प्रस्तावना:-

पुरा समुद्र विज्ञान एवं पुरा जलवायु के पुनर्निर्माण के लिये समुद्री सूक्ष्म जीवाश्म का उपयोग किया जाता है क्योंकि समुद्री सूक्ष्म जीवाश्म बहुत ही संवेदनशील होते हैं। तलछट जमाने के समय की सतही पारिस्थितिकी के पुनर्निर्माण के लिए समुद्री सूक्ष्म जीवाश्म के अभिलक्षण का उपयोग किया जा सकता है। (बर्गर एवं सोर्टर, 1970)। कैनेट ने 1980 में दक्षिणी महासागर के सीनोजेक्स (Cenozoic) समय के पुरा जलवायु एवं पुरा समुद्र-विज्ञान को संकलित किया है। दक्षिणी महासागर के भारतीय क्षेत्र के पुरा जलवायु की जानकारी के लिए बहुत कम अध्ययन किया गया है। इसलिये राष्ट्रीय अंटार्कटिक एवं समुद्री अनुसंधान केंद्र ने इस क्षेत्र में एक महत्वपूर्ण कार्यक्रम प्रस्तुत किया है जिसके अंतर्गत भारतीय दक्षिणी महासागर क्षेत्र में संग्रहित तलछट कोर का विश्लेषण किया जाता है। तलछट कोरों के संग्रहण के लिये भारतीय नेतृत्व में एक मार्गदर्शक अभियान जनवरी, 2008 में प्रारंभ किया गया। भारतीय दक्षिणी महासागर क्षेत्र के पुरा जलवायु अध्ययन हेतु संग्रहित तलछट कोरों से प्राप्त फोरामिनिफेरा के अभिलक्षण (जैसे: विभिन्नता, आकृति-संबंधी लक्षण, शैल रसायन इत्यादि) की जाँच की गई है। सर्वप्रथम, फोरामिनिफेरा के अभिलक्षण का वर्तमान पर्यावरण के अध्ययन हेतु उपयोग किये जाने के उपरांत ही फोरामिनिफेरा के अभिलक्षण का समुद्र तल तलछट के विश्लेषण में उपयोग किया जा
सकता है। तदनुसार, परिवर्तित अक्षांश के साथ प्लैक्टॉनिक (Planktonic) फोरामिनिफरा की सम्पूर्ण प्रजाति की संख्या का अध्ययन, विभिन्न आकार के प्लैक्टॉनिक फोरामिनिफरा के वितरण, प्रति ग्राम सूखे तलछट में मौजूद दोटे खोल की संख्या का अध्ययन करके किया गया। इसके अतिरिक्त परिवर्तित अक्षांश में उप अंटार्कटिका एवं परिवर्तित ग्लोबिजेडिना बुलॉइड्स प्रजाति की ऑक्सीजन समस्थानिक (ऑक्सीजन आइसोटोप) एवं प्लैक्टॉनिक नियोग्लोबो क्वाडरिना पेंकिक्ड्रम प्रजाति के कुछ आकृति सबसे अभिलक्षणों का भी अध्ययन किया गया है। कुछ सूक्ष्म जीवाश्म के समूह जैसे डाइएम्द, कोकोलियोफोर्स एवं सिलिसियस डाइफ्रॉलेजिलेट का समप्रकार अध्ययन भी किया गया है। इस लेख में संग्रहित तलछट नमूनों से प्राप्त सूक्ष्म जीवाश्मों के अध्ययन की जानकारी दी गई है।

अध्ययन क्षेत्र :-

सागर कन्या 199C एवं 200C के समुद्री मार्गदर्शक अभियान के दौरान समुद्र तल की सतह एवं अध:तल से (9.69° उ.-55.01° द. अक्षांश एवं 80° पू. से 40° पू. देशान्तर) नमूने संग्रहित किये गये। विभिन्न प्रकार के जल समूह (Water Mass) भारतीय दक्षिणी महासागर की एक महत्वपूर्ण संरचना है जो विभिन्न अक्षांश के परिस्थितिकीय पैमाने को प्रभावित करता है। (चित्र 1)

विधि एवं सामग्री :-

फोरामिनिफरा अध्ययन के लिये सभी तलछट नमूनों पर मानक प्रक्रिया के अनुसार कार्य किया गया (खरे एवं चबुर्विदी,2006)। फोरामिनिफरा के आकृति विज्ञान को एक स्टीरियो जूम सूक्ष्मदर्शी के तहत देखा गया। प्लैक्टॉनिक फोरामिनिफरा की प्रजाति ग्लोबिजेडिना बुलॉइड्स के ऑक्सीजन समस्थानिक अनुपात को मापा
गया है। ग्लो बुलोइड्स के 10–12 नमूनों को चुना गया और ऑक्सीजन समर्थनिक अनुपात निकाला गया। ग्लो बुलोइड्स नमूनों की ऑक्सीजन समर्थनिक संरचना को अल्काइड वेगनर संस्थान, धूमीय और समुद्री अनुसंधान, जर्मनी में मापा गया है। इसी तरह की पहुंच को डायटम, कोकोलिथोफोरस एवं सिलिसियस डाइनोप्लेजिलाईट के अध्ययन के लिये भी अपनाया गया है। (मोहन एवं अन्य, 2006 एवं राय तथा अन्य, 2007)।

परिणाम एवं विवेचना:–

फोरामिनिफेरा अध्ययन: मुख्य लक्षण:–

14 जेनेरा से समन्वित 33 प्लैन्कटॉनिक फोरामिनिफेरा प्रजातियों का इस अध्ययन क्षेत्र से प्रतिवेदन किया गया है। प्लैन्कटॉनिक फोरामिनिफेरा संख्या में ग्लोबोजेरिना ग्लूटिनेटा, ग्लोबोजेरिना रूबर, नियोग्लोबोक्वाडरिना पैकिड्रमा, ग्लोबोजेरिना बुलोइड्स, ग्लोबोजेरिना रॉइड्स सैक्यूलिफर आदि प्रमुख मात्रा में मौजूद हैं, जबकि हेर्स्टिजेरिनेला डिजिटाटा, स्फॉरियोडिनेला डेरीसेन्स, ऑर्बुलिना यूनिवर्सा, बुलियेला एडाम्सी, ग्यॉरोस्टालिया थियेरी आदि कम मात्रा में विद्यमान हैं। प्रारंभिक पहचान और गणना से अलग-अलग प्रजातियों की बहुतायत में बदलाव का पता चलता है। प्लैन्कटॉनिक फोरामिनिफेरा की लगभग 9.69° उ. से 15° द. अक्षांश तक अपेक्षाकृत कम प्रचुरता पाई गई है। प्लैन्कटॉनिक फोरामिनिफेरा की संख्या लगभग 15° से 40° द. अक्षांश के बीच काफी बढ़ जाती है। हालांकि, 40° द. अक्षांश से आगे दक्षिण क्षेत्र में प्लैन्कटॉनिक फोरामिनिफेरा की संख्या फिर कम हो जाती है (खरे एवं चतुर्वेदी, 2007)। लगभग 15° द. अक्षांश तक फोरामिनिफेरा के टूटे खोल की प्रचुरता कम पाई गई है। जबकि 15° द. से 40° द. अक्षांश के बीच फोरामिनिफेरा के टूटे खोल की प्रचुरता काफी बढ़ जाती है। हालांकि, 40° द. अक्षांश
के आगे दक्षिण में फोरामिनिफेरा के टूटे खोल की संख्या कम हो रही है।

प्लेन्क्टॉनिक फोरामिनिफेरा संख्या पर विभिन्न जल समूह का प्रभाव :-

प्लेन्क्टॉनिक फोरामिनिफेरा की प्रचुरता, टूटना एवं फैलाव के स्वरूप को अध्ययन क्षेत्र की सामान्य समुद्र वैज्ञानिक परिस्थितियों के आलोक में समझाया जा सकता है। शक्तिशाली विभिन्न समुद्री धाराओं के क्षेत्र से (15° द. से 40° द. अक्षांश) तुलनात्मक रूप से उच्च फोरामिनिफेरा की प्रचुरता की रिपोर्ट दी गई है (टॉमजेक एवं गुडफ्रे, 2003)। जबकि, केंद्रीय जल समूह (10° उ. से 15° द. अक्षांश) में फोरामिनिफेरा की कम मात्रा का पता चलता है (टॉमजेक एवं गुडफ्रे, 2007)। प्लेन्क्टॉनिक फोरामिनिफेरा के आकार की बहुतायत इस क्षेत्र में (15° द. से 40° द. अक्षांश) पर्याप्त आहार की उपलब्धता को प्रदर्शित करती है। जबकि प्लेन्क्टॉनिक फोरामिनिफेरा का कम आकार 10° उ. से 15° द. अक्षांश के क्षेत्र में कम आहार की उपलब्धता दर्शाता है (खेर एवं चतुर्वेदी, 2007)।

परन्तु, 40° द. अक्षांश के दक्षिण क्षेत्र में फोरामिनिफेरा की संख्या में कमी इस बात को दर्शाती है कि शायद पादप प्लेन्क्टॉनिक फोरामिनिफेरा का खाद्य है की समाधित कमी ही उस पर प्रभाव डालती है (इगुची एवं अन्य, 1999)। प्लेन्क्टॉनिक फोरामिनिफेरा के आकार एवं संख्या का घटना/बढ़ना, उस अक्षांश क्षेत्र के भोजन की कमी या बहुतायत/पोषक तत्वों की आपूर्ति को प्रदर्शित करता है। हालांकि, लवणता, भोजन एवं जल स्तम्भ के पोषक तत्व सामग्री का फोरामिनिफेरा की विशेषताओं पर गहरा प्रभाव देखा गया है।

ऑक्सीजन समस्थानिक विश्लेषण :-

प्लेन्क्टॉनिक फोरामिनिफेरा की प्रजाति ग्लो बुलोइड्स को समस्थानिक
संरचना और वर्तमान भौतिक रासायनिक स्थितियों के बीच के संबंधों का मूल्यांकन करने के लिये चुना गया था। औष्ठिक अनुपात समस्तानिक अनुपात के अभिलेख में उच्च अक्षांश की तरफ बढ़ते अनुपात को देखा गया है (चित्र 2), जो कि जाहिर है अंतर्क्षिक क्षेत्र के तापमान परिवर्तन और ठंडी जलवायु परिस्थितियों की वजह से है। परिणाम दिखाते हैं कि 31° व. अक्षांश दक्षिण तक लवणता फोरामिनिफरा के औष्ठिक समस्तानिक अनुपात को प्रभावित कर सकती है, जबकि 31° व. अक्षांश के आगे दक्षिण में लवणता औष्ठिक समस्तानिक अनुपात को प्रभावित नहीं कर रही है (खेले एवं अन्त्य, 2007)। ग्लोबल बुलोइड्स 100 मीटर पानी की गहराई में पाए जाते हैं, यह निष्कर्ष औष्ठिक समस्तानिक अनुपात से मिलता है। निष्कर्ष और निर्ार्क निष्कर्ष पर पहुंचने के लिये ऐसे कई विभिन्न अक्षांशों पर यह अध्ययन किया जाना चाहिए।

प्लैन्टॉनिक फोरामिनिफरा का आकृति विज्ञानी अध्ययन

नियोग्लोबोक्वांडिना पैकीडामा की प्रजाति के आकार में परिवर्तन, मध्यम प्रोलोक्यूलस (प्रारंभिक कक्ष) एवं कुण्डलीकरण (coiling) की मात्रा का कम अक्षांश से बढ़ते हुए अक्षांश में अध्ययन किया गया। नियोग्लोबोक्वांडिना पैकीडामा की आकृति वैशिष्ट्य पैमाने पर बड़े अक्षांश से कम अक्षांश की ओर बढ़ती है। इस प्रकार आकृति का बढ़ता स्वरूप, तापमान के बदलाव-चयापचय नमता एवं कार्बोनेट अति संतुलित एवं भोजन की उपलब्धता के कारण हो सकता है। उसी प्रकार, अन्त्य आकृति लक्षण भी जल समूह के परिवेश के भौतिक-रसायनिक गुणों से अध्ययन क्षेत्र को प्रभावित करते हैं।

डाइएटम का अध्ययन: मुख्य लक्षण:–

मोहन एवं अन्त्य, (2006) के अध्ययन के अनुसार, (28° व. से 56° व.) अक्षांश तक सतह तलछट में डाइएटम का वितरण, विभिन्न भौतिक
रासायनिक लक्षण, समुद्र की सतह का तापमान, लवणता, सिलिकेट नाइट्रेट, डायटम संख्या और पोषक तत्वों का एक दूसरे पर प्रभावी असर देखा गया है।

कोकोलिथो फोर्स: मुख्य लक्षण:-

भारतीय दक्षिणी महासागर में कोकोलिथोफोर्स की संख्या के वितरण पर भी अध्ययन किया जा चुका है।

निष्कर्ष :-

यह प्रारंभिक अध्ययन समुद्री जल के भौतिक-रासायनिक गुणों का प्रभाव, सूक्ष्म जीवाश्चरों के आकृति विज्ञान और रसायन शास्त्र, फोरमिनिफेरा, कोकोलिथोफोर्स एवं डायटम के आकृति विज्ञान को भी प्रभावित करता है। सूक्ष्म जीवाश्चरों की विशेषताओं एवं भौतिक-रासायनिक गुणों का प्रभाव प्रोक्सी (proxy) अध्ययन पर, इस क्षेत्र में पहले के जलवायु परिवर्तन और पौर्व के समुद्र विज्ञान का अनुमान करने के लिए इस्तेमाल किया जा सकता है। हालांकि, दक्षिणी उच्च अक्षांश क्षेत्रों की भौतिक स्थिति को समझने के लिये अधिक सतह एवं अधरसल समुद्री तलछट नमूनों की जरूरत है। इससे अधिक आंकड़े एकत्र करने में मदद मिलेगी।

संदर्भ :-

1. बर्गर, डब्लू. एच. एवं सोटर, ए 1970. प्रिज्वेषन ऑफ प्लेनकटॉन शैल इन एन एनारोबिक बेसिन ऑफ एन गोलिफोर्निया बुल. जियोल. सोसा. अमे. खंड 81 पृष्ठ 275.282.

2. इगुशी, एन. ओ, कवाहाटा, एच. तेरा, ए, 1999. सीजनल रेस्पोन्स ऑफ प्लेनकटोनिक फोरमिनिफेरा टू सर्फेस आसियन कन्दीशन: सेंडीमेंट ट्रैप रिसल्ट्स फ्राम द सेंट्रल नार्थ पेसिफिक ओसियन, ज. ओसियनोग्राफी खंड 137. पृष्ठ 52
3. खरे, एन. एवं चतुर्वेदी, एस. के. 2006. साइज वैशिष्ट्य ऑफ प्लेंकटॉनिक
फॉर्मिनिफेरा पोशुलेशन इन द इन्डियन ऑसियन सेक्टर ऑफ सदर्न
ओशियन, इन्डियन जर्नल ऑफ मैरिन साइंस पृष्ठ 221–226

4. मोहन, आर. शानवास, एस. थमन, एम. सुधारक, एम. 2006
स्पेशल डिस्ट्रीब्यूशन ऑफ डायटम इन सफ्रेंस सेक्टीमेंटस फ्रॉम द
इंडियन सेक्टर ऑफ सदर्न ओशियन, करन्ट साइंस खंड 91. पृष्ठ
1495–1502

5. राय, जे. गर्ग, आर. खरे, एन. 2007. एन्डोकैलेटन सिलिसियस
डाइनोपलैजिनैट्रेस फ्रॉम सदर्न ओशियन सेक्टीमेंटस. इन्डियन जर्नल
ऑफ मैरिन साइंस (प्रेस में).

6. खरे, एन, सारस्वत, आर, चतुर्वेदी, एस. के. (2007), ऑन द इन्ट्रीग्रूणा
रिलेशनसिप बिटवीन सी वाटर सैलिनिटी एन्ड सदर्न इंडियन ओशियन
ऑफ जी, बुलेट्डस एट हायर लैटिट्यूड्स, जर्नल ऑफ इंडियन
जियोफिजिकल यूनियन

7. टोमैजिक, एम, गोडफ्रे जे. एस. 2003. रिजिनल ओशियनोग्राफी एन
इंटरास्स्क्यूशन, द्वितीय संस्करण, (दे पब्लिकेशन, दिल्ली), पृष्ठ 390।
चित्र 1:— भारतीय दक्षिणी महासागर में मार्गदर्शक अभियान के अंतर्गत संग्रह किए गए नमूनों के स्थान।
चित्र 2— उत्तर-दक्षिणी अक्षांश में ग्लोबिजरिना बुलीडस के ऑक्सीजन समस्थानिक अनुपात में परिवर्तन।