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ABSTRACT 
 
In the present study, an artificial neural network method has been applied to predict the stability 
of berm breakwaters. Four neural network models are constructed based on the parameters 
which influence the stability of breakwater. Training and testing of the network models are carried 
out for different hidden nodes and epochs. The network models’ results are compared with the 
empirical relationships. It is observed that the correlation between predicted stability values by the 
network models and estimated values are in good agreement.  
 
 
1. INTRODUCTION 
 
The stability of a breakwater is most widely analyzed using well-known formulae given by Hudson 
(1958) and Van der Meer (1988). The armour weight is calculated using Hudson equation. 
Although these formulae are formulated based on the many experimental results, still they show 
disagreement between each other. Therefore, a number of studies have been carried out further 
to develop new empirical formulae for breakwater stability. Kaku (1990) has proposed an 
empirical formula for damage level prediction based on Van der Meer’s experimental data. Smith 
et al. (1992) have performed hydraulic model tests on the stability of rock slopes by irregular 
waves. Van der Meer (1992) has carried out an extensive study on stability of rock slopes and 
gravel beaches and focused on berm breakwaters. Several empirical formulae are developed 
based on laboratory tests to improve the stability of breakwaters but still there is hardly any 
development in improving the stability of breakwater.  
 
Mase et al. (1995) and Kim and Park (2005) have used neural network techniques in predicting 
the stability of rubble mound breakwater. They have used neural network with high epochs upto 
50,000.  According to them, it is found that neural network predicted better stability values and 
less armour weights as compared to that of empirical models. 
 
In the present study, back-propagation neural network has been applied to predict the stability of 
berm breakwater. Four neural network models are constructed based on the input parameters, 
such as, significant wave height (Hs), mean wave period (Tm), number of waves (Nw), permeability 
(P), damage area (Sd), berm width (B), armor weight ratio (W/Wo). The input parameters of ANN1 
model are the parameters of van der Meer’s stability formulae. To study the effect of berm width 
on stability, B is included in ANN2 model. The effect of armour weight ratio (w/wO) on stability is 
considered in ANN3 and ANN4 models. The input parameters considered for four network 
models are shown in Table-1. Estimated stability of breakwater for these network models’ result is 
compared with the theoretical ones. Here the network upto 100 epochs could provide better result 
than that of Kim and Park (2005) who had used upto 50,000 epochs. 
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Table 1: ANN input parameters 
 
 
2.  STABILITY ESTIMATION 
 
Van der Meer (1988) performed a large number of tests on stability of rubble mound breakwater 
by changing slope angle, and permeability of breakwater. He also investigated the influence of 
many parameters on stability like significant wave height, wave period, number of waves, damage 
level, permeability, relative density of armour unit, etc. as proposed two stability equations which 
are given below. 

For plunging waves, 
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For surging waves, 
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Where, NS = stability number, the damage level Sd is defined as the ratio of eroded area of 
armour units displaced to square of nominal dia of armor (Dn50), ξm =surf similarity parameter, 
the transition from plunging to surging waves can be calculated by using a critical value ξc  

Hudson (1958) defined stability number NS as  
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The experimental data on berm breakwater was generated using a two-dimensional wave flume 
at National Institute of Technology Karnataka, Surathkal (Rao et al; 2004). A test was carried out 
for varying berm width with 30% reduced armor weight. The stability of berm breakwater was 
estimated for 3 wave heights, i.e. 10, 12, 16cms with varying wave periods (1.2, 1.6, 2.0, and 
2.6s). These experimental data are used in the present study.  

Model Input Parameters 

ANN1 Hs, Ts, Nw, P, Sd. 

ANN2 Hs, Ts, Nw, P, Sd, B 

ANN3 Hs, Ts, Nw, P, Sd. w/wO. 

ANN4 Hs, Ts, Nw, P, Sd, B, w/wO. 
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Since there are only three measured values of significant wave height (HS), 3 stability numbers 
are estimated using Hudson formula [Equation-2] as shown in Fig-1. Whereas stability values 
predicted by Van der Meer’s formulae are not restricted only to three values as the formulae are 
based on many parameters. The correlation is very less, that is found to be 51.55%. So it is 
required to improve the estimates of stability values. This can be improved by using artificial 
neural network. 
 

 
Fig. 1. Stability number predicted (van der Meer) v/s estimated (Hudson). 

 
 
3. NEURAL NETWORK 
        
Artificial neural network (ANN) is an information-processing paradigm that is inspired by the way 
of biological nervous system, such as brain process information. ANN is composed of large 
number of highly connected processing element (neurons) working in unison to solve a specific 
problem. Network learns through examples, so it requires good examples to train properly and 
further a trained network model can be used for prediction purpose. 
 
In order to allow the network to learn both non-linear and linear relationships between input nodes 
and output nodes, multiple-layer networks are often used. Among many neural network 
architectures, the three layers feed forward backpropagation neural network (BNN) is the most 
commonly used as shown in Fig-2, where Xi, Yj  and  Zk represent the input, hidden and output 
nodes respectively.  Wij are the weights between input layer and hidden layer nodes, and Wjk are 
the weights between hidden layer and output layer nodes.  
 
The back-propagation is a supervised learning technique used for training the neural network. It is 
most useful for feed forward networks. The back propagation needs to know the correct output for 
any input parameters. The number of input nodes depends upon the complexity of the problem; in 
the present study total seven inputs are used to predict the stability of breakwater. 
 
The main objective of BNN technique is to train the model such that the result outputs are nearer 
to the desired values. Therefore, the error between network output and desired values is 
minimum. 
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Fig. 2. Three- layers feed forward back propagation neural network. 

 
 
Mathematically, the feed forward artificial neural network is expressed as  
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Where x is input values from 1 to n, bji and bko are bias values at hidden and output layer 
respectively. m is the number of hidden layer nodes and Tr(y) is transfer function. This transfer 
function allows a non-linear conversion of summed inputs. 
 
A non-linear transfer function is applied between input nodes and hidden nodes. In the present 
study Tansig is used as transfer function, which is expressed as  
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y is the summation of input values with weights and biases. The transfer function is used to 
narrow down many input values to single output value. The bias values for both hidden layer and 
output layer get adjusted for each time of iterations. The weights between hidden and output 
layers are calculated using updated Levenberg-Marquard algorithm [Wilamowski et al, 2001]. 
 
The linear transfer function purelin is applied between hidden layer and output layer. And the 
transfer function expressed as  
 

  

    

                     Error propagation 

                Feed forward  
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Purelin (n) = n                   (6) 
 
The overall objective of training algorithm is to reduce the global error, E is defined as, 

∑
=

=
P

p
pE

p
E

1

1
        (7) 

where p is the total number of training patterns. Ep is the error at pth training pattern as given by, 
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Where   w = [w1, w2   …  wN]T  consists of all weights of the network, dkp is the desired value of the 
kth   output and the Paths pattern, okp is the actual value of the kth output and P th pattern, N is the 
number of weights. Here, Levenberg-Marquardt updated algorithm is used to train the network. 
 
 
4. STABILITY CALCULATION BY ANN 
 
After training the network model, weights and biases of the network are fixed. These values are 
shown in Fig-3. The each input value gets multiplied with the weight and adds with bias value. 
The total sum is the input at each hidden node and pass through a transfer function as defined in 
Equation 5, and further the output from hidden node get multiplied with the weight and adds with 
the bias value and total sum pass through purelin as shown in Equation 6.    
 
Expressing Ni as values of hidden nodes and Fi as transfer function of hidden node i, the stability 
number is estimated using following formulations: 
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For ANN2 model, the trained hidden nodes and its transfer functions are 
  
N1=HS x (-14.595) +TS x (1.0075) +NW x (-5.1509) +P x (-0.0089) + Sd x (-0.2753)    
         +B x (-0.0116)+1.4494. 
 
F1=(2 /(1+exp (-2xn1)))-1. 
 
N2=HS x (-8.4355) +TS x (1.2628) +NW x (-9.9020) +P x (-0.0003) + Sd x (0.0169)  +B x (-0.0002) 
+2.2273. 
 
F2=(2 /(1+exp (-2xN2)))-1. 
 
N3=HS x (-12.8971) +TS x (-0.2440) +NW x (-8.0897) +P x (0.0025) + Sd x (-0.7564) +B x (0.0600) 
+1.3195. 
                
F3=(2 /(1+exp (-2xN3)))-1. 
 
N4=HS x (-1.2112) +TS x (0.1906) +NW x (-8.0897) +P x (0.0001) + Sd x (0.0449)    
         +B x (-0.0009) +2.0854. 
 
F4=(2 /(1+exp (-2xN4)))-1. 
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where N1 to N4 and F1 to F4 represent summation function and transfer function at each hidden 
node respectively. 
 
The stability number NS is computed as: 
 
NS =F1 x (0.0961) +F2 x (-0.8437) + F3 x (0.0403) + F4 x (3.9974) –0.9519  (10) 
 
Equation-10 provides trained ANN2 model for estimating stability number (Ns) of berm 
breakwaters. 
 

 
Fig. 3. The ANN2 structure with weights and biases for N-6-4-1. 
 
 
The correlation coefficient is calculated to know the how best the network predicted stability 
values are matches with the estimated stability values. The straight line is drawn at an angle of 
45o between the two axes to fit the data points. A high correlation is obtained when all the points 
lies exactly on this straight line.  
 
The network predicted stability number (Ns) is calculated using Equation 10.  At the end of each 
training process Correlation Coefficient (CC) is calculated between theoretical (desired) stability 
number and predicted stability number using following equation  
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x= X-X/ 

X= predicted stability values by network. 
X/ = mean of X 
y= Y-Y/ 

Y= measured stability values by Hudson and Van der Meer equations. 
Y/ = mean of Y. 
 
5. RESULTS AND DISCUSSION 
 
In neural network technique training of the network plays a very important role, it mainly depends 
upon updated algorithms to be chosen to train the network. Recently, the study made by Kim and 
Park (2005) for prediction of stability of rubble mound breakwater using neural network shows 
some improvement as compared to the study carried out by Mase et al. (1995). Kim and Park 
(2005) have used steepest gradient approach with epochs upto 50,000.  
 
The parameters that influence the stability of breakwater like significant wave height, wave 
period, number of waves passing, permeability of breakwater, berm width, damage level and 
armour weight ratio are considered. Based on these parameters four ANN models were 
constructed to predict the stability of berm breakwater.   
 
The input parameters of ANN1 model are as same as in van der Meer’s stability number for both 
plunging and surging type of waves. To study the effect of berm width (B) on stability, B is added 
in ANN2 model and the effect of armour weight ratio i.e. w/wO  on stability is considered in both 
ANN3 and ANN4 models. Here, instead of surf similarity parameter used by Kim and Park (2005) 
to analyze the stability of breakwater, we have used significant height and significant wave period 
in all four ANN models. 
 
After training and testing of ANN2 network model CCs are calculated between desired output and 
network output using Equation-10. 
 
In the present study, updated algorithms like Levenberg-Marquardt algorithm (LM), Scaled 
Conjugate algorithm (SCG) and Gradient Descent algorithm (GDA) [Mller, 1993] are used to train 
the four models with less number of epochs like 25, 50 and 100. The trained and tested results of 
the 4 network models using SCG, GDA and LM updated algorithms are shown in Tables 2, 3 & 4. 
And it is found that the Correlation coefficients (CC) obtained from Levenberg-Marquardt 
algorithm are close to one and also shows better estimation of stability numbers as compared to 
that of SCA and GDA methods. The graphs were plotted to show the variation of correlation 
coefficient with increasing epochs and number of hidden nodes (Fig-4).  A high correlation 
coefficient is mostly obtained at epochs equal to 100 and hidden nodes equal to 6.  
  
 
 
 
 
 
 
 
 
 
 
 
 
 

Table 2. Correlation Coefficients for four models using SCG algorithm 

Model 
Network  structure 

(Input nodes - Hidden 
nodes - Epochs) 

Trained CC Tested  CC 

ANN1 5-6-100 0.9789 0.9729 

ANN2 6-6-100 0.9082 0.8780 

ANN3 6-6-100 0.8082 07679 

ANN4 7-6-100 0.9269 0.8563 
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Model 
Network 

(Input nodes - Hidden 
nodes - Epochs) 

Trained CC Tested CC 

ANN1 5-6-100 0.8953 0.8265 

ANN2 6-6-100 0.8860 0.8072 

ANN3 6-6-100 0.8801 0.8724 

ANN4 7-6-100 0.8432 0.7061 

 
Table 3. Correlation Coefficients for four models using GDA algorithm 

 
 

Model 
Network 

(Input nodes - Hidden 
nodes - Epochs) 

Trained CC Tested CC 

ANN1 5-6-100 0.9990 0.9950 

ANN2 6-4-50 0.9998 0.9995 

ANN3 6-6-100 0.9992 0.9965 

ANN4 7-6-100 0.9994 0.9985 

 
Table 4. Correlation Coefficients for four models using LM algorithm 

 
 
The CCs of all four ANN models with better network structure including Van der Meer model are 
given in Table-5. The graphs were also plotted between estimated and predicted stability 
numbers for all network models as shown in Fig-5. The correlation coefficients of trained and 
tested neural networks are represented as CCTR and CCTE respectively. For ANN1 model CCTR 
and CCTE are 0.9603 and 0.9460 respectively. For ANN2 model CCTR and CCTE are found to be 
highest among all four models. Therefore, we can conclude that the berm width is the influencing 
parameter for the stability of breakwater.  
 

Criteria VM ANN1 ANN2 ANN3 ANN4 

CCs 0.5155 0.9990 0.9998 0.9992 0.9994 

Epochs        - 100 50 100 100 

Hidden 
nodes 

     - 6 4 6 6 

Table-5:  Performances of stability for different models 
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6. CONCLUSIONS 
 
Based on the present study the following conclusions were drawn: 
 
The artificial neural network predicted the stability of berm breakwater more accurately compared 
to the empirical relationships. Since the updated algorithm like Levenberg-Marquardt has shown 
better improvement in both the training and testing of the network, the results are obtained with 
very less number of epochs, which makes the process faster and reduces the time required for 
training the model. Also it is found that the berm width parameter has major influence on the 
stability of breakwater. Therefore, back-propagation neural network with Levenberg-Marquardt 
updated algorithm can be effectively used as advanced technique for predicting the stability of 
berm breakwater.   
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Fig. 4. Variation of Correlation Coefficient v/s Epochs for four ANN models  
(HN = hidden node, TR = trained, TE= tested) 

 
 



 10

 
 

   
0 1 2 3

0

1

2

3

Estimated Ns

Pr
ed

ic
te

d 
N

s

     CCTR=0.9990
   CCTR=0.9950

CC of ANN1 model

       
     

 
 
Fig. 5. Variation of estimated Ns v/s predicted Ns for four ANN models. 
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