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Abstract   
Ultrasonic treatment, a relatively less explored technology in water disinfection, was used to 

quantify the energy required for the destruction of larvae of barnacle Balanus amphitrite, which is a 

major marine fouling and a potential invasive organism. Since the power used and treatment time for 

disinfection are economically, and practically, the most important parameters, the energy required 

to pulverize the larvae into pieces ≤ 30µm was determined as a function of the acoustic power 

density. The present investigation suggests that an ultrasonic system operating at 20 kHz at 0.0975 

W/cm3 can effectively pulverize barnacle larvae having length (~440µm) and breadth (~350µm) 

within 45 sec. using 0.1 mJ/larva of pulverization energy. It was also observed that following 

pulverization of the larvae, the bacterial abundance increased and the rate of release of bacteria was 

dependent on power level and treatment time, which in turn decided the pulverization rate and hence 

the rate of release of bacteria. 

 
Keywords: Balanus amphitrite, Ultrasonic treatment, Bacteria, Pulverization energy, Acoustic 
power density, Water treatment 
 

 

 

*Corresponding author. National Institute of Oceanography, Dona Paula, Goa – 403 004, India. Tel.: +91(0)832-2450 404; fax: +91(0)832-2450 704; 
email address:acanil@nio.org (A.C. Anil) 

 



 

 

2

 

INTRODUCTION 

Acoustic cavitation is a relatively less explored technique in the treatment of water and 

investigations are needed to ascertain its practical applicability especially in brackish/ saline 

environment or with specific marine microbes. Apart from making water effective for drinking 

purpose, it can find utility in a ship to treat ship’s ballast water, treatment of industrial effluent etc. 

There are various existing, as well as, newly emerging technologies available for the disinfection of 

water, ranging from physical methods such as heating and UV treatment, to chemical treatment with 

biocides; however they have many inherent problems. Firstly, they are energy wise intensive and 

hence expensive, they can cause contamination of the treated water (due to addition of chemicals), 

and therefore, of the environment into which the water is subsequently released. Their mechanism of 

action is often complicated and poorly understood, and their effect varies with different organisms. 

Also there is a possibility of generation of treatment byproducts.  

Although there are number of illustrations regarding use of cavitation for waste water 

treatment, the theoretical analysis to develop the fundamentals and experimental studies to 

implement the same is a necessity. We have addressed the implication of ultrasonic treatment in 

disrupting and/ or pulverizing the organisms that could be transported via ballast water. Ballast water 

is the sea-water taken up by the ships in order to weigh down and/or balance the latter while 

unloading their cargo. Conversely, when loading cargo, they discharge the ballast water. In this 

process, ships transfer millions of tons of ballast water from one place to another worldwide, 

inadvertently discharging non-indigenous aquatic organisms into receiving waters (Carlton & Geller, 

1993). Translocation of organisms through ships (bio-invasion) is considered to be one of the central 

issues that have plagued the naturally evolved biodiversity, the consequences of which are being 

realized increasingly in recent years (Gollasch et al., 2000; Anil et al., 2002). Marine invertebrate 

larvae are of major concern in ballast water treatment/management programmes and in addition they 

also harbour many bacteria within them. The release of bacteria while these large planktonic 

organisms are killed or destroyed by rupturing is an additional concern in the ballast water treatment. 

It has been found that most of the pathogens introduced to Chesapeake Bay came from bacteria 

associated with plankton rather than that in water (Ruiz et al., 2000). In this context it is important to 

get the maximum extent of microorganisms released out of the planktonic organisms during the 

latter’s destruction so that additional treatment measures can be effectively applied to reduce or 

eliminate them. Very little is known about the strength of their exoskeleton and the mechanical or 

thermal energy required for breaking or pulverizing them into small pieces (≤30 µm) so that most of 
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the bacteria are released after the treatment. In view of this we chose a representative marine 

invertebrate larva of major fouling barnacle which is also a potential invasive organism, Balanus 

amphitrite (~440μm in length and ~350µm in breadth) with a chitinous exoskeleton as a candidate 

organism for this study This paper addresses the effectiveness of the ultrasonic treatment on B. 

amphitrite larvae and quantify the energy required for their destruction and this has implications in 

ballast water treatment.  

 

MATERIALS AND METHODS 

Ultrasonic equipment  

The equipment used for ultrasonic treatment in this study is an ultrasonic homogenizer ‘LABSONIC 

U’ developed by the ‘B. Braun Biotech International Gmbh’ with an operating frequency of 20 kHz 

and a rated maximum power of 50 Watts.  The LABSONIC U consists of a generator, a transducer 

and a metal probe. Electrical power supplied to the generator is given out as a user-defined electrical 

output which then serves as an input to the transducer. The transducer then converts it into acoustic 

power which is supplied to the sample via the probe. The transducer is fitted with the titanium needle 

probe tip of length 127mm and diameter 4mm. In this manuscript, the term ‘Power level’ refers to 

the frequency generator output and ‘Acoustic power’ refers to the transducer output. The actual 

delivered power was determined calorimetrically by using the formula mentioned below 

  

 

 

Where m is the mass of water in g, Cp is the specific heat in Joules and ∆T is the rise in temperature 

in °C. For power levels of 30W, 50W, 80W and 110W, the actual mechanical delivered power was 

estimated to be 0.4W, 0.8W, 1.49W and 2.25W respectively.  

 

Organism used  

The barnacle, B. amphitrite was used for this experiment. The larval development in this organism 

includes six naupliar instars which feed on phytoplankton and a non-feeding cyprid instar specialized 

to explore suitable surfaces for settlement (Desai and Anil 2004). The barnacles were maintained in 

the laboratory using Artemia sp. The larvae released by the adults were collected and mass reared in 

2-liter glass beakers using filtered seawater (FSW) of 35‰ on a diet of Chaetoceros calcitrans, a 

unicellular diatom, at a cell concentration of 2 x 105 cells ml-1.  The food organism was replenished 
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every day while changing the water. Fourth instar larvae having length (~440µm) and breadth 

(~350µm) were used in the present study. 

Samples  

The larval samples subjected to the treatment were held in flat-bottom borosilicate tubes of 

dimensions: height = 5.6 cm, radius =1.2 cm. The sample tube consisted of 5ml of filtered sea water 

(0.22 µm filter) making a level of 16 mm height. A single barnacle larva was transferred into each 

tube (Figure 1). Before transferring the larvae, they were rinsed several times with autoclaved 

filtered sea water. After subjecting it to sonication with the probe of length 127 mm and diameter 4 

mm, it was then observed under the dissection microscope and photographed wherever necessary. 

The above procedure was used for all the treatments.  

(Figure 1 here) 
 

Scanning Electron Microscopy (SEM) 

Each collected sample for SEM analysis was preserved in 2% glutaraldehyde. The samples were 

first fixed in 2% Osmium tetroxide for 30 mins followed by dehydration using ethanol series. 

Thereafter the samples were exposed to tertiary butyl alcohol for an hour (Truby, 1997). They were 

then transferred onto gold coated brass stubs. The samples were then freeze dried for 20 minutes, 

sputter coated and viewed under SEM.  

 

Modeling of the ultrasonic probe output  

The output of the probe consists of ultrasonic waves at 20 KHz directed downward in the form of a 

beam. In order to understand the forces that the larvae were subjected to, a few barnacle larvae were 

stained violet with a prominent dye, ‘Rose Bengal’, and their movement was monitored visually 

during the ultrasonic irradiation treatment. The probe tip was immersed at different liquid depths 

within the test tubes and the effectiveness of these conditions on larval disruption was studied.  

 

Standardization of the treatment 

The treatment procedure was standardized based on numerous trial runs by varying different 

parameters such as power level, treatment time and immersion depth. The parameters involved have 

been discussed individually and the values selected for standardization have been specified and 

justified below. 

 

Depth of immersion 
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Arrangement of sample tube and ultrasonic probe during the treatment is shown in Figure 1.  In the 

present investigations the depth of immersion was 5 mm (Figure 2), as it was found to cover almost 

the entire sample volume (qualitative). Since a larger volume is covered, there is a higher probability 

of the larva being caught in the acoustic streaming during irradiation and thus, a higher consistency 

in the resultant data.  

(Figure 2 here) 
 

Sample volume and larval density  

A sample volume of 5ml was used so that the water would be at a sufficient height (~ 16 mm) above 

the tube-bottom and is capable of dipping the ultrasonic horn probe. Keeping the volume minimal, 

higher power densities could be achieved at lower overall dissipation of probe power levels. The 

requirement of the present study being quantification of energy required to disrupt a single larva, it 

was assured that only a single larva was transferred into the tube, so as to avoid the cushioning of 

one larva by another (shadow effect).   
 

Filter size for sample water  

Filtered sea water was used in the samples so as to minimize the number of particles. A 0.22 µm 

filter was employed so that there were no foreign particles of comparable size (to that of larvae) 

which could be confused with the larva or its debris.  

 

Power output 

The output power of the generator (of the ultrasonic homogenizer) could be varied from 30W to 

110W, in steps of 1W. Therefore, the output of the transducer could be varied from 0.4W to 2.25W 

using continuous duty cycle.  Acoustic power and sample volume are the parameters that have the 

greatest influence on disruption level (Feliu et al., 1998). Since constant sample volume was used, 

the power was considered as the most influential parameter. 

 

Treatment time 

A treatment time of ≤ 120 s was used in the present investigation. The power level and the treatment 

time are the most important practical parameters in disinfection technologies as they determine the 

treatment costs and efficiencies, and hence, most of the present work deals with the variations in 

power and time, indicating the total energy requirement. Two experiments were carried out and are 

described with the help of Schematic representation 1 and 2. 
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Experiment 1. Influence of power level and treatment time on pulverization  

The power levels and treatment time were altered, while keeping the pulverization efficiency as a 

constant. (‘Pulverization efficiency ’ was quantitatively defined as a condition of the larva of, 

Balanus amphitrite, in which it had been crushed to pieces of an average size ≤30 microns, with no 

one piece > 30μm in size).  

The treatment time required for pulverization was determined for 4 different power levels 

(30W, 50W, 80W and 110W). Trials carried out at each of the power levels helped to ascertain the 

values of treatment time (t). A triplicate (set of 3 samples of live moving larvae) was subjected to 

ultrasonic treatment at a power level of p=110W, for an initial treatment time, t =35 sec. The samples 

were observed under the microscope and if all 3 samples didn’t show pulverization, treatment time 

was incremented by 5 sec and the sample was sonicated with the new irradiated time‘t’. The vials of 

larvae exposed for any given treatment were discarded after the observations so that the larvae were 

treated only once. 

For power levels of 30W, 50W and 80W, the initial treatment time used were 90 sec, 150 sec, 

and 375 sec respectively. Increments were made in steps of 10 sec for 80W, 30 sec for 50W, and in 

steps of 45 sec for 30W. Temperatures were recorded immediately before and after the treatment of 

each sample using a digital thermometer.  

Pulverized samples were photographed wherever necessary and also preserved in 2% glutaraldehyde 

for subsequent observation through SEM (Plates 1 and 2). A graph was plotted between the power 

and the time required for pulverization. The energy supplied to the larva is plotted against the 

acoustic power density (Figures 3 & 4).  
 

Experiment 2. Influence of varying treatment time, at constant power level on pulverization  

The variation in the pulverization efficiency was observed with varying treatment time, at a constant 

power level of 80W. The treatment time was varied as 30s, 60s and 90s based on the results from 

experiment 1. Samples were taken in sets of 3 (triplicates) and subjected to ultrasonic treatment at a 

power level of 80W, for time‘t’. The value of‘t’ was varied as; 30 sec, 60 sec and 90 sec.  

Temperatures were recorded before, and after the treatment of each sample. After the treatment of 

each triplicate, the samples were observed under the microscope and photographed wherever 

necessary.  
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Quantification of bacteria 

In another set of experiment the larvae were sonicated using a range of mid power levels used in the 

above experiment (i.e. 50, 60, 70 and 80W) upto180 seconds. The water from the sample tube was 

then fixed with formaldehyde (final concentration 1 to 2%; v/v) to quantify the bacterial numbers. 

The quantification of bacteria was done by using acridine orange and epifluorescence microscopy 

(Daley & Hobbie, 1975).  

 

Statistical analysis 

The data on bacterial abundance was log transformed to ensure normality and homogeneity of 

variances before subjecting to statistical analysis. The pattern seen in the bacterial abundance with 

increasing input power and exposure time was subjected to one-way ANOVA followed by a post-

ANOVA Scheffe’s test (Sokal & Rohlf, 1981). 

 

RESULTS 
After standardizing the depth of probe immersion for effective disruption to 5 mm, numerous trials 

with the rose Bengal preserved and live larvae were carried out. Since the stain used had preserved 

the larvae, the movement shown by them was purely due to the acoustic streaming generated by the 

passage of ultrasound. Trials with, live, larvae also revealed, that larvae close to, or anywhere below 

the probe tip were immediately sucked into the liquid jet created by the oscillation of the horn, while 

those that were well above the probe tip, were relatively unaffected, and hence, much more 

independent in their movement.  

In conclusion, almost all the ultrasonic energy is concentrated in the volume of water 

adjacent to, and/or below the probe tip. This can be called as the ‘processed volume’. Since the exact 

ultrasonic power distribution in the processed volume was unknown, the power density that the larva 

is subjected to is approximated, as the average power density over the processed volume i.e. 

Acoustic power density = (transducer power output, watts/ processed volume, cm3).  

The ‘acoustic power density’ is a more universal treatment parameter than the ‘power level’ 

as it is independent of the methods, equipment, sample volume etc. However, it suffers from 

inaccuracy due to the approximation of the transducer conversion efficiency. Hence, throughout this 

report both parameters have been used. 

So, given a treatment at a particular power level ‘p’, watt (W) for a treatment time of ‘t’, sec, 

with the depth of the probe as ‘d’, mm , the height of water above the tube-bottom as ‘h’, mm and 

the radius of the tube as ‘r’, mm (Figure 1), the acoustic power density ‘P’ and the acoustic energy 
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density ‘E’ in the processed volume was calculated using the following equations, (it inherently 

assumes that no significant energy dissipation takes place in the liquid above the lower tip area of 

probe) 

 

P = (p)/ [∏xr2x (h-d)], W/cm3                                                                … Equation. 1. 

E = P × t J/ml                                                                                         … Equation. 2.  

0) mlJ
mls
Js /45.6
.

0645.0100 =×  

1) mlJ
mls
Js /266.7
.

0173.0420 =×  

2) mlJ
mls
Js /266.7
.

0346.0210 =×  

3) mlJ
mls
Js /38.4
.

0975.045 =×  

Then, the energy supplied to a nauplius of volume ‘v’, is given by:   

N = E × v mJ/larva                                                                                … Equation. 3.  

 

The energy supplied to the larva for its pulverization (i.e. Pulverization energy)   was 

calculated for each of the acoustic power densities using equations 2 & 3. An average volume of 

0.4mm*0.3mm*0.2mm = 0.024mm3 (for each larva) was used for each of the samples.  

Also, the ultrasonic energy converted to heat energy (heat produced) was independently estimated as  

H = m × c × ∆t                                                                                      … Equation. 4. 

Where ‘m’ is the mass of 5ml of sea water, g, ‘c’ is its specific heat (~cal/gm °C) and ‘∆t’, (°C) the 

rise in temperature observed during the treatment period. The heat energy represents the ultrasonic 

energy retained by the media and is a function of only the equipment used and the acoustic power, 

not of the sample-volume. The pulverization energy and the heat produced at each Acoustic power 

density are shown in Figure 3. 

(Figure 3 here) 
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The results of Experiment 1 are shown in Fig. 4, plotted between the time required for pulverization 

(i.e. pulverization time) of the sample, and the power used. The ‘pulverization time’, expressed as 

(sec), and ‘Acoustic power density’ values, calculated using equations 2 & 3  expressed as W/cm3 

are plotted on the Y-axis and the corresponding power levels, expressed as watts (W), are plotted 

along the X-axis. The results indicated that from a pulverization time of 420s at 0.0173 W/cm3 the 

curve drops to half its value; 210s at 0.0346 W/cm3, again to 100s at 0.0645 W/cm3, and then again 

to 45s at 0.0975 W/cm3. The rise in temperature at higher power density is low i.e. 5.5°C at 0.0975 

W/cm3 when compared at 0.0173 W/cm3 (8.5°C). The results of Experiment 2 are shown in Figure 5. 

The pulverization energies expressed as J/mL are plotted against the acoustic power densities. The 

heat produced during a pulverization treatment is seen to decrease, approximately linearly, with 

increasing acoustic power. This clearly indicates that at higher power density, pulverization is more 

energy efficient i.e. requires less total energy. (Figures 4 & 5 here) 
The bacterial abundance after the pulverization of larvae using different power levels and 

time is shown in Figure 6. When the larvae were sonicated at lower power levels, an increase in the 

bacterial numbers was evident up to 90 secs after which there was a slow decline (17.79%). When a 

comparison was made across the power treatments, a significant difference in bacterial abundance 

was observed at 30 and 90 secs (p≤0.001, One-way ANOVA; p≤0.05, Scheffe’s test). At higher 

power levels, less time was required to obtain the highest bacterial numbers followed by a faster 

decline in their numbers subsequent to further sonication till 180 secs. 

(Figure 6 here) 

DISCUSSION 
Ultrasonic liquid treatment uses high frequency wave energy to cause vibrations in liquids resulting 

in a phenomenon called as acoustic cavitation, which is the formation, growth, and implosive 

collapse of microscopic gas and/or vapor bubbles that are generated when ultrasonic waves are 

propagated through a liquid medium. Thus, acoustic cavitation results from the mechanical 

interaction between sound waves and bubbles in liquids (Price, 1992; Crum et al., 1999; Young, 

1999; Mason, 1999; Ashokkumar et al., 2007). When these cavitation bubbles collapse, a series of 

mechanical and physical effects such as shear forces and shock waves are generated. The collapse of 

cavitation bubbles also results in the generation of heat within the bubbles for which these bubbles 

are also referred as micro-reactors or hot spots (Suslick et al., 1986; Ashokkumar et al., 2007). The 

chemical changes that take place due to the cavitation induced by the passage of sound waves are 

commonly known as sonochemistry (Gogate, 2002). The present study revealed that when the larvae 

were sonicated using ultrasound energy, they were caught in violent agitations that forced them into 
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moving along random, looped pathways. This observation agrees with the mechanism proposed 

earlier (Doulah, 1977), that an ultrasound results in the formation of eddies (acoustic streaming). 

Also, it was observed that all the ultrasonic energy is concentrated in the volume of water adjacent 

to, and/or below the probe tip referred as ‘processed volume’. Given that the larva is within this 

processed volume just before the treatment, it is necessarily subjected to movement within it, 

assuming that the larva had equal probability of being at any position within the processed volume. 

But, the total number of cavitation events per unit time is independent of the volume of the 

suspension irradiated and is a function only of the power input to the transducer (Davies, 1959). A 

1970s study on the treatment of shipboard waste-water demonstrated that effective cavitation could 

not be attained for the volumes of water being treated (NRC, 1996). Consequently, sufficient 

sterilization of the wastewater was not achieved. Traditional methods of ultrasonic treatments were 

reviewed in Stemming the Tide (NRC, 1996), which states that effectiveness is a variable when 

treatment is applied to higher organisms such as zebra mussel veligers and fish. NRC concluded 

however, that such ultrasound systems could destroy fungi, yeasts, and pathogenic bacteria. The 

energy that exists within the cavity, at the time of collapse, causes both physical and chemical effects 

that are responsible for the rupture of organisms during cavitation. The conditions immediately 

preceding collapse of a cavitation bubble are similar in magnitude to ultra-high energy combustion 

conditions. Within the cavitation bubble and the immediate surround area, temperatures range from 

2000 to 5000 °C, and pressure reaches 1800 atmospheres (Buchholz et al., 1998). Higher 

frequencies, warmer temperatures and lower concentrations of dissolved matter have been found to 

increase the effect of ultrasound pulses (Mesbahi, 2004). Evaluating the effect of ultrasound at a 

frequency similar to that employed in present investigation i.e. 20 kHz it was opined that stand- 

alone ultrasonic treatment systems for ballast water may be effective for planktonic organisms >100 

µm in size but smaller planktonic forms such as phytoplankton and bacteria will require an additional 

or alternative treatment system (Holm et al., 2008). It was also observed that zooplankton tested all 

suffered 90% mortality after exposure times <10 s and at low energy densities <20 J/ml. In the 

present investigation 0.1 mJ/larva of pulverization energy at power density of 0.0975 W/cm3 was 

efficient in pulverization of barnacle larva with slow rise in temperature. Thus, temperature can be 

considered to have little effect on the rate of killing in such organisms and therefore, it can be 

concluded that mechanical disruption was the main mechanism of pulverization. Previous reports 

also suggest that physical processes could be more important at the frequencies employed in the 

present investigation (Tiehm, 2001). Thus, under such conditions, the primary means for biological 

eradication are the mechanical effects rather than chemical reactions that result from cavitation. Cell 
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membranes and organisms are literally ruptured or blown apart from the intense energy delivered in 

the form of shock waves. These (mechanical) effects include: (1) Complete destruction of larger 

biota, and (2) Disturbance or rupture of biological cell membranes, leading to subsequent death of an 

organism. 

The cell breakage by ultrasound is a single hit type of phenomenon, such as the occurrence of a 

cavitation (implosion) in close proximity to a cell (Anand et al., 2007). The shock waves generated 

by transient cavitation are the main physical force responsible for mechanical disruption of the 

microbe. The strength of the exoskeleton of the organisms subjected to cavitation also plays a 

significant role in its effective disruption. It has been shown earlier that micro streaming resulting 

from stable cavitation produce stresses that are sufficient to disrupt cell membranes (Scherba et al., 

1991). The damage caused by fluid shear stress is thought to depend on the erosion of the outer cell 

wall polymers, particularly at weakened places such as division or budding scars (Anand et al., 

2007). Most of the zooplankton develops either external or internal skeletons (Hardy, 1956; 

Pennington & Hadfield, 1989) for support or protection from predators in the aquatic environments. 

The exoskeletons are either chitinous as in the crustacea or calcareous as in the larval mollusks or 

brachiopods (Hardy, 1956). The major component of the cuticles and exoskeletons of worms, 

mollusks and arthropods consists of chitin, which is one of the most abundant polysaccharides in 

nature (Jeuniaux, 1982). Crustaceans and millipedes have calcium as a major component of cuticle 

and play a significant role in cuticle hardness (Willis, 1999). The gradient in the stiffness and 

hardness through the cuticle thickness is related to honeycomb mechanism of the twisted plywood 

structure which is formed by the helicoidal stacking sequence of the fibrous chitin-protein layers 

(Raabe et al., 2005). Once the cell membrane is sheared (a physical consequence of cavitation), 

chemical oxidants can then enter the cell attacking internal structures (Anand et al., 2007). Chemical 

oxidants produced as a result of ultrasonic irradiation include free radicals like the hydroxyl radicals. 

One of the recent studies by Gavand et al. (2007) reported that a combination of sonication and 

advanced chemical oxidants could be more promising method to eradicate aquatic algae and macro 

invertebrates in ballast water.  The biochemical composition of the exoskeleton and its strength 

differs for different invertebrate larvae, thus the energy required to pulverize or sonicate different 

sizes of larval forms would be different (Holm et al., 2008).   Thus the present study aimed at 

elucidating the energy required for the pulverization of barnacle larva, as well as, the heat produced 

in the process using four different acoustic power densities. In the present study the dimension of the 

larvae subjected to pulverization and the level of disruption as quantified by the size of pulverized 

fragments were kept constant. Some preliminary experiments carried out on different larval stages of 

barnacles and copepods of different sizes indicated variations in the energies required for disruption, 
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copepods requiring higher energies than barnacle larvae (personal observation). In real-life situation 

there will be a gamut of organisms belonging to different taxa and thus energy required to 

treat/disrupt these organisms would be different along with the shadow effect (shock wave impact 

attenuated by physical obstruction) and this needs further investigation.  

For the range of acoustic power densities used, the following conclusions can be drawn about 

the requirements of time and energy, trends shown by the heat produced and the extent of 

pulverization.  From Figure 4 it is evident that pulverization time showed an exponential decrease 

with an increase in the acoustic power density, such that, at very low power densities, the time 

required tends toward infinity. The temperature rise during a pulverization treatment is seen to 

marginally decrease, approximately linearly, with increasing acoustic power.  

Treatment time is of critical importance, especially, in high flow systems that are used in 

large-scale treatments. So, higher acoustic power densities can be used to achieve exponentially 

lower treatment times, so as to make ultrasonic treatment feasible for use in such systems.  

Pulverization energy is the energy that must be supplied to the larva to pulverize it, and not 

the total input energy by the transducer. From Figure 5 it is observed that the exponential decrease in 

treatment time has resulted in an almost linear decrease in required pulverization energy with 

increasing acoustic power densities.  The four points in the graph in Figure 5, representing 

combinations of energy and acoustic power densities, can be utilized to design disinfection systems 

for pulverizing larvae of Balanus amphitrite or similar barnacle species. However, the data provided 

has limited application in that it covers only a narrow range of acoustic power densities, viz. ‘0.0173’ 

to ‘0.0975’ W/cm3.  

It was observed that when the organism is pulverized, various microbes embedded in its 

exoskeleton, as well as, those within its gut, are dislodged and thus, become vulnerable to subsequent 

treatment. Most disinfection treatments use a combination of treatment technologies in stages. 

Experimental results have also shown that hydrodynamic cavitation and or turbulent shear 

dominantly originating from cavitation are effective tools and could kill 80% zooplankton present in 

sea water (Sawant et al., 2008). Jyoti & Pandit (2004) reported that hybrid technique which 

combines hydrodynamic cavitation, acoustic cavitation and hydrogen peroxide appear to be an 

attractive alternative to any one technique on its own for the reduction in the heterotrophic plate 

count bacteria as well as indicator microorganisms like the total coliforms, fecal coliforms and fecal 

streptococci. Thus, while treating macro-organisms, it becomes important, not only to destroy them, 

but also kill or at least, make vulnerable, the microbes harbored within them.  

Our observations indicated that larvae were split into pieces measuring ≤ 30µm. The surfaces of the 

naupliar debris showed numerous perforations and indentations (0.2 to 3 µm), however there was no 
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peculiar pattern in the way they were destroyed. When low power levels were used, the numbers of 

bacteria released in the water column following pulverization increased and was evident up to 90 

secs followed by a slow decline, whereas at higher power density (0.0975 W/cm3) this could be 

achieved in 45 s of exposure time and pulverization energy of 0.1 mJ/larva. The destruction of 

bacteria (size approximately 5μm) is brought about only after they are released after the disruption of 

the bacteria bearing organism. Earlier work (Mahulkar et al., 2009), clearly shows that continued 

irradiation with ultrasound is capable of destroying the bacteria. The bacterial population plotted v/s 

time goes through maxima, which more or less coincides with the complete disruption of the main 

(target), bacteria bearing larva. The ultrasonic irradiation, in the initial stages disrupts the larva and 

also the bacteria, but the rate of release of the bacteria in the initial stages is significantly higher than 

its destruction and hence it goes through maxima. After this, the bacterial population shows a steady 

decrease with continued irradiation using ultrasound. The effects related to the microbial/larval 

concentration does show an optimum and it has been observed to be in the range of 1% wt/volume 

(Anand et al., 2007). The fragmentation size analysis is necessary as it will be useful for subsequent 

solid-liquid separation requirements. Once, the time of exposure v/s fragmentation rate is known, a 

flow through system can be designed, following two possible strategies are suggested (a) Multiple 

circulation of the suspension through the cavitating zone, where the cumulative exposure time 

matches the ultrasound exposure time obtained from the batch studies Or (b) Continuous flow 

through system, having circulation rate, much higher than the addition and withdrawal rate, again 

matching the required exposure time.   

  

ACKNOWLEDGEMENTS  

We are grateful to Dr. Satish R Shetye, the Director National Institute of Oceanography, Goa for his 

support and encouragement.  We thank Dr. Dattesh Desai, Mr. K. Venkat, and other colleagues of 

MCMRD for their help. This is a NIO contribution #### 

 

 

 

 

 

 



 

 

14

REFERENCES 

Anand H., Balasundaram B., Pandit A.B. and Harrison S.T.L. (2007) The effect of chemical 
pretreatment combined with mechanical disruption on the extent of disruption and release of 
intracellular protein from E. coli. Biochemical Engineering Journal 35(2), 166-173.  

Anil A.C., Venkat K., Sawant S.S., Dileepkumar M., Dhargalkar V.K., Ramaiah N., Harkantra 
S.N. and Ansari Z.A. (2002) Marine bio-invasion: Concern for ecology and shipping. Current 
Science 83(3), 214-218.  

Ashokkumar M., Lee J., Kentish S. and Grieser F. (2007) Bubbles in an acoustic field: An 
overview. Ultrasonics Sonochemistry 14(4), 470-475.  

Buchholz K., Deborah T., Scott M. and Emmanuele F. (1998) Ballast Water Secondary Treatment 
Technology Review: Battelle Duxbury Operations.  

Carlton J.J. and Geller J.B. (1993) Ecological Roulette: Biological invasions and the global 
transport of non-indigenous marine organisms. Science 261, 78-82.  

Crum L.A., Mason T.J., Reisse J.-L. and Suslick K.S. (1999) Sonochemistry and 
Sonoluminescence. In NATO ASI Series C vol. 524, Kluwer Publishers, London.  

Daley R.J. and Hobbie J.E. (1975) Direct counts of aquatic bacteria by a modified epifluorescence 
technique. Limnology and Oceanography 20, 875-882.  

Desai D.V. and Anil A.C. (2004) The impact of food type, temperature and starvation on larval 
development of Balanus amphitrite Darwin (Cirripedia: Thoracica). Journal of Experimental 
Marine Biology and Ecology 306, 113–137. 

Davies R. (1959) Effects on the use of ultrasound waves for the disruption of microorganisms. 
Biochimica et Biophysica Acta 33, 481-493.  

Doulah M.S. (1977) Mechanism of disintegration of biological cells in ultrasonic cavitation. 
Biotechnology and Bioengineering 19(5), 649-660. 

Feliu J.X., Cubarsi R. and Villaverde A. (1998) Optimized release of recombinant protein by 
ultrasonication of E. coli cells. Biotechnology and Bioengineering 58(5), 536-540. 

Gavand M.R., McClintock J.B., Amsler C.D., Peters R.W. and Angus R.A. (2007) Effects of 
sonication and advanced chemical oxidants on the unicellular alga Dunaliella tertiolecta and 
cysts, larvae and adults of the brine shrimp Artemia salina: a prospective treatment to eradicate 
invasive organisms from ballast water. Marine Pollution Bulletin 54(11), 1777-1788. 

Gogate P.R. (2002) Cavitation: an auxiliary technique in wastewater treatment schemes. Advances 
in Environmental Research 6, 335-358. 

Gollasch S., Lenz J., Dammer M. and Andres H.G. (2000) Survival of tropical ballast water 
organisms during a cruise from the Indian Ocean to the North Sea. Journal of Plankton 
Research 22, 923-937. 

Hardy A. (1956) The open sea, Houghton Mifflin, Boston, pp. 335.  

Holm E.R., Stamper D.M., Brizzolara R.A., Barnes L., Deamer N. and Burkholder J.M. (2008) 
Sonication of bacteria, phytoplankton and zooplankton: Application to treatment of ballast 
water. Marine Pollution Bulletin 56, 1201-1208. 



 

 

15

Jeuniaux C. (1982) La chitine dans le règne animal. Bulletin de la Société Zoologique de France 
107, pp. 233–249.  

Jyoti K.K. and Pandit A.B. (2004) Effect of cavitation on chemical disinfection efficiency. Water 
Research 38(9), 2249-2258.  

Mahulkar A.V., Riedel C., Gogate P.R., Neis U. and Pandit A.B. (2009) Effect of dissolved gas 
on efficacy of sonochemical reactors for microbial cell disruption: Experimental and numerical 
analysis. Ultrasonics Sonochemistry 16(5), 635-643.  

 Mason T.J. (1999) Advances in Sonochemistry.Vol 5, JAI Press.  

Meshahi E. (2004) Latest results from testing seven different technologies under the EU MARTOB 
project – where do we stand now? in: Matheickal, J. T., Raaymakers S (Eds.), GLOBALLAST 
MONOGRAPH SERIES No. 15, International Maritime Organization, London, pp. 210-230.  

National Research Council Committee on ship’s ballast operations (1996) Stemming the Tide: 
Controlling Introduction of Non-indigenous Species by Ships' Ballast Water. Committee on 
Ships' Ballast Water, Marine Board, Commission on Engineering and Technical Systems, 
National Research Council, Washington, DC, pp. 141. 

Pennington J.T. and Hadfield M.G. (1989) A simple nontoxic method for the decalcification of 
living invertebrate larvae. Journal of Experimental Marine Biology and Ecology 130, 1-7.  

Price G.J. (1992) Current Trends in Sonochemistry, Royal Society of Chemistry.  

Raabe D., Sachs C. and Romano P. (2005) The crustacean exoskeleton as an example of a 
structurally and mechanically graded biological nanocomposite material. Acta Materialia 53, 
4281-4292. 

Ruiz G.M., Rawlings T.K., Dobbs F.C., Drake L.A., Mullady T., Huq A. and Colwell R.R. 
(2000) Global spread of microorganisms by ships––Ballast water discharged from vessels 
harbors a cocktail of potential pathogens. Nature 408, 49–50. 

Sawant S.S., Anil A.C., Venkat K., Gaonkar C., Kolwalkar J., Khandeparker L., Desai D., 
Mahulkar A.V., Ranade V.V. and Pandit A.B. (2008) Effect of hydrodynamic cavitation on 
zooplankton: A tool for disinfection. Biochemical Engineering Journal 42, 320-328.  

Scherba G., Weigel R.M. and O’Brien Jr. W.D. (1991) Quantitative assessment of the germicidal 
efficacy of ultrasonic energy. Applied and Environmental Microbiology 57(7), 2079-84. 

Suslick K.S., Hammerton D.A. and Cline R.E. (1986) Sonochemical hot spot. Journal of the 
American Chemical Society 108(18), 5641-5642. 

Sokal R.R. and Rohlf F.J. (1981) Biometry. 2nd edn. Freeman WH & Company: San Francisco. 

Tiehm A. (2001) Combination of ultrasonic and biological pollutant degradation. Advances in 
Sonochemistry 6, 25–58. 

Truby E.W. (1997) Preparation of single-celled marine dinoflagellates for electron microscopy. 
Microscopy Research and Technique 36, 337-340. 

Willis J.H. (1999) Cuticular proteins in insects and crustaceans. American Zoologist 39, 600-609. 

Young F.R. (1999) Cavitation, Imperial College Press, Covent Garden, London.  



 

 

16

Figure Captions 

Fig. 1. The sample tube and ultrasonic probe arrangement during the treatment. 

Fig. 2. Effect of the depth of the probe tip‘d’ on the sample volume affected (volume affected is 

depicted in dark shade and the unaffected volume is in light shade).   

Fig. 3. The pulverization energy/heat produced Vs. Acoustic power density  

Fig. 4. Pulverization time/Acoustic power density Vs. Power level 

Fig. 5.  Pulverization energy Vs. Acoustic power density. 

Fig. 6. Effect of four different acoustic power levels using different treatment times on the bacterial 

abundance   
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