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Abstract 

The southeastern Arabian Sea (SEAS), located in the Indian Ocean warm pool, is a key-region of the 
regional climate system. It is suspected to play an important role in the dynamics of the Asian 
summer monsoon system. The present study reports the salient features derived from a newly 
harvested observational dataset consisting of repeated fortnightly XBT transects in the SEAS over 
the period 2002–2008. The fortnightly resolution of such a multi-year record duration is 
unprecedented in this part of the world ocean and provides a unique opportunity to examine the 
observed variability of the near-surface thermal structure over a wide spectrum, from intra-seasonal 
to interannual time scales. We find that most of the variability is trapped in the thermocline, taking 
the form of upwelling and downwelling motions of the thermal stratification. The seasonal variations 
are consistent with past studies and confirm the role of the monsoonal wind forcing through linear 
baroclinic waves (coastally-trapped Kelvin and planetary Rossby waves). Subseasonal variability 
takes the form of anomalous events lasting a few weeks to a few months and occurs at two preferred 
time-scales: in the 30–110 day band, within the frequency domain of the Madden-Julian Oscillation 
and in the 120–180 day band. While this subseasonal variability appears fairly barotropic in the 
offshore region, the sign of the anomaly in the upper thermocline is opposite to that in its lower part 
on many occasions along the coast. Our dataset also reveals relatively large interannual temperature 
variations of about 1°C from 50 m to 200 m depth that reflect a considerable year-to-year variability 
of the magnitude of both upwelling and downwelling events. This study clearly demonstrates the 
necessity for sustained long-term temperature measurements in the SEAS. 

Keywords: XBT data, Arabian Sea, Lakshadweep Sea, Inter-annual variability, Intra-seasonal 
variability, WICC. 
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1. Introduction 

The Lakshadweep Sea (henceforth LS), in the southeastern Arabian Sea (SEAS), is of prime 

climatic importance, being situated in the Indian Ocean warm pool (Fig. 1). It is also an area of 

marked oceanic dynamical activity. Several hydrographic cruises carried out during different seasons 

revealed striking contrasts between summer monsoon and winter monsoon seasons (Shetye et al., 

1990, 1991). The advent of altimetry in the early 1990s allowed documentation of a clear seasonal 

cycle in the SEAS, with positive sea level anomaly (SLA) during winter and negative SLA during 

summer (Shankar and Shetye, 1997; Bruce et al., 1998). This feature was termed the Lakshadweep 

High and Low (henceforth LH/LL), after the name of the island chain (see Fig. 1 for the typical 

location and dimension of LH/LL). The LS has a peculiar geographic location: it is situated at low 

latitude, within the northern Indian Ocean basin (a completely tropical basin, closed at 25°N) and in 

the vicinity of the eastern boundary of the Arabian Sea. This makes likely a rapid adjustment to the 

highly variable monsoonal winds. Indeed, the adjustment via tropical baroclinic waves (equatorial 

Rossby and Kelvin waves, coastal Kelvin waves propagating along the periphery of the northern 

Indian Ocean, and planetary Rossby waves propagating westward in the interior Bay of Bengal and 

Arabian Sea) takes place over timescales of a few weeks to a few months for the lowest-order 

baroclinic modes (McCreary et al., 1993). Over the last 15 years, a hierarchy of numerical studies 

(McCreary et al., 1993; Shankar and Shetye 1997; Shankar et al., 2002) led to the conclusion that the 

seasonal variability of LS hydrographic structure can be seen essentially as the linear response of the 

ocean to seasonally varying winds. The main forcing is exerted by the seasonal cycle of alongshore 

winds at the western boundary of the Bay of Bengal, it being connected to LS through the coastal 

Kelvin waveguide. The variability of local alongshore winds (blowing along the coast of south-west 

India) also has a sensible role on the LS thermohaline variability, though secondary as compared to 

Bay of Bengal winds (Shankar et al., 2002). This highlights the fundamentally different dynamics at 

the eastern vs western boundaries of Arabian Sea: the LH/LL regime is not a response to turbulent 

instability in the ocean, unlike the Socotra eddy seen off Somalia in summer (Schott and McCreary, 

2001). 

Observations of sub-seasonal variability in our area of interest are extremely scarce. Still, they 

provide evidence that the seasonally-contrasted sequence of events seen in the previous paragraph is 

somehow blurred by higher frequencies. Based on the current-meter time series of Schott et al. 

(1994), Nethery and Shankar (2007) reported a relative maximum of energy at 110 days in the 
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spectrum of the current observed at 150 m depth, south of Sri Lanka. Based on a 21-month long 

record of a current meter situated at 15°N, but slightly further offshore at the shelf break, Vialard et 

al. (2009) showed that the along-shore current at 50 m was highly variable at 2 - 3 - month periods 

under the remote influence of the equatorial winds. From the analysis of altimetry and eddy-

permitting numerical model, Bruce et al. (1998) reported that the SEAS is populated with energetic 

mesoscale features that introduce some intraseasonal variability in the smooth, seasonal sequence of 

events described in the previous section. 

The literature is even less abundant about the interannual variability of LS thermal structure. 

Recently, Shankar et al. (2010) analysed the low-frequency variability of sea level in the entire 

northern Indian Ocean. From linear numerical simulations, they pointed out some fundamental 

reasons that prevent any remotely-forced variability to exist in the eastern Arabian Sea at multi-year 

periodicities. 

The LS presents the highest SST of the world ocean during the pre-summer monsoon period, 

with values exceeding 30°C in climatological conditions during April-May (see the review by 

Shenoi et al. (2005a)). In two quasi-simultaneous studies, Shenoi et al. (1999) and Rao and 

Sivakumar (1999) analyzed processes conducive to this SST maximum. Both studies invoked the 

role of upper ocean salinity stratification in the observed SST pattern: during December, LS surface 

waters freshen because of advection of Bay of Bengal water by the East India Coastal Current and 

the Winter Monsoon Current. This low-salinity cap induces a thinning of the mixed layer, thereby 

diminishing the thermal inertia of the upper ocean as compared to the surrounding ocean. This, 

together with the downwelling forcing from the coastal waveguide occurring during October-

January, limits vertical mixing with the underlying cooler water, and thus inhibits the dissipation of 

the SST high. Under the effect of radiative heat input, this conjunction of events favours the build-up 

and maintenance of a distinct SST pattern popularly known as the “Mini Warm Pool” (Rao and 

Sivakumar 1999). The exact role of ocean processes in the Mini Warm Pool build-up was further 

investigated using several oceanic models, but results remain controversial (see the review by 

Vinayachandran et al., 2007). While Durand et al. (2004) concluded that the ocean plays a prominent 

role in the SST rise during the pre-summer monsoon season, through the trapping of heat in the 

barrier layer, Kurian and Vinayachandran (2007), on the contrary, concluded that the SST high 

results essentially from the structure of the atmospheric fluxes, there being a local minimum of latent 

heat loss in the SEAS during winter.  
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The SSTs in excess of 30°C in April-May in the SEAS are well above the commonly accepted 

threshold of 28°C for the triggering of deep atmospheric convection (Graham and Barnett, 1987). 

This has fostered a number of studies on the possible role of the LS in the ocean-atmosphere 

interactions and onset of summer monsoon (see the review by Vinayachandran et al., 2007). Rao and 

Sivakumar (1999) and Shenoi et al. (1999) suggested that the Mini Warm Pool of the LS favours the 

development of an atmospheric vortex in May-June, the so-called monsoon onset vortex, conducive 

to monsoon onset over southern India. Considerable controversy still exists among the atmospheric 

community about the year-to-year repetitiveness of this atmospheric feature, about the exact role of 

the ocean in its genesis, and about the role of the vortex in the larger context of the dynamics of the 

summer monsoon. The only ocean-atmosphere coupled modelling study that specifically addressed 

the role of the LS in the southwestern Asian climate was by Masson et al. (2005). They concluded 

that salinity stratification in the LS exerts a strong constraint on the SST budget during the pre-

summer monsoon season, which in turn controls the timing and intensity of subsequent monsoonal 

rains over southern India. Their conclusion, however, relies on a coarse resolution ocean-atmosphere 

model and needs to be checked with an up-to-date system. 

In view of the large dynamic variability of this region, under the aegis of the Indian climate 

research program, the Arabian Sea Monsoon Experiment field program was conceived, planned and 

executed in the LS to understand the coupling between the summer monsoon and the upper ocean. 

Under this program, repeat XBT transects were carried out in the LS in a systematic manner during 

2002–2008. This constitutes an unprecedented observational effort in this part of the world ocean. A 

few studies have already been published that used limited subsets of the present dataset. They dealt 

only with the thermal structure of the surface mixed-layer and its link with sea surface salinity 

variability (Gopalakrishna et al., 2005; Nisha et al., 2009). Only the study by Gopalakrishna et al. 

(2008) explicitly dealt with the thermal variability of the upper 150 m of the water column, but 

focusing on the 2002–2005 period only. In the present paper, our goal is to showcase systematically 

and exhaustively the basic features of ocean temperature variability in the upper 200 m of LS, 

considering the May 2002–May 2008 period. 

2. Data and processing 

Our dataset consists of repeated XBT transects in the LS. Near-fortnightly XBT surveys have 

been quasi-continuously conducted since May 2002 using passenger ships that ply regularly between 

Kochi and Lakshadweep Island Chain (Fig. 1). During each XBT survey, a minimum of ten to 
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thirteen vertical temperature profiles (T7 Sippican XBT probes and MK21 data acquisition system) 

are collected, at 50- km nominal spatial intervals. The depth of the XBT temperature measurements 

was calculated  using the Hanawa et al. (1995) drop rate equation. Black dots in Fig. 1 locate the 

XBT stations. Over the May 2002–May 2008 period, 1324 vertical temperature profiles were 

collected. The Kochi–Kavaratti (KK), on the northern flank of the LH/LL, and Kochi–Minicoy 

(KM), cutting through the coastal flank of LH/LL, are the most densely covered transects (shaded 

strips in Fig. 1), with 783 and 249 XBT profiles, respectively. The Kavaratti–Minicoy (north-south) 

transect is less intensely sampled because of limited availability of passenger ships and is not utilised 

in the present study. The spatio-temporal distribution of data along KK and KM transects is shown 

in Fig. 2. It is important to notice the high level of homogeneity of the data coverage on both routes 

throughout the 6-year-long period of measurements. Typically, for the KK transect all signals of 

scale of order 1° and 1 month are adequately resolved. In several instances a nominal resolution of 

0.5° and 15 days is achieved. Along the KM route, the typical resolution is of order 1° and 1 season. 

The XBT data are processed and quality controlled following the procedures laid down in 

Bailey et al. (1994). XBT profiles pertaining to individual cruises were plotted and subjected to 

physical verification to examine consistency among the profiles, identifying genuine temperature 

inversions and sharp spikes. These profiles were also compared with the corresponding 

climatological profile of the region, taken from World Ocean Atlas (WOA2005; Locarnini et al., 

2006), as well as with the climatology developed using the present six-year XBT dataset. Further, in 

order to compensate for the response time of the thermistor (temperature sensor in the XBT probe) 

the SST value is replaced by the temperature at 4.5 m depth. All the suspected XBT profiles were 

discarded. These amounted to 9% of the total number of profiles. This is comparable to the 

performance typically achieved in other parts of the world ocean. The irregularly distributed dataset 

was re-gridded on a regular 0.5° longitude × 1 month grid. XBT profiles falling in each 0.5° 

longitude box were grouped together to generate an average profile and placed at the middle of each 

box. Irrespective of the XBT cruise period (which sometimes reached two months), monthly means 

were generated considering the profiles corresponding to a given month. This gridding procedure in 

space and time was followed to generate all the parameters used in the present analysis for both KK 

and KM transects. 
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3. Mean upper ocean thermal structure 

Fig. 3a presents the mean temperature of the upper 200 m along the KK route. It is very 

similar along the KM route (not shown). Very warm waters (temperature above 28°C) are found in 

the upper 40 m. Peak SST exceeds 29°C west of 73.5°E. Above the core of the thermocline, 

isotherms upslope gently towards the coast, from about 73°E. This is consistent with the known 

southward (and thus upwelling-favourable) direction of the alongshore component of the wind 

throughout the seasonal cycle over the southwest coast of India (Schott and McCreary, 2001). 

Variability around this mean structure strikingly appears trapped in the thermocline, with values of 

standard deviation typically in excess of 3°C (Fig. 3b). It is much weaker in the mixed layer and in 

the subthermocline, with values near or lower than 1°C. Fig. 3c presents the longitudinal section of 

the maximum standard deviation seen in Fig. 3b. The standard deviation is maximum at 75°E, viz. in 

the shelf break area, where it almost reaches 4°C. It decreases westward down to 3°C at the western 

edge of the transect. Visual comparison of Figs. 3a and 3b shows that the maximum variability is 

roughly seen at the depth of the thermocline. The thermocline trapping of thermal variability 

suggests the dominance of dynamically-driven temperature variability over thermodynamic 

processes. Assuming that all the observed variability can be represented in terms of vertical 

movements of the thermal stratification, it is interesting to compute the equivalent amplitude of the 

vertical movement corresponding to the observed thermal variability. In this idealized case, the 

standard deviation Dz  of the depth of a given isotherm is simply given by : 

Dz= DT
¶T¶z  (1) 

where DT   is the standard deviation of temperature shown on Fig. 3b, and ¶T¶z   is the 

background vertical gradient of temperature at this particular location. At every longitude and at the 

depth of maximum variability seen on Fig. 3b, we computed this equivalent vertical displacement 

(Fig. 3d). As in Fig. 3c, we note a westward drop of the equivalent displacement. It is maximum at 

the eastern edge of the transect, at the shelf break, with values exceeding 60 m. It decreases 

continuously to 72.75°E, where it amounts to only 20 m. The very sharp decrease in the offshore 

direction is due to the combined effect of a drop of the maximum temperature variability seen on 

Fig. 3c (the numerator of (1)) and a rise of the vertical gradient of temperature seen on Fig. 3a (the 

denominator of (1)). Interestingly, the longitudinal profile of Dz  is very suggestive of an 

exponential with e-folding scale of about 1.5°. In the framework of linear dynamics, the theoretical 
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value of Dz  is one Rossby radius of deformation (Gill, 1982). It amounts to approximately 100 km 

in the LS for the first baroclinic mode, as seen in Chelton et al. (1998). The broad consistency 

between our empirical estimate and the theoretical value echoes the known validity of linear physics 

in explaining the basic dynamical features of the LS (Shankar et al., 2002). 

4. Annual cycle of the thermal structure 

4.1 Comparison with existing climatology 

Fig. 4 presents the monthly climatology of thermal structure along the KK route extracted 

from WOA2005 as well as from our new dataset. For clarity we also plotted their difference 

(obtained by substracting our dataset from WOA2005). Clearly, our dataset is broadly consistent 

with WOA2005, with a salient seasonal signal composed of upwelling from May to August, 

downwelling from October to February, and minimum variations during the intervening periods. The 

typical temperatures in the mixed layer, in the thermocline and deeper are also similar in the two 

datasets throughout the seasonal cycle. A closer examination, however, reveals interesting 

differences between the two datasets. First, our XBT dataset exhibits a steeper east-west slope of the 

isotherms during both upwelling and downwelling seasons. This is revealed by the sign of their 

difference: during the upwelling season (May-August), it is systematically positive at thermocline 

depth in the eastern half of the transect, with predominantly negative values in the western half from 

June to August; during the downwelling season, the situation is reversed, our dataset being 

consistently warmer than WOA2005 at thermocline depth in the east. We can not rule out the 

different time span of the two climatologies (the whole 20th century for WOA2005 vs. 2002−2008 

for our dataset) in explaining some aspects of their difference. In particular, this could be the reason 

why WOA2005 is quasi-systematically cooler than our dataset in the mixed layer. However, the 

pattern of their difference, with its seasonal dependency, strongly points to the different resolution 

between the two fields: while our XBT dataset has an actual resolution of 0.5° (Fig. 2 and Section 2), 

WOA2005 has a nominal resolution of 1° only, and probably even less because of the longer 

correlation scales used in their gridding procedure. 

4.2 Seasonal evolution of the thermal field 

In the following, we consider the 25°C isotherm depth (henceforth noted D25) as a proxy for 

thermocline depth. At the end of the upwelling season in August, the thermocline lies at 10 m at 

75.75°E and at 70 m at 72.25°E. This denotes the West India Coastal Current flowing equatorward at 
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the surface (Schott and McCreary, 2001). Then the downwelling season starts: the thermocline 

deepens in September until November, when it reaches its deepest position at 110 m at 75.75°E. 

During this period, the West India Coastal Current slows down (in August-September) and turns to 

flow poleward from October onward. Subsequently, thermocline depth increases, but only in the 

western part of the transect. This is consistent with the known westward propagation of the coastal 

trough as a Rossby wave at this time of the year (Shankar and Shetye, 1997). By February the 

thermocline is roughly flat (at about 100 m) all along the transect, and the West India Coastal 

Current reverses again. In April the upwelling has started, with thermocline shoaling to 75 m at 

75.75°E. This corresponds to an equatorward West India Coastal Current. The thermocline continues 

shoaling through July in the east. In the west, the thermocline uplifting is delayed and starts in June 

only. This is also consistent with the westward propagation of the coastal crest expected there 

(Shankar and Shetye, 1997). From July to September, during the upwelling season, our dataset 

reveals a downwelling below the thermocline, as seen from the downward slanting of the 18°C 

isotherm towards the coast, at the eastern edge of our section (east of 74.5°E). This corresponds to a 

poleward undercurrent, underlying the equatorward West India Coastal Current. Such a sheared 

structure, typical of eastern boundary regimes, was observed by Shetye et al. (1990) from 

hydrographic surveys of the SEAS, with similar vertical and zonal position. 

Unlike many other eastern boundaries of the world ocean, the seasonal cycle of thermocline 

depth in the LS described above is puzzling because it leads the local wind forcing by several 

months. This is explained by the fact that the LS is at an eastern oceanic boundary but directly 

connected to the western boundary of the Bay of Bengal (via the coastal Kelvin waveguide of the 

Indian subcontinent). The exact mechanisms forcing the seasonal variability of the thermocline 

depth (and, thus, of the West India Coastal Current) in the LS was ascertained by the numerical 

studies of McCreary et al. (1993) and Shankar et al. (2002). It turns out that the downwelling phase 

(conducive to the LH in winter) is chiefly driven by the seasonal cycle of the alongshore winds in the 

western and northern Bay of Bengal (primarily by the collapse of the monsoonal winds there, in late 

summer-early fall). The upwelling phase (resulting in the LL in summer) is locally forced by the 

southward alongshore wind during winter monsoon, even though the western Bay of Bengal winds 

also remotely contribute to it. 
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4.3 Variability of SST, thermocline depth and mixed-layer depth 

4.3.1. SST 

The SST in the LS presents a semi-annual behaviour, with high values (in excess of 29°C) 

during spring and fall intermonsoons and lower values during summer and winter monsoons (Fig. 

5a). The evolution along the KM route is very similar to that along the KK route, though with 

slightly weaker extrema in the central part of the domain (Fig. 5b). de Boyer Montégut et al. (2007a) 

carried out a SST budget of the whole eastern Arabian Sea from a numerical model output. They 

concluded that the atmospheric forcing dominates the SST evolution throughout the seasonal cycle 

in agreement with Rao and Sivakumar (2000). This is also what our observations suggest for the 

particular case of the SEAS embedded in their larger domain. It is indeed interesting to note the 

decoupling between SST and subsurface temperature evolution on Fig. 4. For example, SST rises 

sharply during the pre-summer monsoon season, under the combined effect of strong solar radiation 

and reduced latent heat loss (Sengupta et al., 2002); during the same period, the underlying 

thermocline waters strongly cool under the dynamic effect of upwelling. de Boyer Montégut et al. 

(2007a) suggest that a small part of this subsurface cooling does affect the SST evolution, but it 

remains largely dominated by the atmospheric heating (see their Figure 3b). Only the secondary SST 

rise in October-November mirrors the subsurface warming during this period. This, though, 

corresponds to two different mechanisms (de Boyer Montégut et al., 2007a): the surface heats up 

because of increased atmospheric heat flux, whereas the thermocline waters are dynamically 

downwelled (see Section 3). The SST cools quickly with the onset and progress of the summer 

monsoon, under the effect of latent heat loss (de Boyer Montégut et al., 2007a).  

4.3.2. Thermocline depth 

The signature of baroclinic waves (upwelling/downwelling Rossby wave in summer/winter) 

in setting up the observed variability is seen in the observed westward propagation of the patterns 

seen at the eastern edge of the routes sampled. Along the KK route, for example, the summer 

uplifting of D25 is maximum in August at 75.25°E and is delayed to October at 72.75°E (Fig. 5a). 

This corresponds to a phase velocity of about 5 cm/s, roughly consistent with the theoretical speed of 

a mode-2 or mode-3 Rossby wave at this latitude. A similar value is observed in the numerical 

simulation of Shankar and Shetye (1997). A modal decomposition carried out in the ocean general 

circulation model of Durand et al. (2004) confirmed that, in their simulation of the seasonal 
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variability of the SEAS thermal structure, the combined contributions of 2nd and 3rd baroclinic modes 

dominate over that of 1st baroclinic mode. Given the shallow MLDs existing in the area, as well as in 

the Bay of Bengal, the wind forcing appears as a good candidate to explain this dominance of 

higher-order baroclinic modes over the 1st one in our area. Along the KM route the same kind of 

propagation is also visible, though with an increased apparent phase speed (Fig. 5b): the minimum 

D25 is also seen in August at 75.25°E, but as early as September at 73.25°E. This faster propagation 

speed is consistent with a higher Rossby wave speed at 9°N (the mean latitude of KM route) as 

compared to 10.5°N (the mean latitude of KK route), though the monthly sampling of our 

interpolated dataset does not allow an accurate estimation of the propagation speed. Along the KK 

route, the peak-to-peak excursion of D25 reaches 90 m at the eastern edge of the transect. This value 

decreases westward to about 40 m at 72.5°E. This is in line with the westward decrease of equivalent 

displacement discussed in Section 3 (Fig. 3d). 

4.3.3. Mixed layer depth 

The mixed layer depth (henceforth MLD) is defined as the depth where the temperature is 

0.5°C lower than SST. One must keep in mind that this depth might overestimate the actual MLD, as 

salinity stratification is notorious for limiting the density-mixed layer depth in the SEAS, particularly 

during the winter season (Rao and Sivakumar, 2003, Durand et al., 2004; Shankar et al., 2004; 

Shenoi et al., 2004; Gopalakrishna et al., 2005; Durand et al., 2007; de Boyer Montégut et al., 

2007b; Mignot et al., 2007). However, the absence of subsurface salinity observations in our area 

precludes the definition of a density-based criterion. We thus define MLD from temperature only. 

Along the KK route, MLD shows a contrasted evolution from east to west, with an apparent annual 

periodicity dominant in the east (close to the shelf) and a semi-annual periodicity in the west (Fig. 

5a). In the east the MLD is at its deepest in January (more than 90 m). Then it shoals continuously to 

reach less than 20 m in August. Afterwards it deepens again until January. In the west, similarly, it is 

also at its deepest (more than 60 m) in January. The spring shoaling, however, stops in April-May 

there, when it touches 40 m. During the monsoon it deepens again to reach 60 m in August. 

Subsequently it shoals during fall to about 40 m in November. MLD evolution along the KM route 

also shows the same east/west contrast (Fig. 5b), with similar patterns and magnitude of the seasonal 

cycle. This east/west contrast suggests different mechanisms east and west of 74.5°E. In the east, 

within the coastal waveguide, MLD variability seems to be driven primarily by vertical movements 

of the thermocline. It is interesting to note the westward propagation of MLD shoaling in August-
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October along the KK route, similar to the propagation of thermocline downwelling during the same 

period. We can also see a hint of this westward propagation of MLD after monsoon along the KM 

route, though less clearly. On the contrary, further offshore the diabatic effects seem to play a 

prominent role during summer; these may consist of buoyancy forcing by the atmospheric fluxes 

(latent heat loss under the effect of monsoonal winds, see McCreary and Kundu (1989)  and de 

Boyer Montégut et al. (2007a)) or wind-driven entrainment (Fischer et al., 2002).  

5. Interannual and intra-seasonal variability 

5.1 Non-seasonal variability 

In the following, we term as non-seasonal variability the residual signal obtained after 

removing the seasonal climatology from the raw data. As shown on Figure 6, the non-seasonal 

variability of temperature is confined at thermocline depth (Fig. 6). The standard deviation shows 

values in excess of 1.5°C in the central part of the transect, located between 40 m and 120 m. Visual 

comparison of Fig. 3b and 6 tells that in this depth range, the non-seasonal variance amounts to 

about one third of the overall variance.  

In order to investigate whether there is any seasonality of this non-seasonal variability, the 

monthly standard deviation of the non-seasonal anomaly of temperature has also been computed 

along the along the KK route (Fig. 7). This figure thus features the seasonal evolution of the standard 

deviation plotted on Figure 6. It shows that, irrespective of the season, the variability is consistently 

trapped in the thermocline. Indeed, it is strongest (typically in excess of 1.5 °C) around 100 m in 

winter, at the height of the downwelling season; conversely, it is strongest around 50 m in the 

summer monsoon, once the seasonal upwelling has developped. This figure also suggests that the 

non-seasonal variability is strongest in summer-fall. Only during this period do standard deviations 

in excess of 2.5°C appear, mainly in the central and western part of the transect.  

Further details of the non-seasonal variability can be inferred from Fig. 8, which displays the 

temperature evolution for the two selected red boxes shown on Figure 1 (E and W boxes). Clearly, 

the seasonal periodicity dominates the variability. The peak-to-peak displacement of D25 and D20 

between winter and summer season, every year, typically amounts to 80 m / 50 m for E box / W box. 

This is also consistent with the equivalent displacement plotted on Fig. 3d. Superimposed on this 

annual cycle, energetic anomalous events stand out at both locations, as reflected by the short-lived 

vertical excursions of the thermal strucutre, with typical duration of a few weeks. 
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To separate out the sub-seasonal from the interannual variability, we applied a 200-day 

running mean to the time series at each depth. This low-frequency evolution of temperature will be 

referred to as the interannual variability in the following, while the difference between the non-

seasonal variability and this low-frequency evolution will be referred to as the sub-seasonal 

variability.  

5.2 Sub-seasonal variability 

Fig. 9 presents the time series of sub-seasonal temperature anomalies for the two selected 

locations (E and W boxes, see Fig. 1). In line with Figs. 6 and 7, the anomalies are quasi-

systematically trapped between the bottom of the mixed layer and the bottom of the thermocline (as 

defined by D20) in W box. The vertical profile of the anomalous patterns is not always homogenous. 

They appear fairly barotropic for W box throughout the 2002−2008 period. On the contrary, in E 

box, the sign of the anomaly in the upper thermocline is opposite to that in its lower part on many 

occasions. This suggests that the linear processes driven by low-order baroclinic modes (which are 

roughly barotropic within this depth range) may not be the sole contributor to the observed 

variability. The role of the other mechanisms (instabilities, higher-order baroclinic modes, diabatic 

processes) is not clear and needs to be ascertained with a dedicated numerical approach. Our data 

thus suggest different mechanisms of thermal variability, between the shelf break area (where E box 

is located) and the deep ocean (where W box is). Hydrographic cruises carried out in the area also 

evidenced a depth-dependent structure in the vicinity of the shelf break (Shetye et al., 1990). 

We temporally interpolated D20 and D25 timeseries on a regular bimonthly time axis and 

computed their power spectrum (Fig. 10). It shows that the sub-seasonal variability occurs at two 

preferred time scales. In the 30-110-day band, significant peaks are evident in the eastern box. These 

peaks are within the time frequency domain of the Madden-Julian Oscillation (MJO; Zhang 2005), a 

large-scale perturbation of atmospheric deep convection with energetic fluctuations of surface winds 

at periods of 30-90 days. Vialard et al. (2009) indeed revealed that the currents and sea-level 

variations observed at these time scales along the coast of Goa (about 400 km to the north of our 

area) are part of basin-scale fluctuations of the northern Indian ocean equatorial and coastal wave 

guide in response to intraseasonal winds associated with the MJO. These spectra also reveal a second 

distinct and energetic peak between 110-200-day periods. This peak lies at the low-frequency end of 

the sub-seasonal variability, and further investigations are required to understand the processes 

driving this variability.  
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5.3. Interannual variability 

Very little is known about the year-to-year variability of subsurface thermal structure in the 

study region. In a pioneering study based on the first batch of ARGO floats deployed in the central 

Arabian Sea, Vinayachandran (2004) pointed out that the general belief that the magnitude of 

summer cooling in the Arabian Sea is linked to the strength of the summer monsoon is an over-

simplified view of the real ocean. The duration of the monsoon season can also play a prominent 

role. de Boyer Montégut et al. (2007a) investigated the mixed layer temperature variability over 

1993–2000 using an ocean model. They evidenced the central role of the latent heat flux anomalies 

in driving the interannual variability of SST in the eastern Arabian Sea.  

Figure 11 displays the interannual temperature variations in the eastern and western boxes. 

Large low-frequency signals are seen at both locations with amplitude of ~1°C at depth. The vertical 

profiles of the temperature anomalies appear fairly barotropic in both boxes, extending from the top 

of the mixed layer to 200 m depth. Consistent with the observations from ARGO floats profiling in 

the central Arabian Sea (reported by Vinayachandran, 2004), warm anomalies during the summer 

2003 are observed, especially in the westen box. Conversely, large negative anomalies are observed 

during 2007 and to a lesser extent during winter and spring of 2006. A systematic assessment of the 

mechanism proposed by Vinayachandran (2004) over the whole duration of our observational record 

is beyond the scope of the present study but forms an interesting perspective. 

Fig. 12 displays the longitude-time evolution of D25 for the monthly field along the KK 

route. It allows further documentation of the interannual variability of the thermocline. It appears 

that the seasonal sequence of events displayed on Fig. 5 is consistently repeated year after year. The 

upwelling starts in March off the Indian coast, lasts until August, and is subsequently replaced by 

downwelling that lasts until January. These signals propagate westward (carried by planetary 

waves), the western edge of the section showing basically the same evolution as the eastern edge 

with a 2-month lag. Notable exceptions occur on several occasions, when the propagation of the 

coastal signal does not extend far offshore or is interrupted at some longitude before re-appearing 

further to the west (winter 2003−2004, winter 2005−2006 and summer 2007). Throughout the 

period, the magnitude of the coastal signal decays during the westward propagation, consistent with 

the westward decrease of the standard deviation seen in Fig. 3b. Unlike the seasonal timing, there is 

considerable year-to-year variability of the magnitude of both upwelling and downwelling events. 

Upwelling appears most intense during summer 2002 (with a thermocline virtually touching the sea 
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surface in the east, as already seen on Fig. 9a) and least marked during summer 2005 (Gopalakrishna 

et al, 2008). Downwelling is most intense in winter 2005−2006, with a thermocline deeper than 120 

m in January 2006 east of 75°E. This extreme event, however, does not propagate west of 74.5°E, 

which stands in contrast to the continuous propagation throughout our domain observed during most 

of the years. The 2008 downwelling is the least pronounced, with D25 hardly touching 100 m. 

6. Role of salinity on the sea-level variations 

The LS is subject to extremely large changes in the upper-ocean salinity at seasonal (Rao and 

Sivakumar, 2003, Delcroix et al., 2005), interannual and intra-seasonal (Gopalakrishna et al., 2005; 

Nisha et al., 2009) timescales. Based on long-term repeated thermosalinograph measurements 

encompassing the three tropical oceans, Delcroix et al. (2005) pointed out that the highest variability 

of sea surface salinity is observed in the LS, with a standard deviation of about 1 in their 20-year-

long time series (see their Fig. 23). Basically, the surface waters of the LS freshen in winter, under 

the influence of Bay of Bengal water advected by the Winter Monsoon Current (Durand et al., 2007) 

and by East India Coastal Current (Rao et al, 2008); conversely, salinity increases in summer under 

the influence of Arabian Sea high salinity water advected equatorward by the West India Coastal 

Current. Extremely fresh anomalies are seen in January–March 2004 and in January−April 2006, 

with values lower than 33 at the surface throughout the KK transect; on the contrary, salinities in 

excess of 35.75 appear from April 2006 through August 2006 (Nisha et al., 2009). This salinity 

drop/rise is conducive to sea level rise/drop, respectively, through the halosteric effect. The seasonal 

cycle of the halosteric effect along the KK route should interfere constructively with that of the 

thermosteric effect generated by the vertical motions of the thermocline seen in Section 4. At this 

stage, it is interesting to assess the relative imprints of temperature and salinity on sea level 

variability. Fig. 13 presents the evolution of altimetric sea level anomaly (SLA) along the KK route, 

obtained from AVISO (1996) gridded product (available from http://atoll-

motu.aviso.oceanobs.com/). It integrates both temperature and salt effects. We compare it with the 

evolution of dynamic height anomaly (DHA) along the same route (Fig. 14). The DHA is computed 

assuming a constant 35 salinity throughout the water column. Thus it accounts for the thermosteric 

effect only. The DHA is plotted after removal of the 2002–2008 mean DHA corresponding to each 

grid point. The measurement errors of altimetric SLA are believed to be in the range 2–3 cm in the 

open ocean (Fu and Cazenave, 2001). As for DHA computed from XBT profiles, the accuracy is 

better than 2 cm (Wijffels et al., 2008). To the extent of these measurement errors, any difference 
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between SLA and DHA should thus be attributed to the halosteric effect. Visual comparison of the 

two figures shows that both SLA (Fig. 13) and DHA (Fig. 14) mirror the D25 evolution seen in Fig. 

12: at the coastal edge of the transect, SLA and DHA are negative (less than -12 cm) at the height of 

the upwelling season (summer), and positive (over + 10 cm) at the height of the downwelling season 

(winter). This pattern seen at the eastern edge propagates westward, crossing our area in about 2 

months, consistent with the Rossby wave speed discussed in Section 4. However, the consistency 

between SLA and DHA evolution is verified to a certain extent only. On many occasions, upper 

ocean salinity can be seen as a good candidate to explain their misfit. For example, DHA is less than 

-21 cm in September 2004, throughout the central part of the section; at this time, SLA hardly 

reaches -15 cm. This is consistent with the positive halosteric effect expected from the fresh (33.5) 

sea surface salinity seen there at this time (Nisha et al., 2009). In the same way, SLA exceeds +12 

cm in March 2006 all along the transect, when DHA hardly touches +9 cm west of 74°E; this is 

when sea surface salinity drops below 33, thereby favouring an enhancement of the positive steric 

effect. On a few occasions, though, sea surface salinity anomalies can not account for the observed 

differences between DHA and SLA. This is the case, for example, in October 2005, when DHA is 

less than -15 cm west of 74°E, whereas SLA remains around -10 cm; this is inconsistent with the 

salty anomaly (36) seen in sea surface salinity there. The reason for this is unclear. In particular, it is 

hard to distinguish between the measurement error of altimetric sea level and possible subsurface 

halosteric contribution in the absence of systematic subsurface salinity measurements. Indeed, the 

LS is known for vigorous haline variability in the thermocline and below (Shankar et al., 2005; 

Shenoi et al., 2005b). 

7. Conclusion 

Apart from reviewing the existing knowledge on the issue of upper SEAS thermal variability, 

the goal of this study is to present and analyze a novel in situ dataset harvested in the LS. It is based 

on two repeated XBT transects performed systematically at near-fortnightly interval between the 

Indian mainland and Lakshadweep Islands, under the Arabian Sea Monsoon Experiment field 

observational program. The resolution along the best-sampled route (KK) is better than 1° × 1 

month, systematically during 2002−2008. Along the other route (KM), the resolution is about half as 

high. Overall, the data coverage is unprecedented in this part of the world ocean. 

Our basic conclusion is that the LS temperature presents a broad spectrum of variability, 

from intraseasonal to interannual timescales. The variability is trapped primarily at thermocline 



 

 

 

  16

depth (between 60 m and 100 m), taking the form of vertical movements of the thermal stratification 

with amplitude of order 60 m. At seasonal timescales, our dataset essentially confirms what was 

known from the existing literature. In line with the past modeling studies, the variability patterns 

show the imprint of linear physics (among which the central role played by baroclinic Kelvin and 

Rossby waves). In addition, the first-of-its-kind resolution of our dataset reveals a rich variety of 

sub-seasonal anomalous events. They take the form of short-lived signals trapped in the thermocline. 

This sub-seasonal variability occurs at two preferred time scales: in the 30-110-day band, within the 

frequency domain of the Madden-Julian Oscillation, and in the 120-180-day band. Interannual 

temperature anomalies are also observed at depth and reflect a considerable year-to-year variability 

of the magnitude of both upwelling and downwelling events. The exact forcing mechanisms 

responsible for the observed subseasonal and interannual variability (locally or remotely wind-driven 

or generated by oceanic internal turbulence) remain to be ascertained.  

SST exhibits relatively minor variability as compared to subsurface temperature. However, 

even small variations of SST have the potential to exert considerable climatic impact, given that SST 

continuously hovers around the critical threshold of 28°C, considered as the minimal value needed to 

sustain deep atmospheric convection. We have seen that the thermocline is upwelled to extremely 

shallow levels (of order or less than 20 m) on some occasions. Hence, contrary to what is known 

from the (limited) literature on this issue, we can not exclude a significant role of the ocean 

subsurface in driving the SST variability. Though it is beyond the scope of the present paper, the 

present dataset provides an invaluable source of information to quantitatively assess the upper ocean 

heat budget in this area over the recent period and at all timescales, from intra-seasonal to 

interannual. 
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Figure 1. (top) Mean SST for the Indian Ocean, from WOA2005 climatology. The warm pool 

(defined as the region of mean SST in excess of 28.5°C) is shaded in red. The black box located in 

the southeastern Arabian Sea features the limits of our study area. (bottom) Distribution of XBT 

stations over our study area, during 2002–2008. The 200-m and 1000-m isobaths (taken from Sindhu 

et al., 2007) are shown. Shaded strips (Kochi-Kavaratti and Kochi-Minicoy) represent the most 

densely sampled transects. The eastern (E) and western (W) boxes are shaded in red for future 

reference. Also shown is the typical position of the Lakshadweep High and Low. 

Figure 2. Longitude-time distribution of the XBT data along (a) Kochi-Kavaratti and (b) Kochi-

Minicoy transects. 

Figure 3. Longitude-depth section of (a) the mean and (b) the standard deviation of temperature 

from the XBT dataset along Kochi-Kavaratti transect. Contours are every 1°C and every 0.5°C for 

(a) and (b), respectively. (c) Maximal standard deviation as a function of longitude along the Kochi-

Kavaratti section. (d) Equivalent vertical displacement (m) at the depth of the maximal standard 

deviation, as a function of longitude along the Kochi-Kavaratti route (see Section 3 for details). 

Figure 4. (a) Longitude-depth sections of monthly climatology of the thermal struture along the 

Kochi-Kavaratti transect for WOA2005 (left column), for our new XBT dataset (middle column), 

and their difference (right column) during January to June. (b) Same as (a), during July to December. 

Isolines are every 5°C for temperature (left and middle columns) and every 1°C for temperature 

difference (right columns). The months are indicated on each panel of left columns. 

Figure 5. (a) Longitude-time sections of monthly climatology of SST (left), mixed-layer depth 

(middle) and depth of the 25°C isotherm (right), along the Kochi-Kavaratti transect. (b) Same as (a), 

along the Kochi-Minicoy transect. 

Figure 6. Longitude-depth section of standard deviation of temperature anomaly as regards to the 

monthly climatology, computed over 2002–2008. Contours are every 0.5°C. 

Figure 7. Same as Figure 6, computed monthly over the 2002–2008 period. Contours are every 1°C. 

Superimposed in dashed lines is the monthly climatology of the 25°C isotherm depth. 

Figure 8. (a) Time serie of temperature profile observed in E box (contours). Superimposed in thick 

line is the mixed layer depth. The thin lines feature the depth of the 25°C and 20°C isotherms. The 



 

 

 

  22

dots show the XBT data distribution. Gaps longer than 1 month are kept blank. (b) Same as (a), for 

W box.  

Figure 9. (a) Subseasonal variability of temperature profile observed in E box (contours). 

Superimposed in thick line is the mixed layer depth. The thin lines feature the depth of 25°C and 

20°C isotherms. The dots show the XBT data distribution. Gaps longer than 1 month are kept blank. 

(b) Same as (a), for W box.  

Figure 10.  Power spectrum of (a) D25 and (b) D20 variation in E box (with seasonal cycle 

removed) at subseasonal timescales (thick line). (c) and (d) Same as (a) and (b), for W box. The 95% 

significance level, estimated using autoregressive model fitting, is indicated by dashes. 

Figure 11. (a) Interannual variability of temperature profile observed in E box (contours). (b) Same 

as (a), for W box.  

Figure 12. Longitude-time section of 25°C isotherm depth along the Kochi-Kavaratti transect, for 

the May 2002–April 2008 period. Each panel shows a twelve-month window, from May to the 

following April. The corresponding year numbers are indicated on each panel. Contours are every 10 

m. 

Figure 13. Longitude-time section of altimetric sea level anomaly extracted along the Kochi-

Kavaratti transect. Contours -10 cm, 0 and 10 cm are drawn in thin line. 

Figure 14. Same as figure 13, for the 0-400 m dynamic height anomaly computed from our XBT 

dataset. 
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