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In this paper, we have utilized Artificial Neural Net-
works (ANN) for seafloor topographic data segmentation 
and roughness classification using the multibeam- 
Hydrosweep system (installed onboard ocean research 
vessel Sagar Kanya) data. Bathymetric profiles from 
three directions: central (beam 30), port side (beam 
10) and starboard side (beam 50), were acquired from 
the ridge flank and rift valley areas of the Carlsberg 
Ridge and plain areas of the Central Indian Basin. 
Self-Organizing Map (SOM) – an ANN architecture 
employing unsupervised training is used for segmen-
tation of the depth data. This neural architecture is 
successful in segmenting nonstationary profiles into 
stationary type before being used for classification. 
The number of segmented profiles is highest for the 
rift valley areas whereas for plain area profiles no 
segmentation is required. Another ANN architecture 
using supervised training – the Multi-Layer Percep-
tron (MLP) is applied for the classification of the seg-
mented profiles in two steps. The MLP network was 
trained using simulated bathymetric profiles of known 
power spectral (correlation) parameter ββ, which has 
been used to classify the multibeam-Hydrosweep depth 
data. Another parameter S (amplitude parameter) is 
also being computed for classification. Estimated ββ 
and S values of the segmented profiles indicate the 
sedimentary origin of the plain area. Whereas the 
estimated parameters for ridge flank and rift values 
indicate that these areas have volcanic or tectonic origin. 

 
DYNAMIC processes related to the shape of the Earth may 
well be understood through use of seafloor bathymetry. 
Bathymetry provides the shape of the seafloor features, 
and its accuracy depends on the resolution of the sound-
ing systems1. In order to characterize the nature of the 
seafloor, a detailed knowledge of the bathymetric profiles 
is required. Swath mapping systems produce multiple 
lines (typically tens to hundreds) of parallel high-resolu-
tion depth data. Using multibeam swath bathymetric sys-
tems, a complete plan view of topography, including the 

detailed shape and orientation of structures can be deter-
mined. The seafloor topography is influenced by tectonic 
processes such as faulting, folding and flexure and is often 
changed and destroyed by erosion and sedimentation2. 
Since much of the seafloor topography is complex, cer-
tain aspects are deterministic. This complexity is mainly 
the consequence of erosion processes. Therefore, a given 
profile of seafloor topography typically contains alternat-
ing ‘smooth’ and ‘rough’ portions, which generally implies 
that the topography is nonstationary. This nonstationary 
topography presents a sort of hindrance since most stati-
stical analyses presume that the input is stationary. If we 
consider a seafloor topographic profile, a statistical ana-
lysis applied to this profile will produce results that are 
an unpredictable mixture of the characteristic parameters 
(mean, variance, probability density function) of the smooth 
and rough areas. It thus becomes necessary to divide the 
dataset into statistically homogeneous segments. 
 In this paper, we have employed Artificial Neural  
Networks (ANN) for data segmentation and subsequent 
classification of the seafloor depth3. ANN are signal- 
processing systems that try to emulate how a human brain 
classifies differing patterns. For online application, the 
ANN-based seafloor classifier serves as a real time clas-
sifier into different known classes. Two different types of 
ANN architectures, viz. Kohonen’s Self-Organizing Map 
(SOM) and the Multi-Layer Perceptron (MLP)4 have 
been employed for segmentation and classification res-
pectively. The unsupervised architecture, SOM, finds 
application in segmenting a particular seafloor topogra-
phic profile. As mentioned, this segmentation is required 
to subdivide the bathymetric data that are received into 
blocks that are statistically stationary. The SOM architec-
ture exhibits the ability to form segments suitable for fur-
ther classification, that are being made based on differing 
patterns in the input raw data. Once the segmentation is 
done, classification of the seafloor based on the power 
spectral parameter, β (also known as a correlation para-
meter) can be determined using MLP. In order to carry out 
MLP-based depth data classification, one feature known as 
Mean of the Absolute First Difference (MAFD)2, is gene-
rated from the simulated data for varying sets of β values, *For correspondence. (e-mail: bishwajt@darya.nio.org) 



SPECIAL SECTION: MID-OCEANIC RIDGES 

CURRENT SCIENCE, VOL. 85, NO. 3, 10 AUGUST 2003 307

which serve to train the MLP. Further, unknown depth 
data can be successfully classified using this trained  
network, to correctly identify β parameters. A flowchart 
comprising the brief functional units is given in Figure 1. 
 The topographic data were obtained on the Carlsberg 
Ridge (CR) (Figure 2) and in the Central Indian Basin 
(CIB) areas. These areas were surveyed using a multibeam 
bathymetric system – Hydrosweep (manufactured by  
M/s STN Atlas Electronic GmbH, Bremen, Germany) 
installed onboard ORV Sagar Kanya. 
 

Survey data acquisition and preliminary depth 
data analyses 

The topographic data were obtained from the CR area. The 
CR is a slow-spreading ridge, similar to the Mid-Atlantic 
Ridge. It forms the northwest extension of the Central 
Indian Ridge in the Arabian Sea. A total area of 15000 sq 
km was surveyed with a state-of-the-art multibeam bathy-
metric system5. Depth data from two area types of the CR- 
flank and the rift valley were considered for this study. 

Bathymetric data from central beam (beam 30), beam 10 
(port side) and beam 50 (starboard side) were picked up 
from the acquired cruise data. In addition to this, data were 
also collected from the CIB (polymetallic nodule-bearing 
area) during the cruise SK-136 (ref. 6). Thus, various topo-
graphic domains, viz. rift valley, ridge flank and plain areas 
were considered for the study. Ridge flank and rift valley 
area from the CR data were collected from the locations: 
(long. 63.2°E, lat. 3.24°N) and (long. 63.9°E, 3.27°N) 
respectively. Similarly, CIB plain area data were obtai-
ned from the location: (long. 75.4°E and lat. 13.3°S). The 
depth varied between 2200 m and 4500 m. The average 
beam footprint of these areas is found to be varying bet-
ween the 177 m and 361 m. The beam-wise depth profiles 
used for this study areas are given in Figure 3. The depth 
data lengths of 30 km, 22 km and 32 km are used from 
CIB plain and CR flank and rift valley areas for present 
applications. 
 In order to develop understanding of the bathymetric 
data type used for this work, the Probability Density Func-
tion (PDF) of the beam-wise raw depth data is examined 
critically. The PDF characteristics of the raw data for 

 
  
Figure 1. Flowchart showing the important components in the 
process of segmentation and classification of multibeam back-
scatter data. 

 

 

 
Figure 2. Bathymetric map of the surveyed segment of the Carlsberg 
Ridge (contour interval = 250 m). Topographic sample data from rift 
valley and Ridge flank areas are taken from this area. 
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central and outer beams of different geological provinces 
do not indicate any changes, which emphasize nonsta-
tionarity of data. However, analyses using PDF of the 
detrended central beam depth data show the normal dis-
tribution (Gaussian type) for the plain, flank and valley 
areas, which are presented in Figure 4. For a particular 
area dataset, the computed mean depth was utilized to 
normalize the entire dataset for drawing PDF curves. It 
was found that the plain area surveyed using the central 
beam shows minimum fluctuation compared to the beams 
10 (port side) and 50 (starboard side) of the same area 
because the width of the PDF curve is observed to be sig-
nificantly narrower than that of the outer beam data. Also, 
the widths of the central beam PDF characteristics for the 
ridge flank and rift valley regions are relatively higher 
than that of the plain area. Interestingly, for all the areas, 
it is observed that the central beam PDF characteristics 
are narrower than their outer beam characteristics. This 
indicates relatively less efficient functioning of the bottom- 
tracking unit for the outer beams of the multibeam system. 
This is attributed to the dominant seafloor backscatter for 
outer beams relative to the central beam, which is never-
theless important for rough terrain. The depth data detre-
nding aimed at making the data similar to those of a 

stationary nature, however it is problematical to achieve 
such conversion during real time application. In this arti-
cle we attempt to enable real-time application with the 
neural networks approach on raw nonstationary data. 

Segmentation of a bathymetric profile using 
SOMs 

In terms of seafloor roughness, different bathymetric pro-
files having the same statistical parameters may look simi-
lar, but in reality they will not necessarily be the same. 
Therefore, it becomes difficult to quantify the roughness 
of such bathymetric profiles2. Under these circumstances, 
the concept of self-similarity or scale invariance has an 
important role to play in seafloor bathymetric studies. 
Considerable study has been carried out to quantify the 
roughness based on the properties of self-similarity. How-
ever, due to the nonstationarity of the profile, a straight-
forward application of self-similarity becomes strenuous. 
If a statistical analysis is applied to such nonstationary 
profiles, which are unpredictable mixtures of the known 
statistical parameters (mean, variance, PDF) of the smooth 
and rough areas, it will reduce accuracy of the results. 
Thus it becomes essential to divide the bathymetric data 

 
Figure 3. Segmentation of the bathymetric profiles for central beam (beam 30), beam 10 (port side) and beam 50 (starboard side), each for the 
plain area of the Central Indian Ocean Basin and the Ridge flank area and Rift valley area of the Carlsberg Ridge. 
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into stationary segments and then an estimate of the sta-
tistical characteristics of each segment, i.e. classification, 
can be made. One of the simplest ways to deal with such 
a nonstationary series is to segment it into a number of 
portions. For segmentation, the optimum gate length tech-
nique was applied by Bansal and Dimri7. In their method, 
an arbitrary length of the given profile is chosen and its 
time varying autocorrelation function is computed. Ste-
wart et al.8 found that if a profile was segmented into too 
many portions, some of the useful higher frequency com-
ponents from the profile would be lost. Use of polynomial 
fitting to qualitatively selected segments and subtraction 
of the fitted data from original data is performed. This is 
done in order to detrend the data, i.e. to remove the non-
stationarity of the profile. However, no check of the suc-
cesses of the segmentation is made except based on 
visible distinction. Malinverno2 performed segmentation 
using standard deviation and Median of Absolute Devia-
tion (MAD) of the first difference of the data as estimates 
of dispersion. The suggested methods provide an appro-
ximate location for the boundaries and values of the spe-
ctral parameter (β). In this section, we propose to deal with 
the problem of segmentation using SOM9–11. The SOM 
uses unsupervised learning to train itself, where the net-
work is unaware of the number of segments among which 
a particular set of depth data will be divided. For precise 
segmentation, we present an overview of SOM in the 
next section. 

Self-organizing maps 

The SOM architecture comprises a flat one-dimensional 
grid of learning units called neurons, similar to those in 

the human brain4. Every input element is connected to all 
the neurons in the grid. When an input vector is presented 
to the SOM, the neurons in the grid compete among 
themselves in order to get activated. This is known as 
competitive learning. Weights of only this neuron and a 
few others in its neighbourhood are updated iteratively, 
to form a representative cluster. This is known as tuning 
of weights in response to a given class of input vectors. 
Once the SOM has been trained with given dataset, a uni-
que neuron cluster in the output grid represents the seg-
ments of different depths. The learning algorithm used in 
a SOM is the Kohonen learning algorithm9–11. This algo-
rithm organizes the nodes in the grid into local neighbour-
hoods that act as feature classifiers on the input data. A 
weight matrix of size (i, j) is initialized with random  
values between a range of + 1 to – 1. Here i represents 
the number of elements of each input vector, while j is 
the number of neurons. One input vector from each class 
is presented as a training sample from that class. For each 
input presented, the Euclidean distance between the input 
vector and the weights of each neuron in the one-dimen-
sional grid is computed by 
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where xi(t) is the input vector and wij(t) is the weight 
vector at time t. The neuron having the least distance is 
designated the ‘winner’ neuron. Now the weights of this 
neuron are updated and the distance matrix is computed 
iteratively for the same input vector to minimize the error 
between itself and the input presented, using the follow-
ing expression 

wij(t + 1) = wij(t) + η(t)⋅[xi(t) – wij(t)]. 

This procedure is repeated consistently a number of times 
till the value of dmin reduces below a pre-specified error 
value. The term η(t) is a learning function (0 < η(t) < 1) 
that decreases with time, gradually reducing the magni-
tude of weight updating as the error is successively redu-
ced. The neighbourhood size also decreases as time goes 
by, thus localizing the area of maximum activity in res-
ponse to input vectors. 

Application of SOM in segmentation 

In this study we have employed the SOM in order to seg-
ment a given Hydrosweep-multibeam bathymetric pro-
file. The SOM architecture in this study comprises a  
one-dimensional grid of fifty neurons11. We chose the 
fixed number of input vectors to be ten. In our study, we 
optimized output neuron number j to be 50. Once the 
network is initialized, a bathymetric profile of ten initial 
points is chosen and smoothing is done using the ten 
points moving average technique. The weight matrix des-
cribed has a size of 10 × 50. Smoothing of data is basically 
done so that the spurious depth values in the profiles are 

 
 
Figure 4. PDFs of depth data for the plain area of the Central Indian 
Ocean Basin, Ridge flank and rift valley areas of the Carlsberg Ridge. 
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removed. These spikes may cause improper segmentation 
while applying neural networks. The moving average of 
10 data points was found to be optimum, which has been 
obtained by examining different number of data points 
from different areas. Once the smoothing of a predeter-
mined length of the bathymetry data is done, it is then 
normalized between + 1 and – 1 to match the weight dis-
tribution, so that all the neurons in the output grid have 
an equal chance of being close to the input vectors. The 
winning neuron corresponding to this dataset is noted. Only 
the weights of the neurons that lie in this neighbourhood 
are updated during successive passes through the network. 
The learning function η(t) employed here is 0.4/t0.20 and t 
is the iteration number. During each successive iteration, 
the inputs and weights are used to compute the minimum 
distance. In this work, the neighbourhood was chosen as 
5 (either side of the winning neuron), which subsequently 
reduces to 1 as training progresses. Training stops when 
the specified number of 500 iterations is reached or an 
error goal of 10–30 is attained for all the areas. Once train-
ing is done, the SOM is now tested with the next ten 
smoothed data points, for example (2 to 11). The rule is 
that if this set succeeds in exciting a neuron within a range 
(in the grid) of the winning neuron that was obtained dur-
ing training, then this set is said to belong to the same 
segment with which the SOM was trained. If another neuron 
gets activated during the testing, then the same dataset 
which causes the misfiring is used to further train the SOM 
and a new winning neuron corresponding to a different 
segment is obtained. This procedure of training and test-
ing is employed using successive sets of smoothed data 
points as mentioned above. At the end of all this succes-
sive training and testing, the final result is a profile con-
sisting of precisely distinguishable segments (Figure 3). 
 Results of the segmentation study using the SOM along 
with the bathymetric data profile from plain areas of Cen-
tral Indian Ocean Basin reveal only one segment for the 
bathymetric profiles of central beam (beam 30), beam 10 
(port side), and beam 50 (starboard side) (Figure 3). The 
firing (excitation) of neuron number 21 in the output grid 
indicated the segments. In this figure, left and right hand 
side vertical axes are indicative of the depth and output 
neuron numbers respectively. Each segment is identified 
by a unique step, along with the segment number. There-
fore, the plain areas surveyed with all the three beams 
produced only one segment. The results for the CR flank 
and rift valley are also given in the same figure. The CR 
flank area, whose depth data PDF (Figure 4) had a relati-
vely larger width (comparatively more fluctuations) than 
the plain area, provides higher number of segments. The 
central beam in this region produces three segments 
shown by the excitation of neurons 9, 4, and 11. The area 
surveyed with beam 10 (port side) had four segments 
indicated by the excitation of neuron numbers 9, 4, 11 
and 21, while the beam 50 (starboard side) had only two 
segments indicated by neurons 9 and 4. Of all the three 

region’s central beam depth PDF, the rift valley areas  
central beam has the maximum PDF width, and also the 
highest number of segments. There are five segments 
indicated by neurons 33, 9, 47, 11 and 34 along the cen-
tral beam profile. The valley area surveyed using beam 
10 (port side) also indicates five segments shown by neu-
rons 33, 9, 47, 11 and 34. The area surveyed with beam 
50 (starboard side) showed three segments indicated by 
neurons 33, 9 and 35. An overall analysis showed that 
those areas which had the highest width of detrended 
bathymetric PDF had more number of segments, and thus 
proves a direct correlation between the PDF of the detrended 
(stationary) depth and neural network based SOM architec-
ture employed for online (nonstationary) depth for segmen-
tation purpose, ultimately allowing the conversion from 
nonstationary to stationary data for suitable classification. 

Classification of bathymetric profiles using MLP 

After the segmentation was carried out using the SOM as 
explained previously, each segment of the bathymetric 
profile has to be classified based on its roughness. The 
MLP finds application here to achieve this classification 
by computing the spectral parameter β corresponding to a 
particular segment. Many applications of MLP are being 
studied which are of geophysical and oceanic impor-
tance12,13, due to the advantage of this network to adapt to 
real-time classification once training is performed. The 
basic architecture of the MLP and the manner in which it 
classifies a segmented profile using β are explained in 
this section. 
 As we know, the correlation parameter, β is a measure 
of the topographic roughness2. In order to estimate this β 
parameter, feature extraction of a given dataset using MLP 
is an important process to be carried out. After consider-
ing and analysing a variety of features (variance, kurtosis 
and MAFD), the MAFD feature of the segmented data 
proved to be the most suitable candidate for classifi-
cation. Therefore an algorithm was developed to extract 
this feature from each segmented bathymetric profile. 
Another parameter, known as amplitude parameter S, is 
being used by Malinverno2 along with β for classifica-
tion. In order to compute S, the required MAD of the 
depth data is computed as 

MAD = median |∆z(x)-median |∆z(x)||, 

where ∆z(x) is the first difference of the depth series z(x). 
From here, S is computed using the following expression2 

S = 1.4826 × MAD. 

For more details about the above expression on amplitude 
parameter (S), readers may refer Kleiner and Graedel14. 

Architecture of the MLP and classifications 

The MLP architecture designed consists of six networks, 
a main network and five subnetworks (Figure 5). These 
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networks were trained using simulated data for β values, 
which have been incorporated in this study2. A white-
noise series of the desired length n (= 100) was randomly 
initialized. This series is then zero-padded to a length that 
is the 7th power of 2, i.e. 128, and its Fourier transform 
is obtained. Next, filtering is carried out by multiplying 
the real and imaginary parts at frequency (f) by f –(β–2)/2, 
and taking the inverse Fourier transform. Thus a set of 
depth values for various β values (ranging from 0.5 to 
4.5) is simulated, with a frequency range of 10–2 to 
102 Hz. After inverse FFT, simulated time series (depth) 
data are obtained for a unique value of β. 
 Each simulated depth data for a given β ranges are 
used for necessary training for coarse classification. In 
the main network, training for five main classes (ranges) 
is carried out, and each range is further sub-divided into 
more accurate ranges for finer classification (limits are 
given in Figure 5). When a feature of a segmented 
bathymetric profile is fed to the input layer of the main 
network, it triggers one of the five output neurons based 
on the value of the feature. The main network, i.e. the 
coarse tuning network is used to broadly classify the 
segment among five distinct classes of seafloor. When a 
bathymetric profile is thus classified, the output neuron 
of the subnetwork, i.e. the fine tuning network corre-
sponding to this class is triggered to give a more accurate 
value of the feature. 
 In the process of designing a MLP network, certain 
important configurational parameters like the number of 
hidden layers and the number of nodes in each hidden layer 
must be fixed. We have designed MLP networks with 
only one hidden layer. The optimum number of hidden 
neurons is given by (m × n)1/2 (ref. 11), where m is the 
number of output neurons and n is the number of input 
neurons. After trial and error method on the number of 
nodes in the input and hidden layers, as a trade-off  
between efficiency of training time and sufficient separa-
tion of classes, 10 input neurons were used in our study. 

The output neuron number is fixed by the number of 
classes, i.e. 5 in this case for the main network, hence the 
number of hidden neurons is computed to be around 7. 
Similar configuration is used for the sub-networks, where 
input neurons are 10 and output neurons are 8, hence  
the hidden layer has 9 neurons. In order to train the net-
work, we have used the Levenberg–Marquardt and Gra-
dient-descent training algorithms4,15,16 for the main and 
sub-networks respectively. The Levenberg–Marquardt 
algorithm is slower but gives an output matrix exactly 
equal to the target matrix. This principle works well for 
coarse classification. For the sub-networks, Gradient des-
cent algorithm is very fast and gives an output matrix 
close to the target matrix. In our MLP-based classifica-
tion network, the transfer functions for input, hidden and 
output layers were respectively fixed to purelin (the input 
function is directly reflected as the output without any 
further change), logsig (this function generates output 
between 0 and 1 as the neuron’s net input goes from 
negative to positive infinity) and purelin for both main 
and sub-networks. 
 The network weights and biases between input, hidden 
and output neurons are initialized before the training phase 
to values between + 1 and – 1. For the output neurons, a 
target vector is assigned, where the neuron correctly  
represents the class. During every forward pass17 through 
the network (from input to output layer), the mean squa-
red error between the target vector and the computed 
network output vector is calculated for the input feature 
presented. Subsequent back-propagation updates the neu-
ron weights to reduce this error. Training ceases when 
either the error goal of 10–30 is reached or the number of 
epochs (iterations) exceeds the predefined value of 1000. 
Once training is complete for five main classes, each class 
is further trained to classify sub-classes. Our observation 
of available β values from various literature18 indicates 
that more frequent β values exist in the ranges (1.5 < β < 
3.5). Based on these observations, we choose β intervals 
of ± 0.1 at these ranges. Hence there are eight sub-classes 
for the three main classes corresponding to β values of 
1.6–2.2, 2.2–2.9 and 2.9–3.5, as these values of β are more 
frequently occurring for depth data. However, the incre-
ment of β values is maintained to ± 0.4 within the rarely 
occurring ranges of 0.5 > β < 1.5 and 3.5 < β < 4.5. For 
presently available β values (Figure 5), only three sub-
classes are sufficient. Now the main network is ready for 
testing with the MAFD feature extracted from a segmen-
ted depth data. The correctly representing output neuron 
is activated, which is further fine-tuned by testing this 
feature on the corresponding sub-network. 
 In Figure 6, the scatter plot of β and S parameters has 
been presented for each segmented depth data from three 
different regions. Moderately low values of the β and S 
for the Central Indian Basin plain areas are indicative of 
the sedimentary topography2. We observe different com-
binations of the amplitude parameter S and β for the CR 

 
 
Figure 5. Flowchart for MLP adaptation for a two-stage classification of 
previously segmented data, into main classes and further sub-classes. 
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flank and rift valley areas. Interestingly, we also get com-
parable values of the estimated S and β values for given 
tectonic/volcanic areas from the Explorer ridge of the NE 
Pacific Ocean2. Employing ANN, areawise distinct trend 
is observed in estimated parameters. In general, both the 
estimated parameters (S and β) are moderate for the rift 
valley areas, though a significant variation is seen for the 
ridge flank areas. 

Conclusions 

This article first applies neural network to segment and 
classify the multibeam bathymetric data. Two topologies 
of neural networks, namely SOM and MLP are used. The 
SOM is an unsupervised learning, which segments a par-
ticular dataset into statistically stationary segments. The 
technique of moving average was used for smoothing the 
data before applying SOM architecture for segmentation 
of the profile, its advantage being that it allows removing 
non-stationary part of the data. Using SOM, the multiple 
segments are obtained for CR flank and rift valley area, 
whereas for the CIOB, only one segment is seen. A distinct 
relationship is observed between the segmented depth 
data and depth PDF. The numbers of segmented profiles 
are the highest for the CR rift valleys, also indicated in 
the higher fluctuating depth PDF. Also, a number of seg-
ments for ridge flank and rift valleys are more for outer 
beams than the central beams, indicative of either noisy 
bottom-tracking of the outer beam of multibeam bathy-
metry system. 
 For classification, MLP needs extraction of suitable 
features from the data. The only successful feature used 
in this study is the MAFD of the depth profile, which is 
effective for the present case. The classification results 
are fairly meaningful in the sense that they are matching 
those of Malinverno2. The important aspect of the MLP 
architecture is that, it takes significantly more time to 
design the network and training of the network using 
simulated depth for known β values. Once network is 

designed and training is made, application (testing) of  
the real depth data takes negligible time. The MLP archi-
tecture could be improved by introducing more sub-net-
works having smaller intervals of β or simulate more β 
files at intervals smaller than 0.1. The employed technique 
has many applications, especially related to real time clas-
sification problems in marine geophysical applications 
including seafloor classification using sound signal back-
scatter and also in palaeomagnetism. 
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Figure 6. Scatter plot between the correlation parameter (β) and 
amplitude parameter (S) of the segmented seafloor topographic profiles 
for the plain area, Ridge flank area, and rift valley area are represented 
by the symbols square, circle and star respectively. 


