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Generalised Inverse (GI) and Singular Value Decomposition (SVD) are well known mathematical techniques
exploited in many areas of applied science including the earth sciences. Simulation experiments on gravity anomaly
due to a subsurface fault model have been carried out in the present work to estimate accurate model parameters
by inverting the observed anomaly using GI approach via SVD.

While solving the inverse problem, data kernel has been generated through the model. Using this data kernel,
SVD has been performed to build Generalised Inverse Operator (GIO) and it is operated on the observed anomaly
with reference to the calculated anomaly to update model parameters. Data and model resolution matrices are
computed to check the correctness of the solution.

A gravity profile over the Garber Oil Field, Oklahoma, equating to a fault has been studied to test/validate the
procedure. The obtained values of the optimized model parameters of the oil field tally with the published results.
Analysis reveals that among all the parameters density contrast and datum level dominates the energy modes of
the data and model space over 99.3% while the remaining make negligible contribution. The merits of SVD are
illustratively discussed.
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1. INTRODUCTION

Geophysical methods are based on the application of certain physical principles to study the
geological problems of the earth's interior. Mathematical techniques are employed with profit in all
these applications.

Gravity and Magnetic methods are routinely used in exploration geophysics to locate the
geological structures favourable for mineral and oil occurrences. The method in essence comprises
collection, processing and interpretation of data in terms of a viable geological model. The estimation
of the model parameters of the causative sources that are responsible for the observed anomalies
forms part of data interpretation. Exploring reliable mathematical tools for the estimation of the
causative source parameters is the concern of the present article.

Interpretation techniques of gravity and magnetic data generally employ indirect methods for
translating the observed gravity or magnetic anomalies (Fig. 1) into sub-surface geology. The general
procedure is to assume appropriate geometry for the causative source and compute its gravity effect
and modify the model progressively until a reasonable fit with the observed anomaly is obtained
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FIG. 1. Gravity anomaly and parameters of fault model

(Talwani and Heirtzler26). The closeness of the fit indicates only that the refined model is a possible
solution. The comprehensive review paper by Moharir15 on inversion of potential field data gives a 
detailed picture of inversion methods, covering matrix methods of inversion, estimation-theoretic
inversion techniques, Backus-Gilbert inversion, regularization and use of apriori information, external
solutions, tunneling algorithms and so on. All these procedures and algorithms attempt to relate
physical models to readily observable data and determine the "best-estimates" of certain model
parameters.

The problem of reconstruction of gravity anomalies due to fault lies in solving the forward
and the inverse problems iteratively. In the forward modeling, the gravity anomaly is computed from
a known distribution of the parameters that describe the model. This is akin to substituting values
of the parameters into the equations that fully describe the model, whereas in the inverse problem,
the parameters of the model are estimated from an observed gravity data set for a possible exploration
of the geophysical source.

In general the exploration problems are of two types 1) the over determined and 2) the
under-determined. The trivial even-determined is of rare occurrence. In all the cases a good resolution
of both the model and data are desirable. The least square method solves the over-determined problem
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minimising the squared Euclidean length of the error and has a perfect model resolution. Instead,
the under-determined problem can be solved with a perfect data resolution by minimising the model
length. In the real world, the problems are neither purely over-determined nor purely
under-determined, they are mixed type. The entire field of observation over which the determination
of the parameters of the model is to be carried out comes up in observation blocks some of which
are over-determined while some are under-determined leading to non-uniqueness of the solution
(Fisher and Howard7, Ben-Israel and Greville5, Ramana Murty et al.,20-22, Prasanna Kumar et al.17

Torantola17). The generalised inverse method solves such a mixed determined problem over the whole
region of observations and has both data and model resolutions intermediate between the two
extremes (Penrose16, Lancozos11, Lawson and Hanson12, Backus and Gilbert2, 3 & 4) .

The generalized inverse technique, through Singular value decomposition (SVD) is an
important tool (Carnhan et al., Ralston23) for the reconstruction of gravity anomalies due to a fault
model. SVD is a factorisation of the operator matrix into set of orthonormal eigen vectors and
associated eigenvalues. The observations are decomposed into linear combination of orthogonal eigen
vectors, which in turn determine a linear combination of model parameters. Comprehensive reviews
could be seen in Wiggins28, Lanczos11, Jackson10, Wunsch30 and Tarantola27. The advantages of
SVD in construction of the Generalised Inverse Operator (GIO) are many and some of which are
(1) SVD is objective and does not impose a pre-determined form to the data (2) it provides an
objective means of ranking un-correlated modes of variability to determine weak signals or noise
from the data and (3) it provides the modes of variability, which are not correlated with one another
(Ramana Murthy et al.22 Menke14). Further, employing SVD in GIO facilitates an explanation of
the physical significance/interpretation of eigen vectors (Stidd25, Winant et al.29 and Aubray1, Ramana
Murty et al.22). These advantages of SVD led Wunsch30 to apply GIO employing SVD in the study
of ocean circulation and Roemmich24 to compute geostropic velocity using known fields of horizontal
density gradients. Further Ramana Murty et al20, Prasanna Kumar et al.}1 used the SVD in Ocean
Acoustic Tomography (OAT) to study the meso scale variability of ocean. In the present paper, we
employ the GI technique through SVD for the reconstruction of gravity anomaly due to fault and
present numerical results of Garber Oil field data (Gant and West8) for test validation.
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3. RESULTS AND DISCUSSION

TABLE 1 
Eigen values and corresponding closeness ratio for the gravity model

SI. No.

1.

2.

3.

4.

5.

6.

Eigen Value

18.87

2.02

0.98

0.73

0.59

0.41

Closeness Ratio

96.504

2.278

0.727

0.280

0.159

0.052

where p is the number of factors considered and r is the rank of the data matrix A (Kernel). The
first eigen function associated with the largest eigen value represents the broader features in the data,
in the least square sense, while the second function and so on describe the residual mean square
data. The closeness ratio expressed in percentage enables one to judge the contribution of different
modes, and thereby reproduce the model profile. The computed eigen values and closeness ratios
are presented in Table 1.

Closeness Ratio : The ratio of the sum of the factor model to that of the data matrix is
considered as a measure of closeness of the model data (Ramana Murty et al.21).

For better estimates the resolution in the model space VVT of eq. 7 is improved. This is

done by judiciously selecting the p eigen vectors or ranking the singular values of the data kernel

in a descending order. The noise in the data kernel (matrix A) prevailing in the form of small eigen

values increases the ranking of the matrix apart from amplifying the solution. This, however, does

not provide any additional or useful information on the model parameters. So, it can be treated as

though the solution to the present problem is obtained through consideration of optimisation. The

iteration process is continued to supplement the model parameters obtained through inversion until

a reasonable fit with the observed anomaly is obtained. Such a final run is retained in memory.

Once the solution is obtained, it is necessary to assess how well the data determines the model

parameters. This is done through model resolution (Vp VTp) and data resolution (Up UTp) matrices

where 'p' represents the number of factors considered.

In this section computed results of a field example are discussed. SVD of kernel A (21 x 6) = 

U [ VT has been performed using input data consisting of 21 gravity anomaly data points at 1 km
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interval with amplitude ranging between 0.24-2.18 mgals taken from published work of Grant and

West8 (Fig. 2). The column matrices U = {u1, u2 u6) and V = {vl, v2. . .v6} are orthonormal

eigen vectors spanning data space S(d), and model space 5 (m) corresponding to eigen values ti

(Table 1), computed by solving eigen value problems of two covariance matrices A AT ,A AT of 6 . 

components contributing 100 percent of total variance. Based on the point of inflection or minimum

FIG. 2. (a) Observed gravity anomaly of Garber oil field and model anomaly; (b) Fault model from inversion studies
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FIG. 3. Column vectors of up versus mode amplitude with varying energetic modes 1 to 6 (Fl to F6) - Garber oil
field profile - over Garber oil field



FIG. 4. Column vectors of Vp versus mode amplitude with varying energetic modes 1 to 6 (Fl to F6)
profile - Garber oil field
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Parameters

Zl

Z2

A

D

Dc

DATUM

Factor 1 

0.000

0.000

0.000

0.000

0.999

0.001

Factor 2 

0.003

0.000

0.001

0.011

0.999

0.983

Factor 3 

0.247

0.064

0.015

0.678

0.999

0.995

Factor 4 

0.248

0.564

0.505

0.687

1.000

0.995 • 

Factor 5 

0.259

0.999

0.999

0.741

1.000

1.000

Factor 6 

1.000

1.000

1.000

1.000

1.000

1.000

Mode
No.

1

2

3

4

5

6

1

.001

.049

.052

.052

.052

.127

2

.001

.047

.050

.060

.074

.074

3

.001

.047

.057

.242

.745

.745

4

.001

.047

.078

.082

.154

.755

5

.282

.034

.040

.809

.884

.886

6

.003

.730

.784

.784

.885

.886

7

.006

.036

.076

.004

.187

.198

8

.014

.033

.258

.258

.295

.510

Number of station

9 10

.030 .046

.036 .047

.331 .191

.338 .192

.350 .218

.362 .243

11

.058

.058

.102

.102

.124

.153

12 13

.066 .072

.067 .073

.074 073

.074 .074

.088 .081

.102 .086

14

.077

.078

.081

.082

.085

.086

15

.080

.082

.090

.091

.092

.092

16

.082

.085

.098

.100

.100

.100

17

.084

.087

.104

.106

.106

.107

18

.086.

.089

.109

.112

.113

.114

19

.087

.091

.114

.116

.118

.120

20

.088

.092

.117

.120

.123

.125

21

.089

.093

.120

.123

.127

.130
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v1%

.095

.764

.668

.191

-95.442

-1.145

98.305%

TOTAL = 100% 

TABLE 4(a) : 
Percentage contribution of individual components of model space s(m)

v2%

-.055

.025

.029

-.098

-.011

.918

+ 1.136%

v3%

.074

.038

.018

.123

.000

.016

+ .269%

v4%

.033

-.066

.065

.009

-.001

.001

+ .145%

v5%

-.006

.036

.039

-.013

.000

-.004

+ .098%

v6%

-.029

.001

.000

.017

.000

.000

+ .047%

u1%

-.565

-.661

-.759

-.906

-4.114

-1.396

-1.910

-2.890

-4.237

-5.241

-5.878

-6.319

-6.588

-6.784

-6.931

-7.029

-7.102

-7.176

-7.225

-7.274

-7.298

98.305

Total = 100%

TABLE 4(b) : 
Percentage contribution of individual components of data space s(d)

u2%

.092

.090

.090

.090

.031

.358

.073

.058

.034

.015

.002

-.007

-.013

-.017

-.019

-.021

-.023

-.024

-.024

-.026

-.026

+ 1.135

u3%

.004

.004

.008

-.013

.006

.017

-.015

-.035

-.041

-.028

-.016

-.006

.000

.004

.007

.008

.010

.011

.011

.012

.012

+ .269

u4%

.000

.007

.030

-.004

-.061

.000

.006

.000

.005

.002

.001

.001

.002

.002

.003

.003

.003

.004

.004

.004

.004

+ .145

u5%

.000

-.004

.022

.008

.009

-.010

.010

.006

-.003

-.005

-.005

-.004

-.003

-.002

-.001

.000

.000

.001

.001

.002

.002

' + .098

u6%

.005

.000

• .000

-.014

.001

.001

.002

.008

.002

-.003

-.003

-.002

-.001

-.001

-.000

-.000

.000

.001

.001 * 

.001

.001

+ .047
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FIG. 5. 2D-Data resolution matrix (modes 1 to 6). Garber oil field
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FIG. 6. 2D-Model resolution matrix (modes 1 to 6). Garber oil Field
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TABLE 5 

Gravity model analysis by natural generalised inverse approach

At the end of iteration no. 0 

Distance (km)

00

100

2.00

3.00

400

500

6.00

700

8.00

900

1000

1100

1200

1300

14 00

1500

1600

1700

18.00

19 00

20.00

Observed anomaly (mgals)

.24

26

28

32

38

48

62

90

128

156

176

1.88

196

2.00

204

208

209

2.10

2 12

2 14

2 16

Calculated anomaly (mgals)

.24

26

29

33

38

46

60

85

134

164

180

189

196

200

2 03

206

2 08

2.09

211

2 12

2 12

Error (mgals)

00

.00

-01

-.01

.00

02

02

05

-06

-.08

-04

-.01

00

00

01

02

01

.01

01

.02

.04

Objective function is

Model parameters

Depth to top of the fault is

Depth to bottom of the fault is

Fault angle is

The origin is at

Density contrast is

Datum level is

46.92

.24km

3.43km

95.58 degrees 

7.52km

.016gm/cc

.08mgls
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At the end of iteration no. 3 

Distance (km)

00

1 00

2 00

3.00

400

500

600

7.00

8 00

900

1000

11 00 
1200

1300

1400

15 00

1600

17 00

1800

1900

20 00

Observed anomaly (mgals)

24

26

28

32

38

48

62

90

1 28

1 56

1.76

1 88

1 96

200

2 04

2 08

209

2 10

212

2 14

216

Calculated anomaly (mgals)

.24

26

29

.33

38

47

61

89

1 28

1 56

1 75

1 87

1 95

200

204

2 07

209

2 11

213

2 14

2 15

Error (mgals)

00

00

- 01 

-01

.00

.01

01

01

00

00

01

01

01

00

.00

01

00

-01

-01

00

01

Objective function is

Model parameters

Depth to top of the fault is

Depth to bottom of the fault is

Fault angle is

The origin is at

Density contrast is

Datum level is

00

.62km

3.29km

123.27°

7.03km

.020gm/cc

.07mgals

that the fault is thin in nature from the location of 12th station onwards to the end (Table 4 a, b). 
The contribution of remaining functions in s (d) and s (m) is only 1.7% of total information, too
insignificant to consider for interpretation.

The first two energetic spatial and model functions of s (d) & s (m) have been used to bring

the predictale rich part of the original signal to obtain inverse solution (Fig 2 and Table 5) by
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operating GIO on gravity anomaly and for construction of data and model resolution matrices (Figs.

5 & 6). The results obtained from GIO analysis of gravity anomaly of Garber oil field indicate that

the thickness (Z2-Z1) of fault is 2.67 km with density contrast of 0.02gm/cc and fault angle (A)

123° (table 5) with the fault origin (D) located at 7.03 km. from the reference point (Fig. 1). It

can be seen from Fig. 2 that the gravity anomaly computed using the model and the anomaly

observed match exactly validating the present procedure.

Data Resolution : The data resolution matrix is an indication of the information density of

the data kernel i.e., it indicates which data contribute independent information to the solution. The

diagonal elements of UUT are shown in Table 3, for factors 1, 2... 6. A value of unity for any

particular parameter shows that the influence of the respective parameter dominates that of all the

other parameters describing the model. Table 3 enables one to infer which of the data points present

strong/poor information resolution. The data resolution is given by,

The data are perfectly resolved if Up spans the complete space of data. The small eigen

values in the data kernel (Matrix A) increases the rank of the matrix (i.e., the dimension of the

activated space) besides amplifying the solution due to the presence of noise. In this case one should

not consider the eigen vectors corresponding to small eigen values (< 1). If we consider the eigen

vectors corresponding to very small eigen values, while estimating the solution, then it is very likely

that high frequency noise components predominate the inverse estimates masking the original signal.

Fig. 5 (mode 1) describes the contour map of the resolution matrix u1u
T

1 where u1 is the highest

spatial energetic mode of s (d). It gives 98.305% variance of the total information i.e., mostly gross

features of the kernel (Table 1). The resolution is seen to increase gradually from the first station

to 5th station. Afterwards the data resolution is high between stations 5 to 21 indicating discontinuity

in density. This fact is confirmed by first vector of s (d) (Figs. 5 & 6, mode 1 and Table 2). The

remaining 5 eigen functions (modes 2 to 6) contribute < 2% information and can be treated as noise

and neglected for interpretation.
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The present study indicates that the partial information contained in the data space is adequate to

reconstruct the model parameters. This reveals the usefulness of natural generalised inverse in the

least square sense in handling problems of over determinacy.

4. CONCLUSIONS

I. SVD analysis carried out on Garber oil field data, Oklahoma, shows that the first two energetic
modes of data space s (d) and model space s (m) contribute 99.3% to the total distribution, (density
contrast 98% and datum level : < 2%).

II. A good agreement has been found between the predicted model anomaly and the observed
gravity anomaly.

III. Inverse solution reveals that fault model parameters are : depth to top of the fault: 0.62
km; depth to bottom of the fault: 3.29 km; fault angle: 123.27°, origin : 7.03 km; density contrast:
0.020gm/cc and datum level:0.07mgals which agree quite well with the known results.

ACKNOWLEDGEMENTS

The authors are thankful to Dr. E. Desa, Director, National Institute of Oceanography, for his constant
encouragement and keen interest in this study. Thanks are also due to Mr. Ch. Jawahar Kumar, Mr.
S. Ramesh for their secretarial assistance in preparation of this paper. They take pleasure in thanking
the anonymous referee whose meticulous criticism helped to improve the quality of presentation.
This is NIO contributions No. 3767.1.

REFERENCES

1. D. G. Aubray, Ph. D. Dissert. 1978, p 194, Scripts Institute of Oceanography, San Diego, Calf.
2. G. E. Backus and J. F. Gilbert, Geophys. J. asiron. Soc. 13 (1967) 247-76.
3. G. E. Backus and J. F. Gilbert, Geophys. J. astron. Soc.16 (1968) 169-205.

4. G. E. Backus and J. F. Gilbert, Phil Trans. Roy. Soc, London, Ser A 266 (1970) 123-92.

5. A. Ben-Israel and T. N. E. Greville, Generalised Inverses: Theory and Applications, John Wiley and Sons, Inc. pp
395, 1974.

6. B. Carnhan, H. A. Luther and J. O. Wilkes, Applied Numerical Methods, John Wiley, New York p 604 1969.
7. N. J. Fisher and L. E. Howard, Geophysics, 45 (1980), 403-15.

8. F. S. Grant and G. F. West, Interpretation Theory in Applied Geophysics, McGraw Hill Co., New York, p. 584,
1965.

9. C. A. Heiland, Geophysical Exploration, hanfer Publishing Company, New york, p 150-53, 1963.

10. D. D. Jackson, Geophys.. astron. Soc, 28 97-109, 1972.

11. C. Lanczos, Linear Differential Operators, Princeton: D Van Nostrand, 1961.
12. Ch. L. Lawson and R. J. Hanson, Solving Least Squares Problems, Prentice Hall, 1974.

13. M. Malleswara Rao, S. Lakshminarayana, A. S. Subramanyam, K. S. R. Murthy, Comp. Geoscie. 19, No. 5 657-72,
1993.

14. W. Menke, Geophysical Data Analysis: Discrete Inverse Theory, Academic press, New York p 260, 1984.
15. P. S. Moharir, Proc Indian Acad. Sci. (Earth Planet. Sci.), 99, No. 4, (1990) 473-514.
16. R. Penrose, Proc. Comb. phil. Soc. 51 (1955) 401-13.

17. S. Prasanna Kumar, G. S. Navelkar, T. V. Ramana Murthy and C. S. Murthy, Acoustica 83 (1997) 847-54.
18. I. V. Radhakrishna Murthy and S. K. G. krishnamacharyulu, Compur. Geosci. 16(4) (1990) 539-48.



NATURAL GENERALISED INVERSE TECHNIQUE 47

19. I. V. Radhakrishna Murthy, Gravity and Magnetic interpretations in Explorations Geophysic, Mem. geology Soc. 
India No. 40 (1998) p 363.

20. T. V. Ramana Murthy, Y. K. Somayajulu and C. S. Murthy, Indian J. marine Sci. 25 (1998) 328-34.
21. T. V. Ramana Murthy, Y. K. Somayajulu, R. Mahadevan, C. S. Murthy, C. S. and J.S. Sastry. Defence Sci. J. 42

(1992) No. 2, 89-101.
22. T. V. Ramana Murthy, M. Veerayya and C. S. Murty, Sediment-size distributions of the beach and nearshore 

environs along the central west coast of India: an analysis using EOF, J. Geophys. Re., 91 (C7), (1986) p 8523-26.
23. A. Ralston, {Ed.), Mathematical Methods for Digital Computers, John Wiley, New York p. 293 1966. -

24. D. Roemmich, J. Geophys. Res., 86 (1981) Bi (C9), 7993-8005.
25. C. K. Sudd, J. appl. Meierol 2 (1967) 255-64.
26. M. Talwani and J. Heirtzler, In: Computers in Mineral Industries, Part 1, Stanford univ. Pubi Geol. Sci., 9 (1964)

464-80.
27. A. Tarantola, Inverse Problem Theory: Methods for Data Fitting and Model Parameter Estimation, Elsevier,

'Amsterdam p 613, 1987.
28. R. A. Wiggins, Rev. Geophysics and space physics, 10 (1972), 251-85.
29. C. D. Winant.D. L. Inman and C. E. Nordstam, J Geophys. Res. 80 (15) (1975) 1979-86.
30. C. Wunsch, Tracer Inverse Problems in Oceanic Circulation Models: Combining Data and Dynamics (Eds. D. L.

T. Anderson and J. Willebrand.) Kluwer Academic Publishers, Hingham, p. 1-77, 1989.


