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CHAPTER V 

SUMMARY AND CONCLUSIONS 

 

To understand the fate of Carbon dioxide in the northern Indian Ocean for the 

Last Quaternary period, two entities were assessed; the calcium carbonate content and 

the paleocarbonate ion content from ocean sediments. The CaCO3 content data from 

ten deep-sea cores congregated from the equatorial region of the Atlantic, Pacific and 

Indian Ocean covering a time span of 0.6Ma was reviewed. As observed by a large 

number of studies, the CaCO3 content fluctuates in a cyclic pattern through the 

glacial-interglacial. Largely, there are two typical patterns observed; the ‘Atlantic 

pattern’, exhibiting better preservation during the interglacials and poor preservation  

during glacials and the ‘Pacific pattern’ which exhibits poor preservation during 

interglacial and better preservation during the glacials. There are studies exemplifying 

either/both types of patterns for the Indian Ocean. The Indian Ocean carbonate 

fluctuations are not conclusive as to which pattern they exhibit, due to few studies. 

The overall patterns observed over the equatorial regions of the world oceans are 

attributed to changing bottom water circulation and hence changing saturation state 

with respect CO3
=
 concentration. Therefore, the bottom water CO3

=
 concentration is 

considered to be the most important factor in understanding the glacial-interglacial 

ocean operation.  

To understand the CO2 variations in the past it is necessary to know how the CO3
=
 

concentration varied in response to the atmospheric CO2 change. Studies with respect 

to paleocarbonate ion reconstruction have been extensively carried out in the Atlantic 

and Pacific oceans. Major thrust has been laid on using many of the available 
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paleocarbonate ion proxies. In this study three paleocarbonate ion proxies have been 

applied; 1) size index 2) planktonic foraminifera shell weights and 3) calcite 

crystallinity. These proxies have been applied several times in the Atlantic and 

Pacific oceans and therefore the shortcomings and existing gaps in knowledge are 

well known. In this context a few studies were carried out from the Indian Ocean to 

understand the paleocarbonate ion variations. In this study, before the application of 

any of these proxies, their validation and suitability of application to the northern 

Indian Ocean is evaluated. For doing this, several core top samples have been 

employed providing a good spatial coverage. In this endeavor the shortcomings of 

these major proxies have come forth. Only after clearing the major drawbacks the 

proxies have been applied to the northern Indian Ocean in order to understand the 

glacial-interglacial carbonate ion fluctuations.  

This study provides a systematic basis to resolve some important aspects of 

the calcium carbonate fluctuations during the Late Quaternary Period.  The prominent 

findings of this study are summarized as under: 

 

1) Previous studies suggest that the CaCO3 content in the ocean sediments 

fluctuated systematically in the Atlantic, Pacific and the Indian Oceans. 

Though these variations are influenced by three factors namely, 

productivity, dilution and dissolution. Out of these three factors, dissolution 

plays an important role in the deep seas, primarily due to bottom water CO3
=
 

undersaturation. This claim is made based on the linear relation between 

coretops of the ten sediments cores from the Atlantic, Pacific and Indian 

Oceans and the carbonate ion concentration of the water bathing these 

coretops. The CO3
= 

concentration of bottom-waters
 
in the major world 
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oceans have changed depending on the bottom-water circulation which 

created two distinct carbonate fluctuation patterns. These are typically 

christened the ‘Atlantic pattern’ and the ‘Pacific pattern’. It is believed here 

that the Indian Ocean displays a Pacific type of pattern due to the similar 

kind of bottom-water circulation prevailing in both these oceans. This 

highlights the importance of CO3
= 

alone in shaping the carbonate 

fluctuations. 

 

2) To determine the carbonate ion concentrations in the past it is necessary to 

use certain proxies which could give a fair calculation of this entity. Three 

paleocarbonate ion proxies, size index, planktonic foraminifera shell weight, 

and calcite crystallinity, have been employed in this study. These proxies are 

primarily validated. In support of this the proxies have been applied to a set 

of core top samples from the western tropical Indian Ocean in the water 

depth ranges from 1086 to 4730m. All three proxies show a linear relation to 

one another and hence complement each other well. The significant finding 

here from the application of these proxies is that calcite dissolution starts to 

affect planktonic foraminifera from 2250 m depth onward and intense 

calcite dissolution begins around 3900 m depth in this sector of the tropical 

Indian Ocean.  

    To substantiate the effect of dissolution on foraminifera shells, SEM 

micrographs of  Globigerinoides sacculifer from a water depth of 2250 and 

3944m were compared. Apparently, shells from deeper depth show 

dissolution features whereas shallow depth shells show well-preserved tests. 

A perplexing result is that the three planktonic foraminifera species, 
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Globigerinoides sacculifer, Pulleniatina obliquiloculata, and 

Neogloboquadrina dutertrei, show wide variability in shell weights from 

core top sediments in the depth range of 3300 to 3400 m bathed by similar 

bottom water CO3
=* 

concentrations. This anonymity is determined and 

attributed to shell calcification in surface waters which have different CO3
= 

concentrations. This study makes it apparent for the first time that initial 

shell weights in the tropics depend on the surface water CO3
= 

concentrations 

as seen for the temperate species, shown in other studies. Further, surface 

water CO3
=
 concentrations override milder dissolution effects experienced 

by samples from shallower water depths bathed by similar bottom water 

CO3
=* 

concentrations. An important conclusion of this study is that the 

calcite dissolution effects are best resolved using a multiproxy approach, 

such that there is no indistinctness in the results.  

 

3) To be certain whether the application of the proxies yields a correct 

estimation of the bottom water CO3
=
 concentration, it is important to 

understand the possible dissolution mechanisms. Two processes drive 

dissolution of calcite after it reaches the seafloor. First is the degree of 

saturation state of  CO3
= 

concentration of the overlying bottom waters  and 

the second, due to sedimentary organic matter respiration and resulting 

acidification of pore waters. Therefore it is necessary to examine whether 

the intense dissolution occurring at 3900m in the Indian Ocean is a result of 

undersaturation of overlying bottom waters with respect to CO3
=
 

concentration. In actual conditions, the core top foraminifera are initially 

exposed to the benthic fluff layer at the sediment-water interface. Therefore, 
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this interface is perhaps a better description of the initial exposure 

environment in foraminifera from core tops. To understand whether 

dissolution taking place at 3900m  water depth is due to this corrosive 

benthic fluff layer the ΔCO3
= 

interface - ΔCO3
= 

bottom water gradient was 

calculated and found to be + 4.2µM which is within ±10µM of bottom 

water, the value derived by de Villiers(2005). This suggest that there is no 

significant gradient in ΔCO3
= 

across the sediment-bottom water interface at 

a depth of 3900m. Therefore, it is concluded that the intense dissolution 

along this transect in the western Tropical Indian Ocean is due to bottom 

water CO3
=
 undersaturation. This finding provides a boost to the application 

of the shell weight proxy for the northern Indian Ocean.  

 

4) The suitability of two proxies, size index and planktonic foraminifera shell 

weights was verified with respect to understanding the temporal variations 

in CO3
=
 concentrations. For this purpose, size index proxy was applied to 

two ODP Sites 715 and 752 which were drilled above the regional lysocline 

depth in the Indian Ocean. The size index as measured in Site 752 and Site 

715 showed significant variations, though both the sites are from shallow 

depths. High values of size index at ODP Site 752 and its distal location 

from any landmass suggest that the observed variations are due to changes 

in productivity of the overlying waters. Low values of size index at ODP 

Site 715 suggest significant dissolution has occurred throughout the core. 

The reasonably synchronized mismatch between size index and CaCO3 

occurring at ODP Site 715 is a unique result. Such an outcome is not noticed 

at ODP Site 752. The size index alone is not adequate to reason out the 
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observed mismatch. Therefore, the CaCO3 content from the <63µm fraction 

was studied. The CaCO3 content from the <63µm fraction from ODP Site 

715 shows a match with the total CaCO3 content. From the <63µm 

variations it is evident that the finer fraction which is composed of juvenile 

forams, foraminiferal fragments and coccoliths dominates the carbonate 

content and holds the key to the observed variations. It is concluded here 

that the size index may not give a correct estimation of the carbonate ion 

content of bottom waters in regions dominated by coccolithophores, as 

encountered in the present study. G. ruber shells from the ODP Site 715 

show an anomalous trend throughout the core which has been attributed to 

different morphological changes in G. ruber during glacial and interglacial. 

This study signifies that the influence of coccoliths is seen throughout the 

glacial period which is a major drawback in applying the size index to the 

glacial as a paleocarbonate ion proxy, as also confirmed by some previous 

studies.  

 

5) Two cores are AAS9/21 from the Arabian Sea and SK218/A from the Bay 

of Bengal are employed to reconstruct the history of carbonate ion in these 

two basins for the past 25kyr. The CaCO3 content variations from both the 

cores do not provide a clear picture of the fluctuations occurring during the 

past 25 kyr. The possible reason is the large amount of terrigenous dilution 

due to influx of major rivers in both these regions. In the present 

circumstances two important proxies are used to understand temporal 

variations in CO3
= 

concentrations; the size index and G. sacculifer shell 

weights. Size index application for both the cores gives an underestimation 
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of CO3
= 

concentration and are not consistent with the CaCO3 content 

changes. Size index values in AAS9/21 which lies at shallow depth are 

lower as compared to the size index values in Core SK218/A. Moreover, 

size index results for Core AAS9/21 which lie much above the lysocline, 

show an increasing trend from recent to the Last Glacial Period. These 

results imply that the initial size distribution of the CaCO3 deposited 

throughout the tropics is not uniform during present and glacial time. But, in 

general the high values of CaCO3 and size index during the Last Glacial 

Period and lower during the Holocene reveals a Pacific type of pattern for 

the northern Indian Ocean.  

The second proxy, planktonic foraminifera shell weights, was applied 

to both the cores. Shell weights from both the cores were combined with 

Mg/Ca thermometry, a proxy for paleotemperature. There seems to be a 

inverse linear close fit relation between G. sacculifer shell weights and 

Mg/Ca ratios, with higher shell weights corresponding to lower Mg/Ca 

ratios; indicative of lower temperatures (R
2
=0.6). Shell weights are seen to 

be highest during the LGM and show a large decrease into the early 

Holocene. Due to the fact that shell weights are heavier during glacial time 

and the inverse relationship between temperature (Mg/Ca) and shell 

weights, suggests that the control on shell weight is carbonate ion and not 

calcification temperature. Such a change in shell weights during the glacial-

interglacial based on the surface water CO3
= 

changes
 
is a novel result for the 

tropics. This places new constraints on the coral reef hypothesis and could 

possibly explain the survival of reef corals on Bermuda.  
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6) The carbonate ion concentration calculated from shell weights from the 

Core AAS9/21 shows a good match with CO2 measured from Antarctic ice 

cores for the last 25kyr. The glacial-interglacial change in CO2 of 100ppmv 

registers a 45µmol/kg change in CO3
= 

concentration as calculated from G. 

sacculifer shell weight change of 10 ± 2µg. Again, through the Holocene a 

shell weight change of 2µg is noticed. This 2µg change in shell weights 

during the course of the Holocene calculates to a CO3
= 

concentration of 

9µmol/kg and in agreement with previous work. In terms of CO2 rise this 

change is of 20ppmv as measured from air bubbles trapped in an ice core 

from Taylor Dome, Antarctica, covering the entire Holocene. This indicates 

the amount of CO2 sequestered by the Arabian Sea during the 25kyr period.  

The absence of well preserved G. sacculifer shells in core SK218/A 

for the Holocene period suggests dissolution at 3307m depth in the Bay of 

Bengal. The minor dissolution observed at SK218/A site is attributed to pore 

water dissolution in this region during the glacial with the dissolution effect 

increasing during the Holocene period. In practice, since the planktonic 

foraminifera shells trace the surface water carbonate ion concentrations a 

correction of around 8µg need to be applied to the glacial shells (Broecker, 

2003). Since there was an effect of pore water dissolution on the 

foraminifera shells this probably compensates for the surface water 

carbonate ion effect. Therefore this correction has not been applied at 

3307m water depth. The CO3
= 

concentration has been calculated for the 

glacial Indian Ocean using G. sacculifer shell weights from cores AAS9/21 

and SK218/A. It is seen that the CO3
=
 gradient was steeper during the 

glacial. This gradient between glacial and today is 10µmol/kg at 3307m, 
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whereas no such gradient exist in the water depth of 1807m. This difference 

of 10µmol/kg in the present case for the Indian Ocean implies at least a 

~600m difference in the CCD which must have been at around 3900m 

during the glacial. The results presented here are in agreement with other 

studies which suggest that the CO3
=
 gradient was steeper during the glacial. 

The implications of such gradients are that the waters supplying the deep sea 

had a greater range in density, thereby permitting stratification to persist.  
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