Trace gases and CO$_2$ isotope records from Cabo de Rama, India


$^1$Physical Research Laboratory, Ahmedabad 380 009, India
$^2$National Institute of Oceanography, Goa 403 004, India
$^3$CSIRO Atmospheric and Marine Research, Aspendale, Victoria 3195, Australia
$^4$NOAA Earth System Research Laboratory, Boulder, Colorado 80303, USA
$^5$Indian Institute of Tropical Meteorology, Pune 411 008, India
$^6$Frontier Research Center for Global Change, JAMSTEC, Yokohama 2360001, Japan

Concentrations of carbon dioxide (CO$_2$), methane (CH$_4$), carbon monoxide (CO), nitrous oxide (N$_2$O) and hydrogen (H$_2$), and the stable carbon (δ$^{13}$C–CO$_2$) and oxygen (δ$^{18}$O–CO$_2$) isotopic composition of CO$_2$ have been measured in air samples collected from Cabo de Rama (CRI), India, for the period 1993–2002. The observations show clear signatures of Northern and Southern Hemispheric (NH and SH) air masses, mixed with their regional fluxes and chemical loss mechanisms, resulting in complex seasonal variation of these gases. The CRI measurements are compared with remote marine sites at Seychelles and Mauna Loa. Simulations of two major anthropogenic greenhouse gases (CO$_2$ and CH$_4$) concentrations using a chemistry-transport model for the CRI site suggest that globally optimized fluxes can produce results comparable to the observations. We discuss that CRI observations have provided critical guidance in optimizing the fluxes to constrain the regional source/sinks balance.

Keywords: Cabo de Rama, CO$_2$ isotope, greenhouse gases, trace gases.

The greenhouse gases (GHGs) trap earth’s outgoing long-wave radiation (OLR) and contribute towards increasing the surface temperature. For example, carbon dioxide (CO$_2$), nitrous oxide (N$_2$O) and methane (CH$_4$) jointly contribute towards increasing the surface temperature. For example, carbon dioxide (CO$_2$) and nitrous oxide (N$_2$O) and methane (CH$_4$) jointly contribute towards increasing the surface temperature. For example, carbon dioxide (CO$_2$), nitrous oxide (N$_2$O) and methane (CH$_4$) jointly contribute towards increasing the surface temperature. For example, carbon dioxide (CO$_2$), nitrous oxide (N$_2$O) and methane (CH$_4$) jointly contribute towards increasing the surface temperature. For example, carbon dioxide (CO$_2$), nitrous oxide (N$_2$O) and methane (CH$_4$) jointly contribute towards increasing the surface temperature.

With the implementation of the Kyoto protocol and associated carbon trading coming into effect, the demand for high-quality measurements of these gases in the troposphere, covering local/regional and long-time scales is increasing. While the global average increase of these long-lived GHGs is important for RF calculations, monitoring at a large number of sites is required for estimating sources/sinks at sub-continental or country scales. Generally, such measurements from the developing part of the world (Asia except Japan or South Korea, Africa, and South America) are sparse even today. To the best of our knowledge, no long-term monitoring site where measurements are made at regular intervals exists in India. Measurements of GHGs (mainly CH$_4$) have mostly been made on a campaign basis or with large data gaps, making them unsuitable for systematic analysis of decadal trends and variability.

In the early 1990s, a GHG measurement site was established at Cabo de Rama, India, as a collaborative effort of CSIRO Marine and Atmospheric Research (CMAR), Physical Research Laboratory (PRL), and National Institute of Oceanography (NIO). Apart from the fact that CRI is located in a data sparse region, the large-scale atmospheric circulation over the Indian Ocean/Arabian Sea and the Indian subcontinent, which is characterized by biannual reversal in low-level winds associated with the Indian monsoons, makes this site quite interesting for testing the capabilities of state-of-the-art chemistry-transport models (CTMs) in simulating the meteorology and trace gas concentrations. Here we describe the CRI location characteristics, time series of several trace gases and isotopic composition of CO$_2$, and compare the GHG observations with CTM simulations to discuss the role of measurements from this site in constraining regional sources/sinks. Measurements from this site are also put in a global perspective by comparison with the nearest long-term monitoring sites at Seychelles (SEY), Mahe Island (Indian Ocean) and Mauna Loa (MLO), Hawaii (Pacific Ocean).

After some preliminary site exploration, Cabo de Rama on the West Coast of India (marked ‘C’ in Figure 1) about 80 km south of Panaji, Goa (73.9°E, 15.1°N) was selected. The sampling location is on a flat rocky terrain, about 60 m above sea level. The site is devoid of vegetation over a scale of 50 m on all sides and is at least a few hundred metres away from sparse habitation. The meteorological data from Panaji show that in this part of the west coast, the wind in the afternoon (sampling time) is from the sea (onshore) all year round. In the northern down the response of emission reduction agreements, thus reinforcing the need for early action to avoid dangerous climate change due to GHG forced warming. Concentrations of CO$_2$, CH$_4$ and N$_2$O have increased at alarming rates, from preindustrial values of 280 ppm, 715 ppb and 270 ppb (circa. 1750) to 379 ppm, 1732 ppb and 319 ppb respectively in 2005 (ref. 1).
summer (SW) monsoon period, this flow direction matches with the general large-scale flow and CRI is located south of the inter-tropical convergence zone (ITCZ) as shown in Figure 1. Therefore, air samples collected during this period (June to September) represent tropical or SH oceanic air mass, representative of a wider area, and not contaminated by large industrial emission or strong ecosystem exchanges. In the northern winter (NE) monsoon period, the zonal wind direction is from the land to the sea and matches with the morning local wind (offshore). However, the same air mass is recirculated by afternoon sea breezes, with some dilution of continental trace gas signatures.

The wind speed at the time of sampling was moderate, generally about 4–6 m/s but increasing to 10–12 m/s at the peak of the SW monsoon. All India average rainfall varied from near zero to about 250 mm month⁻¹, which is the primary resource for agricultural activity and terrestrial ecosystem productivity in most parts of the Indian subcontinent. It is therefore expected that the two monsoon systems must have an important effect on the concentration and isotopic composition of atmospheric CO₂, and the concentrations of other trace gases. Air sampling at CRI contributes to the global atmospheric composition study. Given the potential for global impacts originating in the poorly sampled tropical/sub-tropical regions, data from this site provide valuable constraints on global/regional GHG forcing. During the roughly 10 years of regular sampling, CRI was one of the most influential sites in constraining large-scale source and sinks of CO₂. This arose from its proximity to a large region subject to large uncertainties and otherwise poorly sampled. For example, Rayner et al. showed the importance of the CRI δ¹³C–CO₂ record in constraining fluxes from the adjacent land region.

Chemically dried (using anhydrous Mg(ClO₄)₂) air samples are collected in 500 ml glass flasks at a pressure of 1900 hPa (absolute) using a specially designed portable flask pump unit equipped with digital wind speed and wind direction monitors. The air-intake is 6 m above ground and two flasks are pressurized, one after another, during each visit to the site. Each flask is flushed at around 4 litre min⁻¹ with (dried) air for about 10 min before filling. After filling, the flasks are returned to CMAR’s GASLAB (Global Atmospheric Sampling LABoratory) in Aspendale for determination of the concentrations of trace gases CO₂, CH₄, CO, N₂O and H₂ by gas-chromatographic methods with measurement precision of 0.07 ppm, 2.4 ppb, 1.0 ppb, 0.3 ppb, 1.0 ppb respectively. Subsequently, the carbon and oxygen isotopic ratios in CO₂ are determined using an automatic cryogenic extraction system coupled to a Finnigan Mat 252 mass-spectrometer with internal precision of 0.015‰ and 0.04‰ for δ¹³C–CO₂ and δ¹⁸O–CO₂ measurements.
respectively. Further details of GASLAB operation are given in Francey et al.\textsuperscript{10,14} and extensive detail of uncertainty in isotope measurements is given in Allison and Francey\textsuperscript{15}. Based on the intercomparison programme (ICP) at Cape Grim, CO absolute scale at CMAR is about 2 to 4 ppb higher compared to the ESRL scale, and that for H\textsubscript{2} are in the range of –10 to 20 ppb and –4 to 6 ppb in the period of 1992–96 and 1997–2002 respectively.

Data are routinely corrected for drift in CO\textsubscript{2} mixing ratio associated with storage of air samples in glass flasks fitted with polymer O-rings. Such drift is primarily due to permeation of gases through the O-rings\textsuperscript{16}. Corrections are dependent on the duration of storage and the flask type (volume, number and material of O-rings), and are based on both empirical results of laboratory storage tests\textsuperscript{17} and observed discontinuities in CO\textsubscript{2} time series observed at high-latitude southern hemisphere sampling sites (Macquarie Island, Casey, Mawson and South Pole), where deviations are tightly correlated with storage time. Between 1993 and 2001, most samples were analysed within 12 months of collection, with a mean storage time of 6 months. The final batch of samples received at CSIRO contained air collected between May 2001 and October 2002. They were not analysed until June/July 2003 so that storage times for these samples were up to 25 months.

We have used the Centre for Climate System Research/ National Institute for Environmental Studies/Frontier Research Centre for Global Change (CCSR/NIES/FRCGC) atmospheric general circulation model (AGCM) based CTM (hereafter, ACTM\textsuperscript{18}) for simulating the GHGs in the altitude range of earth’s surface to the mesosphere (~90 km). The forward simulation results for CO\textsubscript{2} using ACTM and two other models have been compared with observations at CRI and are discussed separately\textsuperscript{19}. Detailed analysis of CH\textsubscript{4} at many sites globally (including CRI) and at hourly-decadal timescales is also available in the literature\textsuperscript{20}. The model horizontal resolution is set at T42 spectral truncations (~2.8 × 2.8°) and 67 pressure-sigma layers in the vertical. Due to the coarse horizontal resolution of ACTM, the model simulations are expected to capture regionally representative features in long-lived trace gases arising from flux distributions and meteorology. Thus, potential bias caused by land–sea breeze conditions cannot be addressed with this model due to the coarse horizontal resolution.

In February 1993, regular flask sampling was started at CRI, where duplicate flask samples have been collected twice every month till 2002. The measurement records for the whole sampling period are presented here in the form of time series plots (Figures 2 and 3). Data have been submitted to the WDCGG and CDIAC international databases. For each species, we produced a smooth fit to the data by applying a Butterworth digital filtering routine to convert data into the frequency domain, applying a low-pass filter and then applying an inverse FFT to get back to the time domain. The filter\textsuperscript{21} effectively removes variations with periods less than 22 days. Smooth fitted data from Cabo de Rama (15.1°N, 73.8°E) are compared to smoothed CMAR data from Mauna Loa (19.5°N, 155.6°W) representing zonal-mean NH marine-air mass, and smoothed NOAA Earth System Research Laboratory (ESRL) measurements from Seychelles (4.7°S, 55.2°E) which is located upwind of CRI during the SW monsoon, and down-wind of the Indian subcontinent during the NE monsoon. Comparisons with SEY are presented for those species (CO\textsubscript{2} and its isotopes and CH\textsubscript{4}) where ESRL and CMAR data are reported on the same scales, and inter-laboratory differences have been demonstrated to be generally insignificant for our data analysis by ongoing sample measurement intercomparisons using flask air from Cape Grim\textsuperscript{13,22}.

In Figure 2, the CRI CO\textsubscript{2} mixing ratio (symbols and the fitted black line) is compared to a smooth curve fitted to CSIRO MLO data (blue line) and to the SEY data (red line). MLO seasonality is predominantly influenced by the large carbon uptake–release cycle of the terrestrial ecosystem in the NH mid- and high-latitudes, whereas SEY, within the ITZC, is a mixture of NH and SH air with much mean value closer to SH values and exhibits complex, perhaps competing seasonality. At CRI the large seasonality is more determined by large scale transport that introduces SH air or NH air in different seasons. We note that CRI data density is sometimes too sparse to precisely determine seasonal amplitude, and that data quality is less reliable in the first 1–2 years of establishment. Note also that the time of flask sampling was varied between 10 : 00 and 13 : 00 local time (LT, or Indian Standard Time, IST), and was delayed by about two hours to 12 : 30–13 : 30 LT for the period after 1997. Although the influence of this change is not visible in significant changes relative to SEY, a clearer assessment awaits improved information on the diurnal cycle for different wind regimes.

At CRI, the highest CO\textsubscript{2} mixing ratio is observed in February–March, towards the end of the NE monsoon when the vegetation activity in northern India is dominated by heterotrophic respiration and anthropogenic emissions are high. The seasonal minimum in mixing ratio occurs in October, soon after the SW monsoon, when the local vegetation activity is still dominantly photosynthetic. The effect of maximum photosynthetic uptake during July–August is not recorded at this site because the winds are strong and south-westerly (representative of the SH air mass). This situation complicates the interpretation of seasonal cycle amplitude at CRI compared to that expected at other sites. During the SW monsoon, CO\textsubscript{2} concentrations observed at CRI agree well with those observed at SEY. Because of the strong prevailing wind speed during the SW monsoon, possibility of large influence due to upwelling in the Arabian Sea at this time is unlikely to be recorded at CRI. The eastern and central Arabian Sea acts as a weak to strong source of CO\textsubscript{2}, up to
about 1.7 g CO₂ m⁻² day⁻¹ during the SW monsoon, but is much weaker than the flux variability estimated over the land (±10 g CO₂ m⁻² day⁻¹).

Until October–November, CRI CO₂ absolute concentrations are generally close to those at SEY. From autumn to spring, CRI values increase sharply to values much higher than at SEY. These elevated CO₂ levels are consistent with contemporary variations observed generally in the NH, as represented here by the MLO record though there are clear differences in the phase of the average seasonal cycles. The CRI and SEY differences are also consistent with regional net (photosynthetic) uptake in October–November, followed by net winter respiration.

The negative correlation between the CRI δ¹³C–CO₂ (Figure 2b; see also ref. 13) and CO₂ mixing ratio on the seasonal timescale favours a strong biogenic contribution, and excludes a strong oceanic contribution. The coefficients for each year from 1993 to 1998 are −0.0433, −0.0478, −0.0476, −0.0467, −0.0551 and −0.0408‰ ppm⁻¹ respectively. While the differences in the coefficients are of marginal significance, it is suggestive that the largest values occur in 1994 and 1997, the years of enhanced biomass burning, and the lowest values occur in the immediately following years. Such a pattern would be expected if a higher proportion of C₃ photosynthetic material were involved in global exchange in 1994 and, particularly in 1997, followed by an increased C₄ proportion in the subsequent year. This pattern is expected if wild fires convert tropical forest to Savannah, or involve persistent combustion of peat as occurred in the 1997 Indonesian fires. Further analysis is required to attribute exact causes for the year-to-year variability in stable isotopes of CO₂.

The δ¹⁸O-CO₂ values (Figure 2c) exhibit a complex seasonal behaviour, with relatively steady values, close to SH values observed at other GASLAB sites, during the SW monsoon. A small decrease in δ¹⁸O–CO₂ is observed at the end of the SW monsoon and is followed by a rapid
increase to a high value at the beginning of the NE monsoon. Data quality seriously deteriorates between 1998 and 2001 due to anomalies with drying or flask storage. The $\delta^{18}$O–CO$_2$ values in the SW monsoon period show a general decline of around 0.5‰ from 1993 to 1996, followed by a flattening that has been observed elsewhere in the CSIRO global network. The more positive peak in $\delta^{18}$O–CO$_2$ in the NE monsoon period compared to the SW monsoon period is opposite to that expected from large scale interhemispheric gradients that show MLO values around 1 per mille more negative than mid-to-high-latitude SH values$^{26}$. The reverse gradient is most easily explained by an isotopic exchange with leaf water, which is significantly enriched compared to soil water, particularly in conditions of high evapotranspiration.

Variations in mixing ratios of CH$_4$, N$_2$O, CO and H$_2$ at CRI are shown in Figure 3, along with smooth curves fitted to the MLO (and CH$_4$ only at SEY) data. As expected, the CRI and SEY values are quite similar for CH$_4$ during the SW monsoon period for all years, but the CRI data are significantly elevated during the NE monsoon period. Over the whole year, seasonal cycle phases for CH$_4$ and CO at CRI are quite similar (correlation coefficient = 0.87), which might be expected if changes in monsoon meteorology expose strong emission of both these gases due to anthropogenic activity in India. This is unlike the dominating role of terrestrial ecosystem activity in controlling the CO$_2$ seasonal cycle at CRI. The seasonal minimum during the summer time in most parts of the world is produced by loss of these gases due to chemical reaction with OH$^{20}$. The mixing ratios start to increase strongly just after the SW monsoon when the origin of the air mass changes to NW or NNW direction, carrying mainly continental air. CH$_4$ peaks at the beginning of the

Figure 3. Same as Figure 2, but for CH$_4$, N$_2$O, CO and H$_2$. Smoothed fits to the Mauna Loa (blue line; data source: CMAR) or SEY data (red line; except for N$_2$O; data source: ESRL) are given for comparison.
NE monsoon and then steadily decreases through to the beginning of the next SW monsoon. The highest CO values are obtained throughout the NE monsoon, reflecting high emissions from the Indian subcontinent. General features of the constituents transport during the NE monsoon season have been established during the Indian Ocean Experiment (INDOEX)\(^2\).

The post SW monsoon increase in CH\(_4\) is also clear in the SEY data but occurs later, in early December (i.e. during the developed phase of the NE monsoon in India), when the continental air starts to arrive at SEY. At this time, the ITCZ position coincides with the SEY latitude (4°S) and the winter continental air starts to flow over it (Figure 1b). Subsequently, during the northward migration of the ITCZ as it moves past SEY, the supply of continental air is cut off and the equatorial marine value is returned there. On the contrary, CRI continues to have higher mixing ratios until June as it still continues to receive continental air. The net result of this is that the peaks in CH\(_4\) at SEY are flanked on both sides by the peaks at CRI, and the peak value observed at SEY is smaller compared to that at CRI due to dilution of the continental emission signal by the marine air. It is interesting to note here that the CH\(_4\) mixing ratios at MLO are higher compared to CRI during the SW monsoon season (June–August). This gives evidence that the exchange of air between the hemispheres is more efficient in the Indian Ocean sector than the Pacific Ocean sector.

The N\(_2\)O mixing ratio (Figure 3b) does not show a well organized seasonal cycle at the available measurement precision. The smaller seasonal cycle amplitude is due to small seasonality in fluxes and no measurable loss of N\(_2\)O in the troposphere (unlike CO and CH\(_4\)). Thus, the horizontal and vertical gradients in N\(_2\)O mixing ratio are likely to be small in the troposphere; e.g. the difference between Cape Grim and Mace Head is found to be about 3 ppb or less\(^2\). Thus the change in monsoon meteorology cannot introduce a large change in N\(_2\)O mixing ratio with seasons at this site. From 1993 to mid-1995, the mean value remained close to 313 ppb, but increased steadily after that reaching 320 ppb in 2002. The baseline N\(_2\)O mixing ratios (defined as the seasonal minimum) at MLO and CRI are within 1 ppb of each other, but about 2–3 ppb higher at CRI than that at MLO in the NE monsoon season, indicating that the regional emission in the vicinity of the CRI site is higher than the global average (including both the ocean and land regions) emission. As stated earlier, the MLO site is fairly representative of the NH mean mixing ratio for the long-lived gases. The smaller seasonal cycle amplitude is due to dilution of the continental emission signal by the marine air.

In comparison, H\(_2\) is consumed rapidly by the land surface and by reacting with OH. Thus, the SEY site mostly shows higher mixing ratio compared to CRI or MLO sites (Figure 3d). Again, the SEY and CRI values are in good agreement in the SW monsoon season, but H\(_2\) mixing ratios increase sharply at SEY in the post-monsoon season (September–December) when the ITCZ is located in between and separating these two sites by about equal distance (Figure 1c). In the NE monsoon period, the mixing ratios at CRI and SEY are similar.

Figure 4 shows the model-observation comparisons of CH\(_4\). The model results are given as the daily average mixing ratios as sampled at CRI and the fitted curves refer to both the model and observations. The assumption remains that during sampling in sea-breeze conditions trace gas levels reflect integrated emissions from the continent, except during the SW monsoon season. Details of CH\(_4\) model-observation comparison at this site in relation to monsoon dynamics and SEY observations have been discussed recently\(^2\), and only a brief account is given here. Comparison with MLO (Figure 3a) suggested stronger emissions from the Indian subcontinent, and the comparison with model results as shown here (Figure 4) is based on an estimate that annual total emission from India would be about 41 Tg–CH\(_4\) yr\(^{-1}\) (ref. 20). This emission estimate is obtained by model-observation comparison of CH\(_4\) time series at CRI. The phase of the average seasonal cycle and synoptic scale variability at CRI and SEY are well reproduced by the ACTM simulation. Such agreement in model-observation time series is attributed to the realistic representation of model transport in the troposphere and stratosphere–troposphere exchange (STE), loss of CH\(_4\) by reacting with OH and surface fluxes\(^2\). These model-observation comparisons illustrate the causes for trace gas variations at seasonal scale and support the proposition made in Lal et al.\(^5\) using dual tracer analysis (SF\(_6\) and CH\(_4\)) at Tiruvananthapuram, a site located in the southernmost point of India. Unfortunately, operation of that site is also discontinued.

Figure 5 shows interannual (IAV; right column) and interseasonal variability (ISV; left column) in all the gases and CO\(_2\) isotopic compositions at CRI. The IAVs and ISVs are defined as time-derivative of the long-term trends component and the fitted curve respectively, for each timeseries at daily intervals obtained by digital filtering. Only the CH\(_4\) simulation results are compared with observations here (see ref. 19, for model-observation comparison of CO\(_2\)). The combination of ISV and IAV analysis helps us to understand the rise and fall timing of the seasonal variations and interannual variations respectively. From the ISV time series, we can clearly see that the CO\(_2\) mixing ratio rises rapidly during the autumn season around this site, the decrease in \(\delta^{13}\)C–CO\(_2\) suggesting an increase in anthropogenic (fossil fuel and biomass burning) or respiration components contribution to atmospheric CO\(_2\). This one-to-one negative correlation is also valid for the IAV of CO\(_2\) and \(\delta^{13}\)C–CO\(_2\). Large positive (negative) IAVs in CO\(_2\) (\(\delta^{13}\)C–CO\(_2\)) are shown to result from dry tropical conditions during the El Niño periods of 1992–1994 and 1997/98 (refs 12, 24 and 30).
The ISV for CH$_4$ shows that high values persist only for the post SW-monsoon season when CH$_4$ emission from the Indian subcontinent is high, presumably due to rice cultivation, and then drop sharply during December–January indicating a rapid decline of the regional fluxes. These features are clearly captured by the ACTM model simulation, which is achieved by obtaining useful constraints on regional fluxes at different seasons of the year at this site as discussed in Patra et al.\textsuperscript{20}. The IAV in CH$_4$ is in seemingly opposite phase to that for CO$_2$. During the El Niño periods the Indian subcontinent commonly receives below climatological average rainfall during the SW monsoon implying a lower area of inundation and agricultural activities.\textsuperscript{9} Oceanic emissions of CH$_4$ at CRI can be ruled out since the Arabian Sea is not a significant source of CH$_4$, ranging from 0.0014 to 0.0024 g-CH$_4$ m$^{-2}$ month$^{-1}$ over the period of the NE to SW monsoon seasons,\textsuperscript{31}, compared to land fluxes in the range: 1–3 g-CH$_4$ m$^{-2}$ month$^{-1}$.

The N$_2$O ISV peaks occur a couple of months earlier than that of CH$_4$ and are coincident with the SW monsoon season. Whether this is caused by the high oceanic emission during this season from the Arabian Sea as a whole\textsuperscript{12} or more regionally from coastal upwelling\textsuperscript{33} is a subject worth exploring in the future.

The CO IAV is somewhat similar to CO$_2$, again highlighting the role of fossil fuel and biomass burning related activities in mixing ratio IAVs around the CRI site for these two gases. Although CO ISVs looks closer to the CH$_4$ ISVs on the leading edge of the peak during autumn, the falling edge of this peak is delayed until late spring relative to that for CH$_4$. In fact, a secondary peak is systematically observed during spring in CO ISV.

Atmospheric trace gas studies at CRI were initiated by the Physical Research Laboratory, Ahmedabad and the National Institute of Oceanography, Goa, in collaboration with CSIRO Atmospheric Research, Aspendale, with the help and sponsorship of the International Atomic Energy Agency (IAEA). This set of measurements from Cabo de Rama, India provides important time series in a monsoonal zone of the Indian subcontinent for the first time. Enhanced levels of methane during NE monsoon period are thought to be due to various continental sources and, considering the agricultural practices in the Indian subcontinent, in particular the rice cultivation. To estimate the relative contribution of these sources, we have set up a methane extraction line at PRL to convert methane to carbon dioxide for isotopic analysis. These combined efforts are expected to be of great value in understanding the budget of the GHGs in earth’s atmosphere. The CO seasonal variations are found to be similar to that for CH$_4$. The CO$_2$ time series has long been provided for inverse modelling studies of surface flux estimations through the GLOBALVIEW-CO$_2$ product\textsuperscript{11} and its subsequent updates. The seasonal, inter-seasonal and inter-annual variations of CO$_2$ along with its $\delta^{13}$C–CO$_2$ and $\delta^{18}$O–CO$_2$ isotopic compositions help us to identify the governing mechanisms leading to the observed variations. Use of N$_2$O, CO and H$_2$ for inferring regional source/sink information appears promising based on the analysis of inter-seasonal and inter-annual variabilities. Noting the significance of this site in estimating the flux balance of.
the Indian subcontinent, we recommend that the observation programme at this site be continued and further sites be added for establishing a network of long-term monitoring of GHGs and their isotopic composition. More generally, in view of the persistent sea-breeze conditions for much of the year, high-resolution tracer transport modelling, supported by diurnal observations in representative wind regimes, would clarify and improve continental flux calculations.

RESEARCH COMMUNICATIONS


10. Francey, R. J. et al., Global Atmospheric Sampling Laboratory (GASLAB): supporting and extending the Cape Grim trace gas programs. In Baseline Atmospheric Program Australia (eds Francey, R. J., Dick, A. L. and Derek, N.), Department of the Environment, Sport and Territories, Bureau of Meteorology in Cooperation with CSIRO Division of Atmospheric Research, Melbourne, 1996, pp. 8–29.


ACKNOWLEDGEMENTS. Several scientists and administrative personnel from CMAR (Aspendale), PRL (Ahmedabad) and NIO (Goa) contributed significantly towards the success of this programme. The trace gas measurements are crucially dependent on the sophisticated methods and equipment developed and maintained in CSIRO GASLAB. In this context, we are extremely thankful to Lisa Cooper, Darren Spencer, and Scott Coram. We are grateful to CSIRO Atmospheric Research for the scientific gift of the methane extraction line. Special thanks are due to the personnel at NOAA-ESRL, Boulder, Colorado, for providing the SEY data. We are also grateful for financial help received from the India–Australia Exchange Program and the Department of Science, Industry and Tourism, Australia, at various stages. We finally thank the Director of PRL, Chief Division of CSIRO Atmospheric Research, and the Administrative Head at IAEA for encouragement and financial help to carry out this work. S.K.B. thanks Toshitaka Gamo for a Visiting Professorship to Ocean Research Institute, University of Tokyo during which the data analysis was completed.

Received 13 March 2009; revised accepted 15 September 2009