations involved in
the theory and the method of obtaining the solution along with
the software. Test runs of the source program have been made
with the known check values. 1In the following section the

theoretical formulations are detailed.

Theoretical relations:
a) Direct problem:
At any point on the geodesic, the basic governing equations

{Bomford, 1977) of the forward problem are as given below:

gz = r cos o

dA _ 1 .

ds = > sec ¢ sin o
gz = tan ¢ sin o,



where a is the local ray di;ection or azimuth, clockwise from
North, ¢ - the latitude and X - the longitude and ds - an
elenent of distance along the geodesic (fig. 1}.

The above equations are integrated numerically using
Runge-kutta-Gills method (Ralston, A. 1960) from the given
initial point to the desired distance.

The numerical computations in the form of algorithm for the

above equations are:

X = f( X, X, X, X )
1) S 1 2 3 +
)
4
X =X +dsyf (Y -B Z)A
L L v ]t j]
=
4
Z = %Z+3L(Y-BZ)A-CY
i i . 8 ) L )t
j=t
where i = 1,2,3,4; Y‘s 1; Yzz cos a/p ; Y3 = sin a/( v cos ¢ );
Y‘ = sin a tan ¢/v and initial conditions of
x‘(O) =0
Xh(O) = ¢‘ (latitude at source X - coordinate in radians)
X.(O) = k‘ (longitude at source Y - coordinate in radians)
X‘(O) = a_ (source to receiver azimuth angle in radians,

clock-wise from north)

The coefficients of Aj, BJ, and C) are

A =1/2, B - 2, C = 1/2
" 1 1



To perform the above integration_ upto the range of
receiever, distance between the source and receiver points
the azimuth are unknown. Hence these quantities are to
obtained by first solving the inverse problem i.e. to obtain
geodetic distance and initial azimuth between the source to
receiver locations. With this the coordinates and azimuth
intermediate points along the geodesic are obtained.

‘. /

L3

b) Inverse Problem:

The known quantities ar¢« the geodesic positions P‘(¢l,

and P2(¢2,A2) of two points for which the geodesic distance
and azimuth a , are to be determined:

The latitudes (¢1,¢2) are reduced to a spherical
surface as (ﬁ‘,ﬁz) (Krakiwsky, E.J. and D.B. Thomson, 1974)
given in fig. 2.

R = tan *(1-e®)*"* tan @
The arce length () between the points 1y compuled using

-4 . .
o = ¢co8 (sin ﬁ‘sxn ﬁzo COs ﬂlcos ﬁzvus A)
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The problem is of iterative nature, where XA is not known

accurately at the beginning. Hence . = L (differences between

longitudes) is to be used as first approximation. Then a .

computed as

o 89in A Ccox ﬂz
a = 8in -
12 sin o

is



.Azimm§h,p£ the geodesic (a) at the equator is computed from

t

& =

cos

cos

cos

Then for

with the

" [ cos f3, cos 3, sin k]

sin -
sin o
2 sin 3, sin B,
20m = cos o - 3
cos o
2
o = 2 cos 20 -1
m m .
‘ a
60m = 4 cos 2am - 3 cos 20m

the ith iteration the difference ¢\ - L)i is conmputed
*

following equation.
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— e 3 3
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D' = .6 ‘
After this A is computed as A = L + (A =~ L)i

This iterative process continues till the following condition

gets satisfied
f -y, - -1 | = 0.00001

The final azimuth is computed using
o - sin~t sin a
12 cos B‘

: . . -2| sin a
[~} )
and the reverse azimuth - sin [ <o z]

Then the distance 8,, is given by

. C .
8, ° b [A o, - B cos o, 8in o - —— cos 4om sin 201
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NOTATIONS:

L
a = Semi major axis for the spheroid chosen (WGS 72 is

being adopted in the present computations)

b = Semi minor axis
e = first eccentricity = 2f-£°
e'= gecond eccentricity = e /(1-e*)

f= fllattening constant = (a-b)/a
a(1-e%)

(1 - e*gint@™?

radius of curvature in meridian =

v
N

. . . - a
radius of curvature in prime vertical =

(1 -~ e‘sin’¢)

<
[0

/2



Software details:
MAIN PROGRAM (GEODESIC):

The source ¢ode has a main program 'GEODESIC' and two
subroutines - 'INVERSE' and 'DIRECT'. The positions of two points
- (LAT1, LON1); (LAT2, LON2) in degrees are read in the main
program as input parameters while the spheroidal constants a and
f are defined in the main program itself. The program ﬁses common
block for keeping values PI, spheroidal parameters like first and
second eccentricity etc. The éosition coqrdinates are converted
to radians and sent as input arguments'to the subroutine INVERSE.
The output DIST and AZ corresponding to the total distance and
azimuth at the first coordinate return to the main program.
Subsequent lines define the number of geodesic equations (NEQ),
storage registers of arrays X, Y, Z in the form X(I), Y(I), Z(I)
(I=1, NEQ), maximum number of steps (LAST), step size (ST) for
integration. Now the intermediate points defining the geodesic at
selected interval are computed using the routine DIRECT. For that
the radius of curvature along meridian (ANEW) and prime vertical
(V) at the intermediate point are computed. Subroutine DIRECT is
called with arrays X, Y, Z and variables ANEW, ST, V, NEQ. The
output is returned in the same array of X. Here X(1), X(2),
X(3), X(4) contain the cumulative distance, intermediate
coordinates and local azimuth of geodesic. All angles are
converted into degrees while writing the results 1in the direcﬁ
access disk file -~ 'INVERT:0UT'. This procedure is repeated till

the cumulative distance becomes equal Lo YT, While doiny  Lhe



- above, care is taken to compute the fractional step size (SF) at
the last integration point so that the solution ends close to the

terminal point.

SUBROUTINE INVERSE

This subroutine is called from the main program after
initializing the spheroidal constants. LAT1, LONl1, LAT2, LON2 are
taken as input parameters from the calling program. The geodetic
inverse problem is solved through 'an iterative procedure ‘for
computing the distance to the second po%nt (DIST) and initial
azimuth (ALP12). To start with, the difference between longitudes
of the two points is assigned to L after initializing DIFF0 to
zero. Starting with L = LAMBDA, it computes the difference (bIFF)
between LAMBDA and L which is defined in the text. An improved
LAMBDA is worked out and the computation is repeated. The new
DIFF and the previous one (DIFFO) are compared with a preset
tolerance limit. If the condition is not met with, then the value
of DIFF is stored in DIFFO and LAMBDA is updated. These steps are
repeated till the desired refinement in LAMBDA is acheived. Then
the azimuth (ALP12) and distance (DIST) are computed by - using
final LAMBDA. Results are sent to the main program as output to

the calling progran.

SUBROUTINE DIRECT -
This subroutine is called from main program after setting
the initial conditions for integration. The sequence of solving

differential equations of geodesic ia detailed in the flow chart.

10



The subroutine determines the geodesic coordinates and change of
local azimuth using Runge-~Kutta-Gills method and stores 1in the
array X such that (X(1), 1-1, NEQ) and returns to the cdlling

program.
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Leyend to figures:
1. Schematic diagram-of geodetic system.

2. Reduced sphere and ellipsoid.

3. Computed geodesic’ paths from Cape Leeuwin (Australia)

towards the Indian coast.
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FLOW CHART OF THE MAIN PROGRAM

l START l
—1—
I INITIALIZE SPHEROIDAL CONSTANTS
R
READ
LAT1, LONI FOR Pl AND
LAT2, LON2 FOR P2
S
CONVERT INPUT PARAMETERS INTO
RAD1ANS
4

CALL INVERSE
TO GET INITIAL AZIMUTH AND
DISTANCE (AZ, DIST)

NEQ <{— DEFINF NO. OF DIFFERENTTAL
EQUAT1ONS

k

INITIALIZATION OF FUNCTIONS FOR
INTEGRATION

A\

l ST {(— STEP SITZE FOR INTEGRATION'

CALCULATE
ANEW <(— RADIUS OF CURVATURE IN MERIDIAN

V <{— RADIUS OF CURVATURE IN PRIME VERTICAL

CALL DIRECT

I=]1+1 FOR OBTAINING GEODESIC COORDINATES
AZIMUTH
¢ -<'£1) sﬁi_”s'plg-%l PRINT l

- -

13



FLOW CHART OF SUBROUTINE 'DIRECT'

e |

——

STORE GILL'S COEFFICIENTS I
Aj' Bj' Cj; j=1, 2, 3, 4 |

' rer | |

—" ‘
SETTING DIFFERENTTAL FEQNS.
COS (X(4)) —> Y(2)

SIN (X(4))
vV cos (X(2))

SIN (X(4)) TAN (X(2)) — Y(‘4

—_ Y(3)

v
ITER=ITER+1 |‘3‘£‘I‘|
—

{Y(J) - B(ITER) Z(J)] A(ITER)—>HK
Z(J) + 3(HK) - CU{ITER) Y(J)—>Z(J)
J=J+1 X(J) + (HK) (ST)—> X(J)

(HK) {(ST) —> XR(J)

NO /L

< IS J - NEQ=

-

14

Ts ™ _—
«—N9__-TTER = N§Q>——>¥§§—-' RETURN ‘



FLOW CHART OF SUBROUTINE 'INVERSE'

‘ START l

——

I'DIPFO (— 0 l

—

COMBUTE THE KEDUCED LATETUDES ‘

BETA 1, BETA 2

COMPUTE DIFF. BETWEEN
LONGITUDES, TI.{—LON2-LON1

N

FIRST APPROXIMATION
LAMBDA <(— L

AN
| COMPUTE SIGMA|

¢

A

COMPUTE THE AZIMUTH OF THE
GEODESIC AT EQUETOR (ALP)
AND AT P1 (ALP12)

A COMPUTE (T.AMBDA - 1.)
[ B3 1N S DR LAMBIDA R

ILAMBDA(~ LAMBDA+DIFF |

A

o7 T
e S~
JDIFFE - Dire|~

s

» ] -'.~' 9 :
D1FF0 <—DIFI IfN—<\.\ S 0.0009L -7

[

COMPUTE AZIMUTH, DISTANCE
(ALP12, DIST)

_—

| RETURN ]
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Fig. 1. Schematic diagram of Geodesic system
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Fig.2. Reduced Sphere and Ellipsoid
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