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ABSTRACT

Based on small amplitude wave theor. approximate equations are evaluated for determining the coefficients of shoaling,
refraction. bottom friction, bottom percolatior: and viscous dissipation at breaking. The results obtained by these equations agree
within the reasonable range with the results based on numerical integration. These equations will be useful for field engineers for

easy application.

INTRODUCTION

Coastal engineers are often provided with wave
characteristics at deep water or at some intermediate depth.
The surfzone dynamics and the longshore sediment transport
rates are evaluated based on the wave characteristics at
breaking. When the deepwater wave propagates into shallow
water, it is subjected to the effect of wave shoaling. if the wave
crest is oblique to botom contours, the difference in celerity
along the wave crest causes the wave to bend, called wave
refraction. The roughness of the seabed and the adjoining
turbulent boundary layer retards the wave motion, termed as
* bottom friction. if the seabed is permeable, the percolation of
water into the seabed would further retard the wave motion.
The viscosity of the interior body of the water causes the wave
energy fo dissipate, termed as viscous dissipation. In the
present study, approximate equations based on small
omplitude wave theory are evaluated for determining the
coefficients of shoaling. refraction. botfom friction, bottom
percolation and viscous dissipation at wave breaking location.

Nearshore Wave Transformation Coefficients

Fig.1 shows the volume of water enclosed over the
depth between the two adjacent orthogonals and two
vertical sections perpendicular to these orthogonals. Assuming
that no energy propagates across the orthogonals,

b, Eq = biEn-Ey Q)]

where, b, = distance between orthogonals at section.

(. b, = distance between orthogonals at section (2). E; =
energy flux at section 1, E, = energy flux at section 2, E, , = loss
of energy between sections 1 and 2.

The loss of energy would partly be due to bottom
friction. bottom percolation, viscous dissipation etc. end if they
_ are assumed to be negligible Eq.(1) reduces to,

byEqn = by . @

Shoaling
Waves are assumed approaching parallel to the straight

and parallel bottom contours. Hence, no refraction is
encountered, i.e.. b, = b, and £q.(2) becomes,

Eqy = Ep &)

wave energy flux is given by (Svendsen and Jonsson,
1976).
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Where,

]

2kh/sinh 2kh

Density of seawater

Acceleration due to gravity

i

Wave height

Wave celerity

Wave number = 2r/L
Water depth

Wave length.

considering the section 1 at deep water and section 2
at desired depth h and introducing Eq.(4) in Eq.3) and
rearranging.
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where, K = shoaling coefficient, n =0.5 (1 + ( 2kh / sinh
2kh ) ). C, = wave celerity at deep water. Eq.(5) is simplified for
wave bregking location using the small amplitude wave
theory.

Refraction
Using Eq.(4) in Eq.(2),
by HC (1+G) =b, H:C, (1 + Gy ®)

considering the section 1 at deep water and section 2
at desired depth h and introducing Eq45) in Eq.(6).
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where, K, = refraction coefficient = ( Fﬂ )>* and by and b

are the distance between orthogonals at deepwater and at
requiled depth respectively.

For straight and parallel contours, the orthogonals would
be parallel and the horizontal disiance is constant between
two adjacent orthogonals. Therefore,

by _ b .
cos g cosa
by _ cosug
b T cosu
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where, ag and o are the angle of the wave crest with
respect to the coast at deepwater and at required depth
respectively. EQ.(8) is simplified for wave breaking location
using small amplitude wave theory.

Disslipative Forces

Considering the dissipative forces are due to boitom
friction, boHom percolation and viscous dissipation, the mean
energy flux between the orthogonais 0; and 0, in Fig.2 is given
by.

HZ
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where, D, = elementary length of wave front between
the orthogonals.

Taking the ratio between Eq.(9) and the erergy flux at
deep water,

HHy = KK Kas | a0
where,
Kas = KK, K, an
and referring to Fig.2,
ED T*
Kas = [E,,, Dw]] a2

K. K. K. K, K, are the shoaling, refraction, bottom
friction, bottom percolation and viscous dissipation
coefficients. : -

If the bed is deep and horizontal K, and K; are equal to
1, if the orthogonals are perpendicular to straight and parallel
contours, K, is equal to 1 and if dissipation is neglected Ky = 1.

Bottom Friction

In Fig.2. considering the sections 1 and 2, spaced by
infinitesimal distance D, the difference equation (1) transforms
to a differential equation,

(R)EIDt =-Eq Oy a3
D,
Squaring Eq.(12) and differentiating with reference to s,

dKe _ CExB

14
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Where. E4 is the total energy dissipated due to bottom
frictior:, pottom percolation and viscous dissipation.

Considering the dissipation is only due to bottom friction,
Jonsson (1966) gives an expression for E g,

Edls = E«=(%n]pf§,0,n§‘ (15)
J
where, E, = energy loss due to bottom friction, f, =
friction parameter (Jonsson, 1966, Kamphuis, 1975, Lambrakos,
1982), a,, = horizontal particle amplitude at bed.

Using Eq.(15) in Eq.(14) and replacing Ky with K, since
the dissipation is only due to friction. and assuming that the
starting point is in deep water (Skovgaard, 1975).
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dc c G ;

ah h1+G (18

The non-linear first order differential equation (16) is
solved ond simplified for wave breaking location.

Bottom Percolation

Reid and Kajiura (1957) give the mean energy loss due
to bottom percolation per second per unit area of the bed (E)
as,

n Ko H

g = 2P8 1, Snh2kh
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where, Ky = permeability coefficient (Oza. 1969). Loss
due to permeability is usually considered only if the depth of
permeabile layer is morg than 30 percent of the wave length

- (Svendsen and Jonsson, 1976).

Referring to Fig.l and considering the Eq.(14) and
assuming that the dissipation is only due to bottom percolation,
the percolation coefficient can be written as,
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Squaring Eq.(20) and differentiating with respect to s,
2
¥ = CEp @n
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- where. K, = the percolation coefficient.

L) Ho) ( ——) in deep water (22)

i = (

Assuming that the starting point is in deep water, using

Eqs.(19) and (22) in Eq.(21), differentiating and simplifying using
small amplitude wave theory approximations,

dK C

Shp -

at <o h T+ e K @3)
using £q.(18) in Eq.(23).

d 1 dc
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The non-linear first order differential equation (24) is
solved and simplified for wave breaking location.

Viscous Disslipation

Based on the work done by the laminar shear stresses on
the small particle velocity gradients (Baichelor, 1967), the
approximate expression for the mean energy loss due to direct
viscous dissipation in the interior body of the water per second
per unit area (E, ) is given by,

E = 2n2pgy({if 25)
where, v = kinematic viscosity of the sea water
Considering the Eq(12) and assuming that the

dissipation is only due to viscous dissipation, the viscous
dissipation coefficient is written as,

» El D’ .5
K = | (26)
' [E’i Dst T
Squaring Eq.(26) and differentiating with respect to s,

dk  _ CEB

at S TE. @n

where K, = viscous dissipation coefficient.

Assuming that the starting point is in deep water, using
£qs.(25) and (20) in Eq.(27). differentiating and simplifying by
applying small amplitude wave theory relationships,

dk, _ﬂf 2thv
dt Lh1+G
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dkK dc sinh 2 kh
v - Q

The non-linear first order differential equation (29) is
solved and simplified at wave breaking location.
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RESULTS

Approximate Equations at Breaking

At wave breaking the small omplitude wave theory
approximations are,

n =1 . 30)

o = @n

Cy = (ghp)™ G2

ho = 1.28 H, (Mc Cowan, 1981) 33
Shoaling

Using Eqs.(30), (31). (32) and (33) in Eq.(6) and assuming
Hy, is approximately equal to Hy in this case.

G

K = 04697 —e (4
Hy

Refraction

By Snell’s low,
C| - CQ (35)
sin a sin o,

Assuming the two points, one at deep water and the
other at breaking,

S .S 36
sin o sin o,
% = sin'| 227 Se i % @7
7E '

Using Egs.(31). (32) and (33) in £q.(37)
% = sin”' (2.27—‘?" sin oy ] (38)

using Eq.(38) in Eq (9)

5
_ | cosag

K - [ cos A jr 9

where, A = o, given by Eq.(38)

Bottom Friction

Wiiting the differential Eq.(17) in finite difference form for
incremental time At,
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slope of the sea bed (s) canbe written as,

dh
= — 41
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Using Eq.(41) in Eq.(40) and rearranging,

K

K, ‘

R OO --N T “
3Les ™°
EQ.(42) in its general form can be used to estimate the
bottom friction coefficient for any depth. Considering initial
time tis in deep water and (t + At ) is just before breaking,

K, = 1 (in deep water) 43)
H .
and (@) = 5 kl;\ (44)
(%]

using Eqgs.(31).(32).(33). (43) and (44) in Eq.(42) the
friction coefficient just before breaking is given by

1
( K( )L) ) +-§— _gE_ Hl)
3L, cy,s 2kh, ©

Assuming contours are straighf and parallel, and the
wave crests are parallel to bottorn contours,

) ' (45)

K = 1
and at breaking using £q.(2?), {(32)and (33) in Eq.(5)
Gy, =12
hence,
Ho=Ho. K Ki=1.2H, (46)
using Eq.(46) in £q.(45),

1
8 dc fQJ

(K =7 @n

"2, 1.28s

According to the variations of f, with depth, near wave
breaking for ky = 0.002 the value of f, is 0.015 (Jonsson, 1966).
Using this value in Eq.(47) and simplifying further,

1
(K = . T 48
[Ho.ogm[ T _2.5]1

Ho® )
For typicai values of nearshore slope 1:200, T = 8s, Hy =
Im Eq. (48) gives (K, = 0.6 whereas the numerical integration

of Eq. (17) gives (K,)q = 0.7 and the difference is found to be
within reasonable limit,

v Eq.(42) is an approximate solution from which the friction
coefficient at any depth can be estimated assuming initial
time (1) is in deep. Eq.(48) is the approximate solution ot *vave
breaking. -

" Bottom Percolation

Writing the differential Eq.(24) in finite difference form for
the incremental fime At,

K, -K, : :
L L ﬁ)_'d__c_:_ K (49)

At Cy dh Pres
using Eq.(19) and rearranging
Ko,

K de
Cy cs

(50)

i

Assuming the starting time t is in deep water (K, = 1),
time (t + A 1) is just before breaking. and- using Eqgs.(31). (32).
(33). (43), (44) and (45) in Eq.(50)

]
026Kn( T 3
=3 [H35 -25 J

If the bed is assumed to consist of medium to fine sand
and the permeability coefficient Ky is assumed as 0.0005 m/s.

(Koo (Y]

1
(Kp)b =
+o.00013[ T _2.5}
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For values of nearshore slope = 1:50, T=8s, Hy=1m, £q.(62)
gives (K., = 0.9955 where as for slope=1:500, T=8s, Hy=1m and
Ky, for coarse sand bed =0.005m/s. it_gives (K )p=0.6911. It shows
that though the effect of bottom percolation is small, in case of
coars= sand and gravel bed, where the parmeability is high,
the value of percolation coefficient considerably increases.

Eq.(50) is an approximote solution from which the
percolation coefficient at any depth con be estimated
assuming initial time () is in deep woter. £Eq.(52) is the
opproximcfe solution at wave breaking.

Viscous Dissipation

Writing the first order differential EqQ.(28) in finite
difference form for the incremental time At,

Keu = K, dc sinh 2kh
A AN gr o R &3
using Eq.(19) and rearranging.
K, K,
 sdn 4 9c sinh 2kh 4
sT &%t

Considering the starting time t in deep water (K, = 1),
time (t + A1) is just before breaking and using Egs.(19), (33),
(34). (35).(36). (37) and (38) in Eq.(56)

1
1.817 v

= T .
1+ s TQHg‘s ( $—2.5 )

(Kv )b

(55




subsmuhng the kinematic viscosity of sea water as r=
0.000001945 m?/s,

(K = ‘ 56)
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1+ 35310 7]0.5 Il.s‘zs
S T-H0 H0

Using the values of sea bed slope = 1:50, T = 8s, H, =
in £Eq.{47). it gives (K)), = 0.99998415. For muddy nearshore
water, when the bed slope = 1:500, y= 0.0001945 m?/s, T = 8s, H,
= Im, it gives (K)), = 0.9850. It indicates that the effect of
vscous dissipation is negligibly small, but over the regions of
mud banks, where -the viscosity of the water ircraases
considerably, the effect will be significant.

‘Eq.(54) is an approximate solution from whict: the

viscous dissipation coefficient at any depth can be astimated
assuming that the initial time (1) is in deep water. £Eq.(55) is the
approximate solution at breaking.

CONCLUSIONS

Based on the small omplitude wave theory
approximations, the following approximate equations are
derived to estimate the nearshore wave transformation
coefficients at wave breaking location.

i) Shoaling:

K, = 04697 H_‘,f;

ii) Refraction:

K _ | cosog s
' T | cosay
where,
. VH, .
o, = sin (2.27 —T‘l svnocu)

iii) Bottom Friction:

]
K = 0‘0(136[

1+
S H

0

T
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iv) Bottom Percolation:

1
Ko = ] 0.00013( i )
+— —
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v) Viscous Dissipation:

1
]+3.534><10 1 [sz 25}

s 7H25
The results obtained by the above equdﬁons agree
within the reasonable range with the results based on

numerical integration. These equations may be found handy
for the field engineers for easy application,
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