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Synopsis

Freshwater is one of the most essential requirements for human civilization and rivers are the

most important and easily available source of freshwater. They provide water for various purposes

such as agriculture, industry, domestic and recreational use. Water availability depends upon the

vagaries of weather and climate, and issues related to it arouse considerable interest.

Rivers are a vital component of terrestrial hydrology, which also includes other surface wa-

ter bodies such as lakes and wetlands. They also form a crucial link between the land-ocean-

atmosphere interaction processes as they transport freshwater from land to ocean. The role of

river discharge in the hydrological cycle makes it an important climatic variable.

There are two important issues associated with the large spatio-temporal variability observed

in hydrological variables: first, quantitative estimation of the hydrological variables, and second,

understanding the climatic feedback processes causing this variability. Forexample, in the vicinity

of the Indian subcontinent, heavy rainfall over northern Bay of Bengal is related to its ability to

remain warm even after the onset of the monsoon: the Arabian Sea cools, but the bay does not.

This difference has been attributed to the stable stratification in the bay, in which water with low

salinity (low density) sits on top of water with high salinity (high density). The source of this

low-salinity water is the copious discharge from rivers like the Ganga and the Brahmaputra and

the rainfall over the bay.

Although rainfall over India is estimated fairly accurately, very little quantitative information

is available on river discharge on the relevant scales. This is primarily dueto two reasons: first,
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the dearth of information related to the variables of interest, and second, thelack of a quantitative

framework that can put these variables in perspective. A quantitative framework is needed to

address both these issues. The framework should be simple, freely distributable, scalable and the

demand it makes on the database should be consistent with the availability of datain India and the

other countries in the region.

This study begins with the above premises. An existing hydrological modelling framework

has been modified to simulate the river discharge on the west coast of India. The west coast is also

a region of heavy rainfall; it is one of the two rainfall maxima in the region, the other being the

northeastern Bay of Bengal. The heavy rainfall and the small geographical area of the coast ensure

that a large number of small rivers drain into the eastern Arabian Sea. Therefore, the freshwater

influx into the eastern Arabian Sea is expected to be large, making the region similar to the bay.

Are the feedback processes also the same? We do not know, as there are no quantitative estimates

of river discharge available (except on the global scales, which invariably suffer from poor data

coverage and coarse resolution). A large percentage of west-coastrivers is ungauged or poorly

gauged, making hydrological modelling the only viable tool.

The motivation for this thesis is presented in Chapter 1. The aim of the thesis is tomodify

an existing hydrological modelling framework to simulate daily river discharge. We apply the

framework to the Mandovi, a typical west-coast rain-fed river. It hastwo discharge gauges (one

on the main river and another one on a tributary). Most of the west-coastrainfall (∼ 90%) occurs

during the summer monsoon (June–September). As a consequence, most of the discharge also

occurs during this season, with a peak during July–August.

In Chapter 2, we describe the components of the modelling framework. At theheart of the

framework is a hydrological routing algorithm called THMB (Terrestrial Hydrological Model with

Biogeochemistry; THMB was earlier known as HYDRA), which, given the local rainfall and

evapotranspiration, routes the runoff through the land surface to its destination—the sea or an

inland lake. THMB has been used to model water budget of basins rangingin sizes from a few
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square kilometers to continents. The framework derives the basin geometry, including river-flow

directions and basin area, from a DEM (Digital Elevation Model). The DEM used in this study is

called GLOBE (Global Land One-kilometer Base Elevation), and it has a resolution of∼ 1 km.

The framework includes a free and open-source geographical information system called GRASS

GIS.

The modelling framework was applied to the Mandovi river to simulate the annualdischarge

and simulations were compared with the observations. THMB, when forced with monthly maps

of available spatial rainfall datasets, gave large errors and heavily underestimated the annual dis-

charge. This underestimate implied that the available rainfall datasets underestimate the rainfall

in the region. Hence, we had to obtain rainfall maps by interpolating available rain-gauge data.

The rainfall mapping algorithm has been discussed in Chapter 3. Mapping rainfall on the west

coast is made difficult by the complex mountainous terrain, the large spatial gradients of rainfall,

and the sparsity of rain gauges. Part of the Mandovi basin lies in the Sahyadri mountain ranges

and the basin has only five rain gauges. A multivariate interpolation method (Regularised Spline

with Tension (RST)), using elevation as the third variable, was used for interpolating rainfall. The

method requires locations and heights of the rain gauges, along with a DEM, toobtain the rainfall

maps, and depends upon two interpolation parameters called tension (T ) and smoothing (S). The

optimal values ofT andS were determined by a cross-validation procedure. The interpolation

was done separately for the leeward and windward sides by specifying the ridge linea priori.

The resulting spatial fields were merged together to get the rainfall forcing; the simulated annual

discharge compared well with the observations. Specifying the ridge was the key to reducing

underestimation of rainfall.

In THMB, the runoff was calculated as a fixed fraction of rainfall minus evapotranspiration.

This simple partitioning worked well for the annual simulations as discharge does not have any

memory from year to year: it starts from a near-zero value to reach its peak in July–August, and

then slowly recedes to a near-zero level at the end of the calendar year. This approach, however,
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is not adequate for simulations at higher temporal resolutions. The highesttemporal resolution

of rainfall data available to us was a day; the daily rainfall was available forthe rain gauges.

Hence, our next step was to simulate the daily discharge. On the daily time scale,rainfall, and

hence runoff, shows large variability. To capture this variability, a rainfall-runoff model is re-

quired. To address this issue, a conceptual rainfall-runoff model based on the Soil Conservation

Service Curve-Number (SCS-CN) method was incorporated into THMB. The SCS-CN method,

one of the most popular rainfall-runoff models, was derived empirically from studies done on

small catchments. For each day in a grid cell, given the rainfall and two parameters (CN and

initial abstraction coefficient (λ)) based on the physical characteristics of the basin, this method

converts rainfall into surface runoff and sub-surface runoff. The SCS-CN method provides a refer-

ence value ofλ andCN for the basin. For the same rainfall, wet conditions produce more runoff

than dry conditions. This temporal variability in moisture conditions is accountedfor in the SCS-

CN method through the antecedent moisture condition (AMC) classes based on the rainfall over

the preceding five days. In Chapter 4, we discuss the incorporation of the SCS-CN method into

THMB and present the daily discharge simulations.

CN andλ depend on the physical characteristics, such as soil type and cover, vegetation cover

and land use, of the basin, and these characteristics are seldom homogeneous over the whole basin.

Apart from the spatial variations encountered in the basin, the soil moisturecondition (or AMC)

varies with season. For example, a wet spell in the peak-monsoon seasonis different from that

in the post-monsoon season. In the first case, almost all the rainfall appears in the river (higher

runoff) as the soil is already saturated with moisture, and in the second case, a part of the rainfall

has to wet the drying soil (lower runoff). Thus, the model parameters have to be a function of both

space and long-term variations or seasons. To resolve the spatio-temporal variability, exhaustive

data sets are required, but were not available. Spatial parameterisation was incorporated using the

limited information available on the physical properties of the basin, and the DEMwas used to

divide the basin into four homogeneous regions. An objective method to distinguish the long-term
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moisture regimes was also developed. This method uses rainfall and cumulative rainfall at each

grid cell and defines different states of prevailing moisture conditions, which affect the runoff

generation in the SCS-CN method. The strength of the parametrisation lies in the limited demand

it makes on the input data: apart from some information on the average soil type in the basin,

the parameterisation is built solely on the basis of the rainfall that is used to force the model.

In Chapter 5, we discuss these spatio-temporal parameterisations incorporated into the SCS-CN

method. After introducing these parameterisations, simulated daily discharge compares well with

the observations.

A detailed discussion on the implications of the modelling framework is discussed inChap-

ter 6. This Chapter also discusses the strengths and caveats of the framework. The biggest strength

of the framework is its low demand on input data, which makes it viable for simulating the dis-

charge of other ungauged basins on the Indian west coast. On the westcoast, the inter-river varia-

tions are much less than the intra-annual and interannual discharge variations for a river, implying

that the framework will also work for the other west-coast rivers.

In summary, we develop a modelling framework to simulate river discharge over a range of

scales. The modelling framework is highly scalable, it simulates river discharge, its demand on

input data is minimal. The conclusions of the thesis are summarized in Chapter 7, and the salient

points are presented below.

1. The modelling framework is applied and tested for the Mandovi river. The discharge simu-

lations compare well with the observations on annual to daily timescales.

2. Rainfall is the most important variable in the modelling framework owing to its availabil-

ity and relative accuracy. The complex mountainous terrain of the west coast, the large

gradients of rainfall and small geographical area of the west-coast basins lead to a large

underestimation of rainfall in existing global and regional rainfall datasets. To resolve this

orographic rainfall on the west coast and obtain the rainfall forcing field, a rainfall mapping
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algorithm was incorporated into THMB.

3. Resolving spatial and temporal variability in the runoff-generation process, which is param-

eterised by the SCS-CN method, requires exhaustive data on the physical,geographical,

and biological characteristics, which are not available easily. The strength of our method

is that these processes, specially long-term seasonal variation, are parameterised using only

the input rainfall data. For most of the west-coast river basins, the onlyavailable data is

the rainfall from the sparse distribution of rain gauges. That the model does not need to be

calibrated separately for each river is important because most of these basins are ungauged.

Hence, though the model has been validated only for the Mandovi, its potential region of

application is considerable for prediction in the several ungauged basinson the Indian west

coast.
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Chapter 1

Introduction

1.1 Motivation

From time immemorial rivers are the most important and easily available source offreshwater

to us. All the great civilizations of the past were based on the banks of rivers. In this modern

era the demand for freshwater for agriculture, industries and domestic usage has increased many

fold, making economy and development of a region closely dependent on water. Issues related to

water resources attract considerable interest. Water resource planning, alternative and renewable

sources of energy (hydroelectric projects), waste-effluent strategy and flood forecasting are some

of the many facets in which rivers play an important role. Rivers are also crucial for maintaining

some of the most delicate environments like wetlands and coastal-estuarine ecosystems.

Rivers carry freshwater to their destination which is usually a sea or a lake. In this way rivers

play a crucial role in the movement of water on the land surface, thus making ita very impor-

tant component of the global hydrological cycle [Dai and Trenberth, 2002; Coe, 1998; D̈oll et al.,

2003]. The water evaporated from the oceans is returned through the rivers along with direct pre-

cipitation over the ocean. Rivers carry the water precipitated over land to oceans, and thus help

maintain the freshwater balance in the oceans. The freshwater influx forces changes in the salinity
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of the sea water. Variability in the freshwater forcing to the oceans has been shown to affect the

global climate [Dickson et al., 1988; Aagaard and Carmack, 1989; Andrews, 2009; Peterson et al.,

2002; Hatun et al., 2005; Alley et al., 2003; Kingston et al., 2006; Lenton et al., 2008].

The weather and climate models incorporate a representation of the physics of moisture, en-

ergy and momentum balances between land, ocean and atmosphere. In these models, represen-

tation of land surface hydrology plays a crucial part to validate or close the moisture and energy

budget.

As rivers flow through land surface, they modify it through erosion, chemical weathering and

deposition. These processes cause the river discharge to carry particulate and dissolved minerals

and nutrients to the oceans, affecting the global biogeochemical cycles. These processes change

the surface characteristics of land (albedo, heat capacity and exchange of energy, moisture and

momentum), affecting the climate.

1.1.1 River discharge

One of the most important aspects of river discharge is that it can be measured directly, giv-

ing a unified account of the complex hydrological variables in the catchment.In fact among

all the hydrological variables, river discharge is one of the most accurately measured quantities

[Hagemann and Dumenil, 1998; Fekete and Vörösmarty, 2007]. Unfortunately, the importance of

river discharge in climate studies was not realized early enough; the river discharge data were

collected by hydrological agencies through out the world for the sole purpose of managing or

designing hydrological projects and utilisation of water resources. Sincethe data were primar-

ily collected with the view to solve the problem of water resources, only water developed areas

were preferred. These reasons also limited the scientific community’s access to the data. Thus,

although river discharge is very useful and is one of the most accurately measured hydrometeoro-

logical variables, its monitoring and sharing is limited to the catchment or regionalscales only.

The importance of river discharge was duly recognized in the 1970s, andefforts to make the
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discharge information available were made. One of the earliest estimates wereglobal maps of

river discharge prepared by Baumgartner and Reichel [1975]. TheUnited Nations declared 1980s

as the hydrological decade and the first compilation of river discharge data sets were released

in the form of printed books [UNESCO IHP, 1984]. These data sets formed the basis of World

Meteorological Organisation’s (WMO) Global Runoff Data Centre (GRDC) data archive under

the World Climate Program. GRDC was established in 1987 with a mandate to collect, archive

and disseminate data pertaining to river flows and surface runoffs on a continuous long-term basis

for the member countries and scientific community. The access to the actual discharge time series

is by request, but the metadata information of GRDC data catalogue is available freely on the web.

There are other sources, which by synthesis of observations (GRDC and other sources)

and various analytical tools, provide river discharge datasets [Graham et al., 1999; Cogley,

1989; Dai and Trenberth, 2002; Fekete et al., 2002; Peel and McMahon, 2006; Perry et al., 1996;

Vörösmarty et al., 1996]. In addition, there exists a whole range of numericalmodels to simu-

late river discharge on global scales [Coe, 1998, 2000; Döll et al., 2003; Miller et al., 1994; Yates,

1997; Sausen et al., 1994].

1.2 Setting of the problem

1.2.1 Geography of the region

Its unique position makes the Indian subcontinent a land of diverse geographical and climatic

conditions. It is bounded along the north by the Himalayas range and by the Arabian Sea to the

southwest, Bay of Bengal to the southeast, and Indian Ocean to the south1 (see Figure 1.1). This

makes the Indian subcontinent a unique geographical and climatic entity.

1Together these seas are called North Indian Ocean (NIO).



Introduction 4

Figure 1.1Topography of the Indian subcontinent (in metres above mean sea level) based on the
2′ (∼ 4 km) ETOPO data [ETOPO, 2006]. Major rivers are also shown.

The Indian subcontinent is well fed by numerous rivers, all of them draining into either the

Bay of Bengal or Arabian Sea (Figure 1.2). These rivers can be classified into different categories

by considering their final destination, size or by the place of origin. In the subcontinent the rivers

can be categorised broadly into three types by their place of origin:

1. The Himalayan rivers;
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Figure 1.2 Rivers (in blue) of Indian subcontinent on the shaded relief map. Al-
most all the rivers drain into either the Arabian Sea or Bay of Bengal. The data
(drainage network) is extracted from theDigital Chart of the World Server(available from
http://www.maproom.psu.edu/dcw/).The black circles represent the discharge gauges
included in GRDC, showing the sparsity of observations available from India in global data sets.

68˚E 72˚E 76˚E 80˚E 84˚E 88˚E 92˚E

8˚N

12˚N

16˚N

20˚N

24˚N

28˚N

32˚N

Arabian
Sea

Bay 
of 

Bengal 

http://www.maproom.psu.edu/dcw/


Introduction 6

2. The central Indian rivers;

3. The western ghat rivers.

1.2.2 Climate of the region

The major feature of the Indian climate is the intra-annual variation of the atmospheric and oceanic

circulation. A feature of the intra-annual variation of atmospheric circulation is the complete rever-

sal of winds and precipitation pattern, which is known as themonsoons. The whole subcontinent

depends upon the vagaries of the monsoon. Hence, concentrated efforts have been made to im-

prove our understanding of the climate. A major step in this regard is to understand the variability

of the monsoon and oceans over a range of scales. For most of the country (except east coast of

India), a major share of rainfall (∼ 70%) occurs in four months, June to September, known as the

summer monsoon season. There are clearly two regions of rainfall maxima, the west coast and the

northeastern part of India (Figure 1.3).

Rainfall during the monsoon season is the source of water in the rivers ofthe Indian subconti-

nent. Almost 75% of rainfall occurs in monsoon. As rainfall is the main source of water in rivers,

they also swell up during the monsoon season (Figures 1.4 and 1.5).

This unique geographical setting makes the climate of the subcontinent dependent on the

atmosphere-land-ocean interaction processes. The air-sea interactionprocesses and differential

heating of land and sea are some of the well-known processes affecting the monsoon. The fresh-

water discharge influences oceanic circulation on various time scales. Thisfreshwater discharge

reduces the salinity of the sea water it mixes with. This fresher water, of low salinity, is lighter

and sits on the top of the denser saline oceanic waters. It changes the stability and salinity of the

surface water layer in the ocean, making it more stable. This stable stratification has implications

for the climate as the upper layer of the ocean is always in contact with the atmosphere. The role

of freshwater in the physics of surface mixed layer is relatively well known for the Bay of Bengal
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Figure 1.3 Climatological rainfall (mm day−1) over India for June to September. The rainfall is
from India Meteorological Department (IMD) gridded rainfall data [Rajeevan et al., 2006b].

region. Rivers like Ganga (Figure 1.4) and Brahmaputra bring huge amounts of freshwater into

the bay. The ability of the Bay of Bengal to support the tropical convectionhas been attributed

to the high freshwater influx into the bay through high river discharge andrainfall over the bay.

There are global data sets which resolve the rainfall over the sea. But again, there is a lack of

quantitative information on the river discharge; whatever little is available is from global-scale,

coarse-resolution studies or estimates based on gross generalization. The situation is worse for the

western coast of India, where there is practically no information on the river discharge.

The most striking feature of the Indian west coast is the presence of the Sahyadri range (West-

ern Ghats), which runs parallel to the coast. The coast itself is narrow, no more than a few tens of

kilometres wide and extending up to the foothills of the Sahyadris. From the foothills, the slopes

of the Sahyadris rise abruptly in the form of an escarpment to an averageelevation of∼ 700

meters. At several places, the escarpment is broken by river valleys.The axis of the range lies per-
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Figure 1.4 Monthly discharge (in m3 s−1) for three west coast rivers. The rivers are Narmada
(northern part of the coast), Mandovi (central) and Periyar (southern). The discharge data are
taken from GRDC.
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Figure 1.5 Monthly discharge (in m3 s−1) for Ganga, Mahanadi, and Goadavari rivers. The dis-
charge data are taken from GRDC.
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pendicular to the prevailing summer-monsoon winds. The moisture-laden monsoon winds cause

heavy rainfall on the windward side of the range, distinguishing it from themuch drier leeward

side. Most of the west-coast rainfall (∼ 90%) occurs during June–September (summer monsoon),

there being negligible rainfall during December–April. The heavy rainfalland small coastal plain

bounded by hills of Sahyadris ensure that a huge number of rivers (∼ 600 by an estimate of Central

Water Commission (CWC)) flow into the eastern Arabian Sea and most of them donot have river

discharge observations (Figure 1.6). Establishing gauges on each river is practically not possible.

Furthermore, for most rivers with available discharge data, there is only one discharge gauging

station, that too maintained away from the coast (see Figures 1.2 and 1.6). For the west coast this

distance is of the order of∼ 50 km because discharge measurements from conventional methods

are not feasible in tidal streams. The discharge gauge has to be located upstream of the regime

influenced by tides.

1.3 Problem

As pointed out earlier, on the global scale the role of rivers on climate is studied in detail. For

the Indian subcontinent, their role is still not studied in detail because of lackof information

on discharge. Global datasets on discharge suffer from estimates fromvery few discharge gauges

(Figure 1.2) often situated hundreds of kilometers from the river mouth, coarse resolution and their

ability to provide only annual discharges [Fekete et al., 2000]. Even bigger rivers like the Brahma-

putra and Ganga have very limited records in the global discharge datasets[Dai and Trenberth,

2002]. In the north Indian Ocean, the importance of river discharge for the thermodynamics

of the upper ocean [Han et al., 2001; Howden and Murtugudde, 2001;Shenoi et al., 2002] and

low-frequency variability of sea level along the Indian coast [Shankarand Shetye, 1999, 2001;

Shankar, 2000; Han and Webster, 2002] has been highlighted. The dearth of information on dis-

charge forced most of the studies listed earlier to use estimates [Baumgartnerand Reichel, 1975;
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Figure 1.6Same as Figure 1.2, but zoomed to show rivers (blue) of the west coast of India. High
rainfall and small geographical terrain of the coast results in a large number of smaller rivers,
contributing substantial discharge into the Arabian Sea. The black circles represent the discharge
gauges included in GRDC.
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Martin et al., 1981] made decades earlier, leading, at times, to attempts to determine the dis-

charge through inverse modelling [Yaremchuk et al., 2005]. The type of study required to fill

this void is non-existent, not only for the west coast of India but for the entire Indian subcontinent

[Shankar et al., 2004]. A little more detailed information on river discharge isavailable through

the work of Rao [1975]. Recently, few articles appeared on climate and water resources of the

country [Ramesh and Yadava, 2005; Narasimhan, 2005, 2008] and a new book has been also pub-

lished by Jain et al. [2006]. Although they are very useful for qualitative information and other

metadata information like watershed area and other observations, the information about quantita-

tive estimates and methods is not enough as the approach is more of a descriptive kind. This lacuna

is due to lack of quantitative studies on the relevant scale [Shankar et al.,2004]. The problem of

management and planning of water resources in India is still viewed as a typical engineering prob-

lem, which is surprising since the economy of the subcontinent is driven by the vagaries of climate

and related water resource issues.

To address this issue along with the issues related to water resources, what is needed is

a modelling framework which provides a reliable quantitative estimate of the waterresources.

Shankar et al. [2004] highlighted the strong need for quantitative estimationof river discharge and

other hydrological variables on a resolution fine enough to evolve strategies for an average Indian

district, yet large enough to make possible estimates on the scale of the subcontinent. Simulations

give us a tool to estimate the discharge at any point on a river. Once the simulations are validated

reasonably, they can be used to fill the gaps in observations, or even to extend the record back-

wards as long as forcing fields are available. They give us a tool to studyand carry out numerical

experiments for different climatic scenarios. This information can be useful to various sections of

society, such as climate scientists, policy makers, industrial managers and agriculture practitioners

at the level of the issues and scales relevant to them.

This objective led Shankar et al. [2004] to assemble a framework for estimating river dis-

charge. To demonstrate its viability the framework was applied and tested for the Mandovi (Fig-
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ure 1.7), a river system in Goa on the Indian west coast (Figure 1.2). The framework is simple

to implement, consists of freely available tools, and requires only the basic datainput for any

hydrological model: topography, rainfall, and evaporation. The framework is based on Terrestrial

Hydrologic Model with Biogeochemistry (THMB)2, a numerical model developed by Coe [2000].

THMB model provides a reliable water balance of a river system.

Figure 1.7 The Mandovi and Zuari (all rivers digitized from Survey of India maps) are the two
major rivers of Goa (border overlaid on the map). The Mandovi originates in the Sahyadris and
drains into the Arabian Sea near Panaji. The Mandovi basin (black curve), has two discharge gaug-
ing stations, at Ganjem on the Mandovi itself and at Kulem on its major tributary,the Khandepar.
The region has two distinct topographical and climatic features: to the west lies a coastal plain
with heavy rainfall (windward side), and to the east lies a plateau with less rainfall (leeward side).
The rainfall stations in and around the basins are marked by black star.
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1.3.1 Mandovi river system

Mandovi river is the major river of Goa, and it has two discharge gauges for which daily estimates

of the discharges are available (Figure 1.7). It is typical of the small rivers flowing down from the

Western Ghat mountains (Sahyadris) into the eastern Arabian Sea (Figure1.6). As over the rest of

the west coast,∼ 90% of the rainfall in the Mandovi basin occurs in the monsoon months (June–

September) and consequently∼ 90% of discharge too occurs at this time. There is considerably

more variability in both the discharge and rainfall in the basin on the seasonaland inter-annual time

scales (Figure 1.8). The rainfall variability in space is also prominent; rainfall increases as we go

eastwards from the coast (Panaji), on the hills and slopes of Sahyadris (Gavali), and decreasing

thereafter in the rain shadow zone on the leeward side (Asoga) (Figures1.7 and 1.8).

Figure 1.8Rainfall climatology (cm; for 1981–1998) at the five rain gauge stations in theMandovi
basin (Panaji, Mhapsa, Valpoi, Gavali, and Asoga) and discharge climatology (Mcum or Mm3(106

m3); for 1981–1998) at the two runoff gauging stations in the Mandovi basin (Ganjem and Kulem).
The vertical bars indicate the standard deviation of the monthly rainfall and runoff; the height of
the bars is a measure of the inter-annual variability.
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There is also considerably more variability in the discharge and rainfall on the intra-annual

time scale (Figure 1.9). On the daily time scale, the correspondence between discharge and rainfall
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Figure 1.9 Daily rainfall (mm; for 1992) at the five rain gauge stations in the Mandovi basin
(Panaji, Mhapsa, Valpoi, Gavali, and Asoga) and discharge (Mcum or Mm3 (106 m3); for 1992)
at Ganjem and Kulem.
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is less obvious, especially during monsoon-onset (June) and late-monsoon (September) seasons.

1.4 Objective of the thesis

This thesis presents our attempt to develop a viable quantitative framework to simulate the river

discharges on the west-coast of India. Since the Mandovi is typical of the west coast rivers, it is

assumed that the modelling framework will also work for the other river basins on the west coast of

India. The modelling framework components and tools are described in chapter 2. The framework

requires a rainfall forcing field: a method to map the rainfall from rain gauges to the model grid

is presented in chapter 3. Monthly rainfall maps were generated to simulate the annual discharge

of the Mandovi river; the mapping method and simulation results are described in this chapter.

The modelling framework is unable to simulate daily discharge, and the framework has to be

extended by incorporating a rainfall-runoff model. This extension of the modelling framework is

the subject of Chapter 4. Though the rainfall–runoff model improves the simulations considerably,

it is unable to capture the large intra-annual variability accurately. Hence,we introduce spatio-

temporal variabilty into the rainfall-runoff model; this parameterisation is the subject of Chapter

5. The applicability and generality of the framework, along with its strengths and weaknesses, are

discussed in chapter 6. Finally, the main findings of the thesis are summarized inChapter 7.



Chapter 2

Hydrological Modelling framework

2.1 Hydrological modelling process

2.1.1 Runoff production and flow processes

River discharge is a vital component of surface hydrology, integratingvarious processes occurring

at varying temporal and spatial scales (catchment scale). What are these processes? Let us begin

by considering what happens when rainfall occurs in the catchment (Figure 2.1).

1. Rainfall varies both in space and time.

2. Some of the rainfall will fall directly (throughfall) on the ground and flow according to local

topography.

3. Some of the water will be intercepted by the vegetation canopy (interception) and evaporated

back to the atmosphere.

4. Vegetation can concentrate the flow near itself by collecting and directing the rainfall through

branches, leaves and stem (stemflow). This channeling results in higher concentration of wa-

ter, resulting in higher intensity flow near plants.
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Figure 2.1 Different hydrological processes on the catchment scale. Cartoon modified
from http://snobear.colorado.edu/IntroHydro/geog_hydro.html. (See Ap-
pendix A for a brief description of basic hydrological variables.)

5. As the water reaches the ground, it starts infiltrating (infiltration) the soil surface to increase

the soil moisture and some part of this water even percolates (percolation) to deeper levels.

If the underlying ground consists of an impermeable area of rock or artificial structure, the

runoff will start immediately. This near-surface downslope rapid flow is known asthrough-

flow. The rate of infiltration depends on the rainfall intensity and the infiltration capacity of

the soil. When the rate of rainfall exceeds the infiltration capacity, excess water flows over

land surface asoverland flow, according to the local topographic gradient. Some of this

excess water is retained in the surface depressions (surface storage) before overland flows

occur.

6. The water that percolates the soil column will also tend to flow downslope (baseflow), espe-

cially if the soil column is saturated and sitting over an impregnable layer of rock. The flow

due to subsurface processes is called subsurface runoff and is important in catchments with

http://snobear.colorado.edu/IntroHydro/geog_hydro.html
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high infiltration capacities and a deep layer of soil.

Thus, a part of rainfall becomes runoff and flows as surface or subsurface flow to appear at

the catchment outlet. The rest of the rainfall can be said to be hydrologicallyabstracted; either

it is returned to the atmosphere or percolates deep down in the groundwater. The moment the

runoff appears in a river, it is calledstreamflowor channel runoffor river discharge; it has to be

transported on the land surface through the surface hydrological network.

The surface hydrological processes can be understood in terms of a dynamically linked system

in which rivers, lakes, and wetlands can be defined as a continuous hydrological network. Through

this network the locally derived runoff is transported across the land surface and is eventually

transported to the ocean or an inland lake [Coe, 1998, 2000].

Thus, there are three very important aspects of hydrological modelling. The first one is runoff

generation: it decides how much water goes into the stream during and aftera rainfall event.

The second aspect is how this runoff travels from the source areas to outlet — the routing of

the runoff. It is not possible to measure this inflow into stream network directly as it depends upon

the velocities of the surface and subsurface flows on the ground as wellas upstream components

of the flow in the streams.

The third aspect is similar to the earlier one and is concerned with the manner in which the

streamflow travels through the land surface in the river channel. This is known as river routing.

Thus, essential criteria for modelling the river flows in time and space includeat least three com-

ponents:

1. to determine how much of the rainfall is converted into runoff (runoff generation);

2. how this runoff is routed over the land and translated to the stream network;

3. how the stream network transports this water.

It should be clear, however, that it is very difficult to separate these threecomponents at any given

time. In the catchment all the three processes appear simultaneously.
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A technique called reservoir routing is utilized here to model these flows. A reservoir is a

conceptual tool (similar to a natural or artificial reservoir) that is designed to store the incoming

water and release it based upon its intrinsic properties. The function of thisreservoir depends on

the inflow into the reservoir, initial condition of the reservoir and its reservoir characteristics (like

time scales), and a mathematical expression is used to relate these quantities. For example, water

flowing on the surface can be represented by a “surface water reservoir”. Similarly, water flowing

into subsurface reservoir can be represented by a “subsurface reservoir” which will be different

from surface reservoir in the flow time scales: surface flow will be much faster than the subsurface

flow.

2.1.2 Hydrological reservoir routing model

One of the most widely used techniques for reservoir modelling is to use the concept of conser-

vation of mass. In one-dimensional flow the conservation of mass can be stated by the equation

of continuity. As water is an incompressible fluid, the equation of continuity states that in the

direction of flow, change in flow per unit length is balanced by the change inflow area per unit

time.

∂Q

∂x
+

∂A

∂t
= 0, (2.1)

whereQ is the flow rate (m3 s−1) andA is the flow area (in this case width of the flow element

multiplied by depth). Equation (2.1) can be written in incremental form for an element of finite

length∆x for the time interval∆t as

∆Q

∆x
+

∆A

∆t
= 0. (2.2)

The change in flow rate (∆Q) is nothing but the inflow minus outflow (I −O) of the water in

the volume element. The change in the volume can be defined a quantity called ‘Storage’ ∆S
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(m3) which is (∆A×∆x). Then Equation (2.2) can be spatially averaged over the length scales of

interest and is written in the form:

∆S

∆t
= I −O. (2.3)

For ∆t → 0, Equation (2.3) can be written in the differential form

dS

dt
= I −O, (2.4)

which implies that in the reservoir, the difference between outflow and inflowis balanced by the

rate of change in storage volume. The reservoir is physically equivalentto a bucket being filled by

water and having a hole at the bottom for escape of the water as outflow.

2.1.3 Linear reservoir model

Equation (2.4) can be used to calculate the outflow for a given input (inflow), only when the storage

S is known. For the real flows outflow is a function of bothS andI, but Equation (2.4) can be

simplified using an assumption that for an ideal reservoir, storage is a function of outflow. For a

linear reservoir model this relationship is assumed to be linear: outflow is directly proportional to

the storage.

O = KS, (2.5)

whereK = 1/T is a constant of proportionality. Physically this parameter is equivalent to the

inverse of residence time of water in the reservoir. Based on Equation (2.5), the equation of a

linear reservoir model can be written as

dS

dt
= I − S

T
. (2.6)

Although in reality the relationship between rainfall and runoff is never linear, this approximation

makes the mathematics of hydrology much simpler to handle. Many authors have used this relation
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to successfully model catchment hydrology [Beven, 2001].

2.2 Background and approach

This simpler approach avoids the use of more complex ‘hydraulic’ routing methods in which both

momentum and mass conservation are used to obtain the discharge. Conservation of momen-

tum and mass leads to the shallow water equations (in hydrology, better knownas Saint Venant

equations), which are parameterised differently to obtain the various routing schemes (for more in-

formation, see standard hydrological textbooks such as Beven [2001]and Chow et al. [1988]). In

hydrological literature, the two most used parameterizations for the flow velocities are kinematic

wave [Hagemann and Dumenil, 1998; Vörösmarty et al., 1996; Miller et al., 1994] and diffusion

wave [Julien et al., 1995; Downer et al., 2002] method.

In this thesis we use a linear reservoir hydrological routing model called THMB (previously

called HYDRA) of Coe [2000, 1998]. It uses the concept of linear reservoirs to route the runoff

through the grid cells defining the region. The flow velocities are constant over time and are pa-

rameterised as a function of the topographic gradient and the grid size. Asone moves downstream

through the river, the flow generated by the model increases as more cellscontribute to the flow.

The rate at which water moves to a downstream grid depends mainly on the massof the water

that is above the sill depth (depth over which water can flow to the next grid), the mean distance

between the grid cell and its immediate neighbour and the downstream topographic gradient. The

flow rates are parametrized in the model by using reference velocities. Themodelling approach

is similar to that of Hagemann and Dumenil [1998], Costa and Foley [1997], and Sausen et al.

[1994].
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2.3 THMB model

The THMB modelling framework was already tested by Shankar et al. [2004] for the Indian west

coast. Given the distribution of local rainfall and evapotranspiration, THMB can route the surface

runoff and subsurface runoff to its destination, the sea or an inland lake. It uses a linear reser-

voir model to simulate water transport in terms of local flow directions derivedfrom the local

topography, residence times within a grid cell, and effective flow velocities.

The water transport is represented by the time-dependent change of three linear reservoirs

(Figure 2.2). The first is the river water reservoir (WR), which contains the sum of upstream

and local water in excess of that which is required to fill a local surface water depression; the

second reservoir is the surface runoff pool (WS), which contains water that has run off the surface

locally and is flowing towards a river; the third reservoir is the subsurface runoff pool (WD),

which contains water that has drained through the local soil column and is flowing towards a

river. The water entering the hydrological network is the sum of the land surface runoff (RS),

subsurface runoff (drainage) (RD), and the flux of water from upstream grid cells (∑Fin). THMB

also contains the terms including rainfall and evaporation over the water surface [Coe, 2000] which

were neglected by Shankar et al. [2004] because there is no significant water body in the Mandovi

basin.

The flow is governed by three differential equations similar to Equation (2.6)and given by

Coe [2000]:

dWS

dt
= RS − WS

TS

; (2.7)

dWD

dt
= RD − WD

TD

; (2.8)

dWR

dt
=

(

WS

TS

+
WD

TD

)

− WR

TR

+∑Fin. (2.9)

Here,TS , TD, andTR denote the residence times of water in their respective reservoirs. (The
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Figure 2.2Schematic representation of THMB. The figure shows a THMB grid cell andthe fluxes
into and out of the three reservoirs (surface runoff, subsurface runoff, and river water) associated
with each cell. (P −E) denotes the runoff, the difference between rainfall and evapotranspiration;
determines the fraction of runoff (surface runoffRS ) that goes into the surface water reservoir
(WS), TS being the time scale over which water flows out of the reservoir;RD is the subsurface
runoff; WD denotes the subsurface water reservoir,TD being the time scale over which water flows
out of this reservoir. Water flows from both surface and subsurfacereservoirs into the river-water
reservoir (WR), from which water flows out of the cell to a downstream cell over a timescale TR .
∑Fin is the total inflow from all upstream cells into the river water reservoir.

reservoirs are expressed in m3 , the residence times in seconds, and the surface and subsurface

runoffs and∑Fin in m3 s−1). Following Coe [2000] and Shankar et al. [2004] the first two res-

idence times were considered constant for simplicity. The stream flow residence time,TR, is

defined as the ratio of the distance between the centres of the local and downstream grid cells (a

function of the DEM resolution) and the effective velocity of water; the effective velocity is pa-

rameterized differently for grid cells with and without wetlands or standing water (see Coe [2000]

for more details). The model equations are integrated forward in time using anexplicit differ-

encing scheme. THMB requires the following inputs: a DEM (Digital Elevation Model) to map

the topography, and surface runoff and subsurface runoff for each grid cell. THMB then derives
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the hydrological network from the DEM representations of the land surface topography. This hy-

drological network is linked to a linear reservoir model and forced with estimates of runoff over

land.

2.3.1 Basin geometry and DEM

Rivers flow on the surface of the earth and follow the terrain. In the numerical modelling frame-

work the topography of the terrain needs to be specified digitally. A DEM represents an estimate

of the average elevation for a given grid cell. There exist a number of freely available DEMs

with varying degrees of resolution (from 3-arc second to coarser resolutions). The choice of DEM

depends upon the computing resources and nature and scale of the basin.

2.3.2 Flow directions

The runoff generated in the river basin has to be transported to the mouth of the river through

the flow paths. There must be directed paths connected to the grid-cells from the headwaters

of the river to the grid cells which are successively closer to the mouth of theriver. Then there

must be a way to specify how fast the water moves from a grid cell to its immediate downstream

neighborhood. The flow paths are denoted by the river direction valuesat each of the grid cells.

The river direction values are calculated by an algorithm based on a 8–cell algorithm. As a first

estimate, river direction of a grid is the direction to the neighbouring grid (outof the possible 8

grid cells) with lowest elevation. Further, if a grid is identified as lying in a pit ordepression, an

additional step is performed. Then all depressions are filled using a filling algorithm and the land

surface is sloped towards the outlet of the depression. Using the filled surface, flow directions are

again calculated. This is done iteratively until all the grid cells have unique river direction [Coe,

1998, 2000].

The river direction values are not dependent upon a season, but are determined by topography.

And whether a flow is observed or not in the dry season, each cell has itsown unique river direction
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value. Apart from the flow directions, the algorithm also takes into accountthe lakes or depressions

that may be present in the region.

2.4 Viability of the model: Mandovi river basin

The discharge simulations can be compared with observations to assess the viability of the frame-

work . As stated earlier in chapter 1, Mandovi river has two discharge gauges. Apart from these,

there exist five rain gauges in the basin to map the rainfall. This, combined with the fact that

Mandovi is a typical west-coast river, makes it suitable for testing the modelling framework.

A freely available DEM called GLOBE (Global Land One-Kilometre Base Elevation) [GLOBE,

2004], with a resolution of 30-arc seconds (∼ 1 km), was used in this study (same as Shankar et al.

[2004] and Suprit and Shankar [2008]).

2.4.1 Editing of DEM

Over a large fraction of its length, the Mandovi is much less than a kilometre wide. A DEM

cannot represent the surface topographic features smaller than its resolution; hence, the GLOBE

DEM failed to resolve the narrow river valleys in the Mandovi basin, and local flow directions

derived from it were inaccurate. Therefore, Shankar et al. [2004] developed a set of tools based on

a Geographic Information System (GIS) called Geographical Resources Analysis Support System

(GRASS) GIS [Neteler and Mitasova, 2002] to edit the DEM manually [Kotamraju and Shankar,

2004] so that the river could be represented accurately in the model. Themodified DEM was able

to resolve the river basin accurately: the area of the basin was estimated to be 1896 km2, within

10% of previously published estimate of 2032 km2 [Rao, 1975].The catchment area at Ganjem was

estimated at 872 km2, just 1% less than the estimate of the Central Water Commission (CWC)

river discharge data. (High-resolution DEMs like Shuttle Radar Topography Mission ((SRTM)

with resolution 3 arc seconds) [USGS, 2004] also show similar routing problems (and therefore
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require editing) at least when they are averaged to a 30 arc-seconds grid.)

2.4.2 Inadequacy of existing rainfall data sets

Shankar et al. [2004] used rainfall and evapotranspiration data fromthe National Center for En-

vironmental Prediction (NCEP)/National Center for Atmospheric Research(NCAR) Reanalysis

[Kalnay et al., 1996] and also rain-gauge data from Panaji and Valpoiin the Mandovi basin to

demonstrate the viability of the framework. Following Coe [2000], they partitioned the differ-

ence between rainfall and evapotranspiration (both of which, they assumed to be uniform over the

basin in the absence of a method to map the spatial variability) between surfacerunoff (30%) and

subsurface runoff (70%). Shankar et al. [2004] showed that global models like the one used for

creating the NCEP/NCAR Reanalysis are incapable of resolving the orography of the Sahyadris

(owing to a coarse resolution) and therefore considerably underestimatethe rainfall in the Man-

dovi basin. In the NCEP/NCAR reanalysis, rainfall is a Class C variable (minimum impact of data

assimilation) [Kalnay et al., 1996] and has been shown to be unsuitable for climatic studies owing

to large errors associated with the data (e. g., Janowiak et al. [1998]). Better results were obtained

by Shankar et al. [2004] by using rain-gauge data, but the in situ data had to be mapped to the

uniform model grid. They showed that mapping the spatial variation of rainfall was critical for

simulating the discharge at Ganjem.

There exist a few other rainfall data sets for the Indian subcontinent andwe first checked if

they yielded discharge estimates comparable to those observed at Ganjem.

Testing existing gridded data sets

Gridded rainfall data sets based on observations are now available at various spatial and temporal

scales. Some of these data sets are based on rain-gauge measurements and some on satellite

estimates; some of them use model-derived reanalysis data. We tested three available rainfall data

sets to see if these rainfall data produced discharge estimates consistent with the observations.
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Table 2.1Description of the gridded rainfall data sets tested for discharge simulations.

Dataset Resolution Type Remarks

NCEP/NCAR 2.5◦, Monthly, Global Model Reanalysis Shankar et al. [2004]
CRU TS 2.0 0.5◦, Monthly, Global Gridded observed data set Available from CRU
IMD 1.0◦ , Daily, Regional Gridded observed data set Available from IMD
TRMM 0.25◦, Monthly, Tropics Merged TRMM Algorithm 3B43

In all cases, the evapotranspiration was the same and was based on the NCEP/NCAR Reanalysis

[Kalnay et al., 1996]; evapotranspiration was assumed to be uniform over the basin. The discharge

data at Ganjem and Kulem were obtained from CWC.

CRU data set

The Climate Research Unit’s (CRU, University of East Anglia) CRU TS 2.0 is awidely used long-

term data set for climatic variables. This data product consists of nine monthlyclimate variables

gridded on a 0.5◦ grid; the product is based on surface meteorological observations [New et al.,

1999, 2000]. The data are available online (Table 2.1) for 1901–2000.The grids were constructed

by interpolating various available observational data sets using a thin-plate spline interpolation

scheme. We forced THMB with the monthly rainfall field from CRU. As with NCEP/NCAR,

the rainfall forcing was assumed to be constant over the catchment. As there are four CRU grid

cells that contain a part of the Mandovi basin, the highest of the four rainfall values was used to

force THMB (the grid cell is marked by a solid dot in Figure 2.3). The simulateddischarge was

considerably less than the observed, the average error over 1981–1998 being 53% (Table 2.2). The

problem is the grid size, the area of a single CRU cell being larger than the Mandovi basin; hence,

it was unable to resolve the rainfall variability in the basin.
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Table 2.2Comparison of simulated and observed discharges at Ganjem; all the discharges are in
Mm3. Column 2 (C2): Observed discharge at Ganjem (OG); C3: simulated discharge at Ganjem
for CRU forcing; C4: as in C3, but for IMD forcing. In columns 1 and 2,the numbers in parenthe-
sis denote percentage error (simulated minus observed discharge). Thelast two rows of table show
the mean (percentage error in parentheses) and standard deviation (SD) of the respective variables

Year OG CRU IMD

1981 3895 2188 (-43.8) 2338 (-40.0)
1982 4214 1456 (-65.4) 1943 (-53.9)
1983 3787 2413 (-36.3) 2561 (-32.4)
1984 3540 1329 (62.5) 1523 (-57.0)
1985 3171 1005 (-68.3) 2003 (-36.8)
1986 2543 1214 (-52.3) 1068 (-58.0)
1987 2275 866 (-61.9) 1700 (-25.3)
1988 4187 2092 (-50.0) 1943 (-53.6)
1989 2762 1302 (-52.9) 1633 (-40.9)
1990 4018 1230 (-69.4) 1748 (-56.5)
1991 3305 1582 (-52.1) 1442 (-56.4)
1992 3326 1849 (-44.4) 1661 (-50.1)
1993 3333 1466 (-56.0) 1456 (-56.3)
1994 4718 2545 (-46.1) 1734 (-63.2)
1995 2940 1036 (-64.8) 2298 (-21.8)
1996 2557 1448 (-43.4) 2098 (-17.9)
1997 3721 2214 (-40.5) 2170 (-41.7)
1998 2906 1658 (-42.9) 1870 (-35.7)

Mean 3400 1605 (-53) 1844 (-44)
SD 648 489 359

IMD data set

IMD released a 1◦ gridded daily rainfall data set, covering whole of the country for 1951–2003,

based on their network of rain gauges (Table 2.1) [Rajeevan et al., 2006b].

This data set was constructed by interpolating station data using Shepard’s interpolation scheme,

which is essentially an inverse-distance weighting scheme. We tested it by forcing THMB with the

IMD rainfall product. The Mandovi basin spread across two IMD cells,with each cell accounting

for a part of the basin (Figure 2.3). The catchment upstream of Ganjem fell in the eastern cell
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(‘E’), but the rainfall over this cell was much less than the rainfall over the western cell (‘W’),

in which fell the basin area downstream of Ganjem. We took this to be an artefact of the grid,

with the eastern (western) cell with low (high) rainfall representing the leeward (windward) side

of the Sahyadris. Hence, the rainfall data used to force THMB were taken from the western cell

(‘W’). The daily rainfall data were averaged to obtain monthly values for THMB. The estimated

discharge (Table 2.2) was better than the discharge simulated using the CRU data, but the errors

were still unacceptably high: average error was 44% over 1981–1998. The discharge was under-

estimated by the IMD rainfall, the error being larger in years with high discharge (and therefore

high rainfall). Thus, the IMD data were unable to capture the large interannual variability inherent

in the west-coast monsoon rainfall and the simulated discharge had a much lower variance than

observed.

TRMM data set

The third rainfall data set we tested was Tropical Rainfall Measuring Mission (TRMM)

[TRMM, 2006]. We used TRMM data product 3B43 (Combined TRMM and other data sources),

which combines calibrated satellite data (from TRMM and other satellite precipitation sen-

sors) and ground-based global rain-gauge data sets to produce the ‘single, best-estimate data’

[TRMM, 2006]. The 3B43 rainfall data are available on-line on a 0.25◦ grid from January 1998

onwards. Since discharge measurements were available only till 1999, the TRMM data set was

tested only for 2 years, 1998 and 1999. The error in simulated discharge, and therefore in the

TRMM rainfall estimate, was 75% for 1998 and 69% for 1999. As with the CRUand IMD data,

TRMM also considerably underestimates rainfall over the basin. Thus, ofthe three data sets tested,

the best discharge estimates were obtained with the IMD data (though it had thelowest resolution)

because it used in situ rain-gauge data. The problem with the IMD data set isthat its objective was

to map the rainfall over India, not just over its west coast. This led to the interpolation algorithm

ignoring the effect of elevation and the need to ensure continuity led to the use of fewer rain gauges
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Figure 2.3 Rainfall distribution in July for the CRU, IMD, and TRMM data sets. The upper left
panel shows the two discharge gauging stations. Note the different spatial resolutions of these
gridded data sets. See the text for an explanation for the ‘W’ and ‘E’ marked on the panel for the
IMD data set and the solid dot marked on the panel for the CRU data set.
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than were actually available for (say) the Mandovi basin.

2.4.3 Need to build the rainfall forcing

It is clear from the above section that the available rainfall forcing data sets are not suitable for

simulating river discharge on the Indian west coast. They produce hugeerrors, simulated discharge

underestimating the observed discharge (Table 2.2). The reason for thisis the strong influence of

orography on the rainfall on the Indian west coast (Figure 2.4). This strong dependence, when

combined with the complex terrain of Sahyadris and data sparsity, makes it very difficult to map

the rainfall on the west coast. Global and regional data sets like CRU and IMD suffer primarily due
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to their coarser resolution and stricter data length requirement for inclusionof more representative

stations. Satellite data sets like TRMM are known to produce large errors in mountainous terrain.

Figure 2.4 Influence of topography on rainfall. The topography (meridionally averaged over the
interpolated domain) of region is shown shaded along with the mean monsoonal precipitation (for
June–September) along an approximate east-west transect passing through Panaji and Khanapur
(see Figure 1.7). The symbol at the top of the shaded topography marks the station location. The
same symbol is used to denote the rainfall at that station. For example, the lower (upper) asterisk
(inverted triangle) for Panaji (Asoga) marks the location and the upper (lower) asterisk (inverted
triangle) the rainfall at Panaji (Asoga) Note that the heights shown are not the station heights but
the meridional average of the elevation at a given distance from the coast.All the stations shown,
except Ponda and Khanapur, lie in the Mandovi basin.
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Using data for years for 22 stations from the area around the Mandovi basin, Suprit and Shankar

[2006] showed that it is possible to generate a rainfall data set that results in more accurate dis-

charge estimates. Their study was limited, however, by the short length of thetime series and their

rain-gauge data had not passed through the same levels of quality checksthat are mandatory in

IMD. In the next chapter, a method to generate a rainfall forcing datasetis discussed.



Chapter 3

Rainfall mapping

3.1 Introduction

At any given time, rainfall is measured at a place (point) using a rain gauge. Rainfall, however, is

not a point quantity; it varies in space along with its variation in time. It is definedas a continuous

spatial variable. Generally, this variation is more pronounced in a complex terrain than in a flat

region. In hydrology, estimating the spatial and temporal variability of rainfall is of utmost impor-

tance. Temporal variability of rainfall is relatively easier to resolve as longrecords of daily rainfall

are available from rain-gauge measurements. In some cases rainfall datafor resolution even as fine

as hourly are available. Spatial variability, however, is not easy to resolve; it cannot be measured

directly. In land surface hydrology, estimating spatial rainfall over a region (areal rainfall and its

variability) is important. It is estimated by available rain gauges in a region and there always are

limitations regarding the placement of rain gauges. One has to transform available rain-gauge

measurements into a spatial field of rainfall, called the rainfall map. Creating rainfall maps from

rain-gauge data is known as spatial interpolation.

Spatial variability of rainfall can also be estimated by remote sensing techniques using satel-

lites and radars. These are recent advances: satellite and radar records are available only for recent
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decades. As technology evolves, the accuracy of these estimates is fastimproving, but they are still

indirect measurements. They require rain-gauge data for validation and their use and reliability

in hydrology is still under investigation. They are useful for identifying coarse scale patterns of

rainfall, but quantitative estimates are still a long way from the desired accuracy. A more practical

problem is availability of data; rain-gauge data and discharge data are available for a much longer

period.

Hydrological models require rainfall as a forcing field. THMB requires rainfall maps on the

model grid (Figure 2.2). As discussed earlier Chapter 2, THMB, when forced with the exist-

ing rainfall maps, heavily underestimated the discharge. Thus, the existing rainfall maps were

unable to resolve the rainfall in the Mandovi basin and they underestimate therainfall. Of all

the tested data sets, the IMD dataset, which is based on rain gauges, performed better (see Ta-

bles 2.1 and 2.2). Hence, to produce the rainfall forcing field for THMB,existing rain-gauge

measurements, in and around the Mandovi basin, had to be interpolated to themodel grid. The

spatial interpolation problem becomes acute in a complex terrain like the west coast of India,

where rainfall is strongly related to the topography, owing to the sparse distribution of rain gauges

(Figure 2.4).

3.1.1 Spatial interpolation of rainfall

The importance of spatial variability of rainfall (rainfall maps) in hydrologywas realised long

ago. Initially, hydrologists, equipped with the knowledge of rainfall in the region, used subjective

method of contouring (rainfall contours are called isohyets) to obtain rainfall maps. Later, inter-

polation techniques such as inverse-distance weighted (IDW), Thiessenpolygons, splines (whole

variety of splines, including membrane, minimum curvature, thin plate, regular splines, splines

with tension, etc.), kriging, and many others including downscaling and assimilation techniques

came into use. These interpolation methods were both quantitative and, for themost part, objective

(see Appendix B for more detailed discussion).
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In essence, there are a large number of methods available, and one has tochoose a method

based on the specific requirement of the problem. This is crucial in a data-sparse region like

the west coast of India, where large gradients of rainfall, combined with complex terrain, make

mapping quite difficult (Figures 2.4 and 1.7). Thus, a good interpolation technique should not only

be objective, but also be subjective enough to use the already known facets of spatial distribution

of rainfall in the complex terrain so as to complement the sparsity of data. In general, a good

rainfall map should fulfil the following criteria: It should be able to reproduce known spatial

characteristics of rainfall (as it is known to a local observer), it shouldcompare favourably with

station rainfall, and it should be validated with independent criteria like water budget calculations.

3.1.2 Regularised spline with tension

Suprit and Shankar [2006]1 and Suprit and Shankar [2008] adopted a spline method for interpo-

lating rainfall on the west coast. Spline method was chosen because it is based on variational

technique, hence it is physically more meaningful than statistical techniques [Mitas and Mitasova,

1999]. Geostatistical methods like kriging were not chosen because of theneed for subjective

decisions [Journel, 1996]: data in a data-sparse region like the Mandovi basin may not contain

enough information about the important features to enable such subjectivityto succeed. The two

methods, however, have been shown to be formally equivalent [Cressie, 1993].

Splines have been used extensively in the interpolation of various climate variables [Hutchinson,

1995, 1998a,b; New et al., 1999; Hofierka et al., 2002; Jeffrey et al., 2001]. An implementation of

the multivariate spline interpolation method calledRegularized Spline with Tension(RST) has

been developed and incorporated within GRASS GIS [Neteler and Mitasova, 2002]. The method

has been applied successfully to regions having complex topography. A detailed discussion of

the mathematical formulation of theRSTmethod is presented by Mitasova and Mitas [1993] and

Hofierka et al. [2002]. The spline interpolation technique is based on the premise that the interpo-

1Rain-gauge data available to Suprit and Shankar [2006] was from a non-standard source (not from IMD, hence, not
passed through mandatory quality check) and of short duration.
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lation function should pass through or close to the data points while trying to remain as smooth as

possible [Mitas and Mitasova, 1999].

The method is able to capture a more complex, spatially variable relation between rain-

fall and elevation than the traditional methods based on statistical correlation [Hofierka et al.,

2002]. The explicit form ofRSTfunction and solutions for undetermined coefficients are given in

Mitasova and Mitas [1993] and Hofierka et al. [2002]. To interpolate rainfall with elevation as the

third dimension, an approach similar to that of Hutchinson [1995] is used in theRSTmodule in

GRASS; the interpolated function is therefore a function of horizontal co-ordinate as well as ele-

vation, which can be interpreted as the intersection of theRSTvolume model of rainfall with the

terrain surface [Neteler and Mitasova, 2002]. The introduction of elevation as a co-variate serves

as an important proxy for rainfall in complex data-sparse regions. Incorporating elevation in the

interpolation tends to improve the results of interpolation [Goovaerts, 2000; Hofierka et al., 2002].

This trivariate (3D, with elevation as the third dimension) form ofRST method is

implemented in the GRASS GIS as the modulev.vol.rst [Neteler and Mitasova, 2002;

GRASS Development Team, 2008]. It requires the location and height of the rain gauges as inputs

to interpolate rainfall to a 3D grid. The resulting 2D rainfall field is obtained by intersecting the

interpolated volume by the terrain surface represented by a DEM. An important feature of the im-

plementation is a set of tuning parameters, which provide the flexibility needed inthe interpolation

procedure to represent the modelled phenomena. The most important parameters are tension (T)

and smoothing (S) [Neteler and Mitasova, 2002].T controls the range over which a given point

influences the resulting surface. For highT, each point influences only its close neighbourhood

and the surface changes rapidly to the trend between the points. In 2D analogy,T tunes the in-

terpolation surface from a stiff plate to an elastic membrane [Neteler and Mitasova, 2002]. On the

other hand,Sallows the surface to deviate from the data points in an effort to minimize its energy.

Low (high) S implies that the interpolation function passes close to (deviates more from) the data

points. S is important when using lowT because it prevents overshoots (unusually high or low
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values);Salso removes noise that may be present in the data [Neteler and Mitasova, 2002].

The optimal values of these parameters were chosen by minimization of the predictive error

estimated by a Cross-Validation (CV ) procedure [Tomczak, 1988; Neteler and Mitasova, 2002],

which is also incorporated in thev.vol.rst module [GRASS Development Team, 2008]. In this

approach, one data point was eliminated at a time, and the interpolation was performed using the

remaining points. Then the residual between the actual value of the eliminated point and the value

estimated (interpolated) at this point was computed. This procedure was repeated subsequently

for all the data points. This resulted in the same number of residuals as input data points. Then the

overall performance of the interpolation was evaluated as the root mean ofsquared residuals (Root

Mean Square Error, RMSE). This step was repeated for a range of values ofT andS (0.01–0.09)

and the combination that yielded the lowest RMSE was chosen as the optimal setof interpolation

parameters. The entire procedure was carried out for a domain larger than the model domain

(Figures 3.1 and 1.7). The locations and heights were specified based onthe GLOBE DEM grid,

but these values were almost the same as the in-situ locations and heights given by IMD. (The

averaging over a grid cell in the DEM implies that the height at a location in the DEMwill not be

equal to the IMD height in a region with complex terrain. The GLOBE values were preferred to

the in-situ values for interpolation because the rainfall in any cell represents an average over the

cell and is therefore not the same as the in-situ measurement using a rain gauge.)

TheCV method provides an objective criterion to evaluate the selection of the interpolation

parameters. Although there are many issues involved with theCV procedure, the final assess-

ment of the spatial estimate of precipitation and its consistency should be judgedby the discharge

simulations, which provide an independent spatial climate element [Daly, 2006].
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Figure 3.1The topography of the region as in the edited GLOBE DEM. The outer and inner rect-
angles denote the interpolation and THMB model domains; rainfall interpolationwas performed
over a larger domain in order to include more rain gauges to map the variation. The black jagged
line is the ridge separating the windward and leeward sides of the Sahyadris. Rain-gauge stations
on the windward (leeward) sides are marked in black (white).
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3.2 Application to the Mandovi basin

We first interpolated the rainfall for 1981–1998 using the rain-gauge data from 20 stations in and

around the Mandovi basin (Figure 3.1). Of the 20 stations, data for only six (Castle Rock, Mor-

mugao, Panaji, Sanguem, Khanapur, Kalasai, and Kumbarwada) were available over the entire

analysis period (Table 3.1). All available data, however, were used forinterpolation in order to

generate the best possible map for each month. The entire region (15◦ N – 15◦ 48′ N and 73◦ 36′

E – 74◦ 34′ E) in the GLOBE DEM was divided into 96×116 grid cells with a resolution of 30

arc seconds.

TheT andSwere varied in the range 0.01–0.09 to obtain optimal parameters by minimising

the RMSE obtained through theCV procedure; the range forT andSwas arrived at subjectively

after a few interpolations. The RMSE for the optimumT andS (Figure 3.2) varied between 5.01

and 92.3 cm during the peak rainfall months (June–September). The resulting rainfall maps were

unable to capture the large gradients expected in the vicinity of the Sahyadris(Figure 3.3) owing

to the poor rain-gauge coverage in the regions with large rainfall gradients, i. e., the ridge and the

slopes of the Sahyadris. This poor coverage resulted in undershoots (low values) and overshoots

(high values) when we tried to simulate the large rainfall gradient by reducing the smoothness of

the rainfall surface (by loweringS). Hence, smoother surfaces had to be fitted to the rain-gauge

data, resulting in the inability to simulate the large spatial gradients. When these rainfall maps

were used to force THMB, the error in the simulated discharge at Ganjem, though now less than

when the IMD data were used, was still too large (∼ 14–44%) (see Table 3.2).

3.2.1 Separate interpolation for windward and leeward sides

The reason for the large errors in interpolation is the sparse distribution ofrain gauges. This

poor spatial sampling did not permit a clear separation between the windwardand leeward sides,
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Table 3.1Name, location (latitude (longitude) in degrees north (east)) and height (m) of the rain-
gauge stations, along with a summary of the annual rainfall statistics (mean andSD; cm year−1).
Stations in the top (bottom) half of the table are from the windward (leeward) side of the Sahyadris.
Column 5 lists the years for which data were not available (at least for the monsoon months).

Station Longitude Latitude Height Missing years Mean SD

Castle Rock 74.35 15.4 559 — 597.8 93.1
Gavali 74.26 15.6 744 1982–85 661.1 172.7
Madgaon 73.96 15.28 10 1988,1998 292.8 58.2
Mhapsa 73.8 15.59 22 1988–89,1998 303.1 57.6
Mormugao 73.79 15.41 22 — 270.9 39.9
Panaji 73.81 15.48 1 — 286.0 45.0
Ponda 74.02 15.4 32 1988,1998 332.0 61.6
Quepem 74.06 15.21 48 1987–89, 1998 357.3 83.8
Sanguem 74.15 15.23 52 1998 361.7 50.3
Valpoi 74.13 15.55 67 1988,1993–95,1998 413.2 56.2

Asoga 74.36 15.6 692 1997 160.5 49.5
Desur 74.5 15.75 732 1997 143.8 34.5
Jamagaon 74.48 15.55 673 1982,1984–85 394.0 96.7
Khanapur 74.51 15.63 646 — 183.0 42.8
Londa 74.5 15.45 650 1984–85,1987–89,1997 227.8 93.5
Akheti 74.42 15.75 766 1987 519.2 101.1
Jagalpet 74.5 15.25 515 1987,1998 256.2 61.2
Kalasai 74.42 15.07 640 — 327.3 59.3
Kumbarwada 74.46 15.14 614 — 366.9 100.1
Kundar 74.35 15.14 666 1989 498.8 121.7

which is obvious in the large-scale rainfall distribution, to emerge naturally from the data. Hence,

in order to overcome this problem, we interpolated the rainfall separately forthe windward and

leeward sides. We defined a ridge separating the windward and leeward sides, choosing, as a first

approximation, the location of maximum elevation along a latitude circle as the ridge.This ridge

was then subjectively edited where river valleys (like the Mandovi; see Figure 1.7) cut through the

Sahyadris. This subjective editing was necessary to ensure a “reasonably” smooth and continuous

ridge. This definition separated the domain into a high-rainfall windward sideand a low-rainfall
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Figure 3.2RMS error (RMSE, in cm) for obtaining optimal tension and smoothing parameters to
be used in rainfall interpolation. The top panel shows the RMSE when interpolation was done for
windward and leeward stations combined (dischargeSC in Table 3.2); the bottom panel shows the
RMSE for separate interpolation for windward and leeward sides (dischargeSW+L in Table 3.2).
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leeward side, with 10 rain-gauge stations on both sides (Table 3.1). We thenused theCV procedure

to map the rainfall separately for each side; on both sides, the optimalT andS ranged between

0.01 and 0.09. The two maps were then merged together to obtain the rainfall map.

Suprit and Shankar [2008] used a 3-point smoothing for merging leeward and windward side

map:

Ri = (Ri−1 +Ri +Ri+1)/3, (3.1)
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Figure 3.3 Interpolated rainfall maps for August 1982. The left (right) panel is for simulationSC

(SW+L). The black curve is the Mandovi basin. The ridge separating the windward and leeward
sides is shown by the black curve in the right panel. The six rain-gauge stations (1–6) are the ones
for which estimated and observed rainfall are compared in Figure 3.4.
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whereRi is the rainfall in the first grid cell on the leeward side,Ri+1 the (adjacent) leeward cell to

its east andRi−1 the (adjacent) windward cell to its west; here,i is the zonal index. This smoothing

was done to ensure a smoother transition from the high rainfall on the windward side to the low

rainfall on the leeward side, but this smoothing causes overestimation of rainfall on the leeward

side. As rainfall is generally underestimated, on monthly rainfall maps this improves the results

a little. On the leeward sides, however, interpolated rainfall is already heavily overestimated (See

Figure 3.4 for Asoga (top panel)) and this smoothing adds to this overestimation.

The RMSE for the windward (leeward) side was 0–37.8 (0–94.2) cm (Figure 3.2). The reason

for the larger error on the leeward side could not be ascertained, but we suspect the complex

relation between rainfall and elevation and the clustering of rain gauges intotwo groups on the

leeward side (Figure 3.1). The errors were, however, lower when thewindward and leeward sides

were mapped separately; note also that the leeward side constitutes a much smaller fraction of the

catchment of the Mandovi at Ganjem, (∼ 21% by area and on the average 13.8–20.4% by rainfall;

see Table 3.1). The RMSE values still seem large, but they are unavoidable in a data-sparse region
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Table 3.2Comparison of simulated and observed discharges at Ganjem; all the discharges are in
Mm3. Column 2 (C2): Observed discharge at Ganjem (OG); C3: simulated discharge at Ganjem
for forcing with interpolated (windward and leeward sides combined) rainfall (SC is the simulated
discharge for this experiment); C4: as in C3, but with the rainfall interpolation done separately
for the windward and leeward sides (SW+L is the simulated discharge for this experiment); C5:
observed discharge at Kulem; C6: as in C4, but for Kulem (SK is the simulated discharge at
Kulem for separate interpolation experiment). In columns 3, 4 and 6 the numbers in parenthesis
denote percentage error (simulated minus observed discharge). Columns7 (PW ) and 8 (PL) are
the areal rainfall (in Mm3) over the windward and leeward parts, respectively, over the catchment
area at Ganjem for the forcing used in C4 (SW+L). The last two rows of table show the mean
(percentage error in parentheses) and standard deviation (SD) of therespective variables.

Year (OG) SC SW+L (OK) (SK) PW PL

1981 3895 3001 (-22.9) 3513 (-9.8) 456 429 (-5.9) 3585 770
1982 4214 2522 (-40.2) 3528 (-16.3) 530 455 (-14.2) 3631 757
1983 3787 2648 (-30.1) 3558 (-6.0) 640 444 (-30.7) 3587 740
1984 3540 2003 (-43.4) 2750 (-22.3) 635 358 (-43.6) 2887 634
1985 3171 2115 (-33.3) 2838 (-10.5) 599 349 (-41.7) 2943 637
1986 2543 1678 (-34.0) 2443 (-3.9) 440 335 (-24) 2620 555
1987 2275 1768 (-22.3) 2219 (-2.5) 331 287 (-13.4) 2531 404
1988 4187 2353 (-43.8) 3193 (-23.7) 474 426 (-10.0) 3309 643
1989 2762 2102 (-23.9) 2863 (3.7) 401 370 ( -7.8) 2986 603
1990 4018 2552 (-36.5) 3578 (-10.9) 610 483 (-20.8) 3823 804
1991 3305 2203 (-33.3) 2957 (-10.5) 458 389 (-15.2) 3092 726
1992 3326 2346 (-29.5) 3028 (-9.0) 431 381 (-11.5) 3189 714
1993 3333 2113 (-36.6) 2851 (-14.5) 457 381 (-16.7) 3046 682
1994 4718 3140 (-33.4) 4018 (-14.8) 614 532 (-13.3) 4021 1025
1995 2940 1964 (-33.2) 2501 (-14.9) 400 310 (-22.4) 2806 542
1996 2557 2193 (-14.2) 2877 (12.5) 418 356 (-14.8) 3026 620
1997 3721 2673 (-28.2) 3466 (-6.9) 514 430 (-16.3) 3451 884
1998 2906 1877 (-35.4) 2387 (-17.9) 423 302 (-28.7) 2686 559

Mean 3400 2292 (-31.9) 3032 (-9.9) 491 390 (-19.5) 3179 683
SD 648 391 480 91 63 414 137



Rainfall mapping 44

Figure 3.4 Interpolated and observed rainfall (in cm year−1) at the stations marked in Figure 3.3;
note that Castle Rock is not in the Mandovi basin, but is the only station on the ridge for which
data were available. The vertical bars are a measure of the variability in the observed rainfall; the
length represents one standard deviation on either side of the observed rainfall.
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like this: we have no means of comparing the RMSE with any other studies in the region. TheCV

method also usually overestimates the interpolation error because the estimate is being computed

at a location where data are genuinely available, and lack of data points aggravate this further

[Hofierka et al., 2005].

The interpolated rainfall compared well with observed rainfall at the rain-gauge stations in the

basin and at Castle Rock, the station nearest the ridge (but outside the Mandovi basin) (Figure 3.1

and Figure 3.4). The interpolation procedure captured the sharp increase in rainfall on the slopes

(see panel for Gavali), but the rainfall was consistently underestimated on the windward side. On

the leeward side (see panel for Asoga), the rainfall was consistently overestimated. This error was

due to the curve tending to become smooth (in order to avoid overshoots) in regions that are data-

sparse but have large gradients. The resulting rainfall maps were nevertheless able to catch the

sharp increase in rainfall on the slopes of the Sahyadris, with the rainfallmaximum hugging the

Sahyadris (Figure 3.3). For the peak rainfall months, we obtained similar maps for all the years.

3.3 Simulation results and discussions

THMB was then forced with the new rainfall maps. The simulated discharge compared well with

the observed discharge at Ganjem (Figure 3.5 and Table 3.2). The error in simulated discharge

was within the natural variability in the system (except in 1984 and 1988). The annual discharge

error was less than 20% for 16 of 18 years; the average error over the 18 years was 10%. This

is comparable to the measurement errors involved with discharge observations, which is of the

order of∼ 15 to 25% [Dickinson, 1967; Cogley, 1989; Coe, 2000; Di Baldassarre and Montanari,

2009]. Except in two years, the simulated discharge was lower than observed. This was due to

the underestimation of rainfall at Gavali and Valpoi, which are representative of the heavy rainfall

on the hill slopes. The percentage error was higher at Valpoi (often greater than 20%), but the

much higher mean rainfall at Gavali implied that the smaller percentage error there led to a higher
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absolute rainfall error. Rain-gauge data for Gavali (Valpoi) were notavailable for 1984 (1988);

these were the two years in which the discharge error (underestimate) exceeded 20% (Table 3.2).

The larger simulation errors occur in years when data for Gavali or Valpoi are missing (Table 3.1

and Table 3.2). The large error in 1998 is owing to data for six of the 10 windward stations not

being available. Note, however, that (as may be expected with theCV procedure) the RMSE is

the error in rainfall at a station (Figure 3.4) and bears no obvious relationto the error in simulated

discharge (Table 3.2 and Figure 3.5).

The simulated discharge showed larger errors when compared with the discharge measure-

ments at Kulem on the Khandepar (Figure 3.5, Table 3.2). One reason forthis larger simulation

error is the much lower discharge of the Khandepar. Another reason is the absence of critical

data. The discharge errors are largest (greater than 30%) during 1983–1985, when the observed

discharge was high and rainfall data for Gavali were missing. (Note that data for several sta-

tions were missing in 1998, another year with a large error.) There are no rain-gauge stations

on the slopes in the Khandepar basin, implying a high impact of Gavali and Castle-Rock rainfall

on the discharge simulated at Kulem. Absence of data at Gavali therefore leads to an underesti-

mate in basin rainfall, the error being larger when the rainfall is high because the highest rainfall

(and the highest standard deviation) is on the slopes of the Sahyadris (Table 3.1). Note, however,

that the discharge during 1983–1985 at Ganjem was closer to the mean discharge, suggesting an

unmapped, higher-than-normal rainfall in the Khandepar basin. Since the available data do not

suggest a north-south trend during these years, it is likely that the excess rainfall in the Khandepar

basin was restricted to it. The absence of a rain gauge in the basin makes it impossible to resolve

the spatial variation any better than done above. Hence, the method is only asgood as is the

distribution of data: sparsity of data implies larger errors in smaller sub-basins.

Nevertheless, the mean simulated discharge was lower at both Ganjem and Kulem. The sim-

ulated variance was also lower than the observed variance. Both point to asmoother rainfall map

than probably exists in nature, with the sparse coverage of the basin, especially on the hill slopes,
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Figure 3.5Simulated discharges at Ganjem and Kulem (bottom panel). The observed discharge is
plotted for comparison. The shaded area is a measure of the variability in the observed discharge;
the shading is done for one standard deviation on either side of the observed discharge. The black
curve is the simulated discharge. Note the negligible impact of evapotranspiration (indicated by
the thickness of the black curve) and that the error in simulated discharge iswithin the natural
variability of the system (except in 1984 and 1988, where the black curvefalls just outside the
shaded region).
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resulting in a lower estimate of basin rainfall than observed. A consequence of this sparse coverage

is the lack of variation in rainfall between Gavali and Castle Rock, which areseparated by∼ 25

km (Figure 3.1). Though Gavali is at a higher elevation (Table 3.1), CastleRock is on the ridge and

Gavali on the slopes. The observed rainfall is higher at Gavali than at Castle Rock, but the sparsity

of rain gauges masks this spatial gradient. Data from south of Goa also show that, in accordance

with theory [Sarkar, 1966, 1967], the maximum rainfall occurs on the windward slope of the

Sahyadris (Gavali, for example), not on the ridge (Castle Rock, for example) [Basappa and Jose,

2008]. Hence, sparsity of data, which is common in the vicinity of the Sahyadris, will imply a

similar rainfall underestimate all along the Indian west coast.

The results did not show an obvious relationship between the rainfall RMSEand the discharge

errors: the correlation between the two errors is low. It is known, however, that theCV method

does not provide optimum parameters in all cases, and is dependent on thedensity and homogene-

ity of data points [Hofierka et al., 2002; Daly, 2006]. The THMB simulations were able to capture

the variability in discharge observations reasonably well on the annual scale (Figure 3.5), and since

the discharge is an independent measure of the rainfall interpolation, it is amore stringent test of

the rainfall interpolation [Daly, 2006].

3.3.1 Rainfall mapping on higher temporal scale

Simulations forced with interpolated annual rainfall, however, resulted in larger errors: though

the interpolation error was lower for annual rainfall, the discharge errorwas higher because the

annual-rainfall map was much smoother and it underestimated the rainfall over the Sahyadris.

Simulations on higher temporal scale (e. g., on daily time scale) require rainfallmapping on

daily time scale. The method outlined above for mapping monthly rainfall is also applicable for

daily rainfall [Hofierka et al., 2002]. The GRASS GIS routine,v.vol.rst, used to perform the RST

interpolation is embedded within the GRASS environment, but the process was slow owing to the

internal GRASS GIS computational overheads. Since daily forcing would increase the compu-
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tational load, the C routines used for the interpolation were extracted from the GRASS GIS and

converted to a stand-alone program that was used to determine the optimumT andS. Generation

of the rainfall-forcing maps requires only the DEM, the rain-gauge data, and the optimumT and

S; hence, the rainfall-mapping procedure was integrated with THMB, allowingrainfall maps for a

given day to be generated online within THMB during the simulation.

3.3.2 Discussion

We have shown that an interpolation algorithm that includes elevation as a co-variate yields a better

rainfall map for the Mandovi basin than an algorithm that ignores elevation.This improvement is

due to the influence of orography on the rainfall on the Indian west coast. The IMD interpolation

[Rajeevan et al., 2006a,b], which did not account for elevation, also excluded several stations that

did not have a long record in order to produce a consistent estimate of the rainfall. Hence, the

interpolated IMD rainfall underestimated the rainfall over the Mandovi basin. A key result is that

in data-sparse regions with a complex mountainous terrain (like the Mandovi basin), it is better to

extract the ridge linea priori and map the windward and leeward sides separately. This separate

mapping reduces the underestimation of rainfall by ensuring that the sharpdecline in rainfall

across the ridge, which does not emerge naturally from a combined mappingof the entire basin, is

now guaranteed to the extent that rain-gauge data are available on the slopes and the ridge. Note

that such subjectivity is common in geostatistical techniques like kriging.

The resolution of the interpolation also matters. The CRU data set also includeselevation

as a co-variate, but the 0.5◦ resolution of the data set was too crude for it to resolve the sharp

rainfall gradient induced by the Sahyadris. Interpolating the rainfall ata high resolution and then

downscaling the interpolated rainfall to a coarser grid also proved superior to an interpolation at

a coarse resolution. We downscaled the rainfall interpolated at 30 arc seconds to a 0.25◦ grid and

then forced THMB (at a 30 arcseconds resolution) with the resulting rainfall map. The rainfall

forcing, as with the TRMM/CRU/IMD data sets, was now invariant over the larger 0.25◦ grid,
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but the results were superior to those obtained with the other data sets: the average discharge

error was 4.8% (underestimate), as opposed to 10% when THMB was forced with the interpolated

rainfall at 30 arc-seconds resolution without any rescaling (Table 3.2). (The lower error does not

imply that rescaling is better. For the Mandovi basin, the positioning of the low-resolution and

high-resolution grids means higher rainfall from outside the basinspilled into the basin, resulting

in a positive rainfall error that countered the overall underestimation of basin rainfall.) When the

terrain is complex and data are sparse, it is important to grid the rainfall at a high resolution even

if the final resolution at which data are required is much lower. Hence, if hydrological consistency

is an objective, mapping at different resolutions in different regions maybe necessary, the maps

being subsequently rescaled to the common desired resolution. In other words, the IMD data

set [Rajeevan et al., 2006b] might have benefited from a higher resolution of the mapping grid

along the Indian west coast; the coarser grid is probably sufficient in thelow-gradient terrain

common over most of India. The final data set could always be preparedat a common resolution

by downscaling the high-resolution maps to the lowest common resolution possible.

The results presented here are significant. It is impossible to understand the hydrology of the

Indian west coast without resolving the variability of rainfall. The rainfallmapping algorithm was

validated by discharge simulations, an independent measure. The interpolated monthly rainfall,

when used to force THMB, produced an annual discharge estimate within 15–25% of the obser-

vations. Further, the mapping algorithm has been incorporated into THMB framework, making

simulation experiments faster and seamless on daily time scales. But, on the daily time scale there

is much more variability in the discharge and rainfall (Figure 1.9). Hence, simulating the daily

discharge of the Mandovi will present a challenge to resolve this variability, which forms the basis

of the next chapter (Chapter 4).



Chapter 4

Rainfall-runoff modelling

4.1 Introduction

The highest temporal resolution of data available with us was on daily time scale.Hence, our next

step was to simulate the daily discharge in the Mandovi river. The method discussed in Chapter 3

for mapping monthly rainfall is applicable for daily rainfall also. The THMB framework now

incorporates the interpolation algorithm, where daily rainfall forcing maps from rain gauges are

generated on the fly. Simulating the daily discharge of the Mandovi will, however, present an-

other challenge. The seasonality of rainfall over the Indian west coast,with almost no rain during

January–April and November–December (Figure 1.8), implies that the result of each year is inde-

pendent of that of the preceding years: the system has no memory as faras annual discharge is

concerned and there is no correlation between the discharge of two successive years. Physically,

the land dries up soon after the rains cease, and the rains of the next year fall on empty surface and

subsurface reservoirs. Hence, the annual discharge curve startsat almost zero each year (and is

almost zero till April). Therefore, the integral of monthly discharge for each year is independent

of the details of the discharge curve and is a function of only the total rainfall over (and evapo-

transpiration from) the basin. Hence, the details of model parameterisation were not important for
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simulating the annual discharge: model parameters could be held constant (as in the simulations

of Coe [2000], Shankar et al. [2004] and Suprit and Shankar [2008]) without affecting the results.

With daily discharge, however, this will no longer hold true. On the daily time scale, there is a

large temporal variability embedded in the seasonal variation. There is a large variability of rain-

fall, and hence of runoff (and discharge), on daily time scale (Figure 1.9). This variability is also

evident in the daily rainfall forcing maps generated by THMB (Figure 4.1),where observed dis-

charge is compared with the integral of the rainfall over the catchment at Ganjem (area 872 km2).

A simple parameterisation likeα (α = 0.3, a constant) that partitions rainfall minus evapotranspi-

ration (P −E) into subsurface runoff(1−α)(P −E) and surface runoffα(P −E) will not work.

On daily time scales, this constant partitioning can no longer be held valid.

In other words, a more complex rainfall-runoff model than the one used earlier in THMB is

required. In this chapter, incorporation of a rainfall-runoff model into THMB for daily discharge

simulations is discussed in detail.

We forced THMB with the daily rainfall maps and analysed the results for 1981–1998. The

simulated discharge for three years, 1986, 1990 and 1992, is shown in Figure 4.2. The simulated

discharge at Ganjem is compared with the observed discharge and catchment integrated rainfall.

As in Suprit and Shankar [2008] and Shankar et al. [2004], the seasonal cycle is poorly simulated.

Discharge is underestimated during the peak monsoon months (July–August), and overestimated

during the onset (May–June) and post-monsoon phases (September–November). Changing the

value ofα did not improve the simulations. On decreasing (increasing)α to 0.1 (0.7), the simulated

discharge improved (deteriorated) in the onset period, but deteriorated(improved) in the peak-

monsoon period (Figure 4.2). The cause of this poor simulation is the constant α. The strong

seasonal cycle in rainfall and soil moisture, and hence in runoff, in the Mandovi basin implies a

time-dependentα.
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Figure 4.1Daily observed discharge (black curve, in Mm3) at Ganjem and the rainfall integrated
over the catchment (blue curve, in Mm3) for May–October (a) 1981, (b) 1982, (c) 1983, and (d)
1984. Daily rainfall maps obtained by interpolating the rain-gauge data wereintegrated over the
catchment area at Ganjem to obtain the catchment-integrated rainfall. The boldtick marks on the
abscissa indicate beginning and end of a month.
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Figure 4.1(continued) Daily observed discharge (black curve, in Mm3) at Ganjem and the rainfall
integrated over the catchment (blue curve, in Mm3) for May–October (a) 1985, (b) 1986, (c) 1987,
and (d) 1988. Daily rainfall maps obtained by interpolating the rain-gauge data were integrated
over the catchment area at Ganjem to obtain the catchment-integrated rainfall.The bold tick marks
on the abscissa indicate beginning and end of a month.
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Figure 4.1(continued) Daily observed discharge (black curve, in Mm3) at Ganjem and the rainfall
integrated over the catchment (blue curve, in Mm3) for May–October (a) 1989, (b) 1990, (c) 1991,
and (d) 1992. Daily rainfall maps obtained by interpolating the rain-gauge data were integrated
over the catchment area at Ganjem to obtain the catchment-integrated rainfall.The bold tick marks
on the abscissa indicate beginning and end of a month.
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Figure 4.1(continued) Daily observed discharge (black curve, in Mm3) at Ganjem and the rainfall
integrated over the catchment (blue curve, in Mm3) for May–October (a) 1993, (b) 1994, (c) 1995,
and (d) 1996. Daily rainfall maps obtained by interpolating the rain-gauge data were integrated
over the catchment area at Ganjem to obtain the catchment-integrated rainfall.The bold tick marks
on the abscissa indicate beginning and end of a month.
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Figure 4.1(continued) Daily observed discharge (black curve, in Mm3) at Ganjem and the rainfall
integrated over the catchment (blue curve, in Mm3) for May–October (a) 1997, and (b) 1998. Daily
rainfall maps obtained by interpolating the rain-gauge data were integrated over the catchment area
at Ganjem to obtain the catchment-integrated rainfall. The bold tick marks on the abscissa indicate
beginning and end of a month.
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Figure 4.2 Observed discharge (black), discharge simulated by SimulationS0 (red), and the
catchment-integrated rainfall at Ganjem (blue). (a) 1986. (b) 1992. (c) 1990. The units are
Mm3. The bold tick marks on the abscissa indicate beginning and end of a month. The grey band
shows the variation in simulated discharge whenα is varied over the range 0.1–0.7;α = 0.3 in
SimulationS0.
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4.1.1 Limitations of the framework: Model parameterisation

Thus, simulation of daily discharge requires realistic estimates of surface and subsurface runoff

on this time scale. Constant partitioning of rainfall into runoff smoothens the observed variabil-

ity in discharge because this parameterisation is simplistic and ignores the differing hydrological

response to differences in geographical and climatic conditions, i.e., it ignores variations in space

and time. The hydrological processes, in turn, affect the generation ofrunoff, implying the need

for a new, but simple, rainfall-runoff model to calculate the runoff required to force THMB. This

rainfall-runoff model has to be simple enough to work with the meagre availabledata, but complex

enough to account for the basic hydrological processes involved in thehydrological response of

the Mandovi basin to the rainfall forcing.

4.1.2 Rainfall-runoff model

Hydrological systems are very difficult to observe owing to limited measurement techniques and

range of measurements. This is especially true for a complex process like conversion of rainfall

into runoff. The flow of water on the surface through soil, until it appears in a stream, is a very

complex and nonlinear process. Hydrological models represent the relation between total rainfall

and runoff generated during the event and also route the runoff to the outlet point of the watershed.

Almost always, errors involved in routing are much less than in the processof runoff generation.

The generated runoff depends upon the rainfall and antecedent conditions of the watershed.

There exist many hydrological models, of varying complexities, to convertthe rainfall into

runoff [Chow et al., 1988; Wanielista, 1990; Beven, 2001]. Rainfall-runoff processes are very

complex and numerous modelling strategies are used to tackle the problem, suchas black-box,

analytical, empirical, and conceptual approaches. Furthermore, a modelcan be eitherlumpedor

distributed, or even the two combined. Lumped models average the input and output variable

over the watershed area, treating it as a single unit. Distributed models take spatial variability into
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account, most commonly by dividing the region into grid cells. Furthermore, most of the hydro-

logical models aredeterministic, producing a single output from a single set of input variables and

parameters. They are different from the less commonstochasticmodels, which allow uncertainty

and give a probabilistic output. Apart from these approaches, there are models based on techniques

as varied as ANN (Artificial Neural Network), fuzzy logic, and SVM (Support Vector Machines).

The THMB framework, shorn of biogeochemistry, is basically a routing algorithm. For daily

discharge simulation, it requires a rainfall-runoff model. According to ourobjectives, the model

should be freely available. The challenge is to select a model that represents reasonably a fair

approximation of the hydrological processes that culminate in generating runoff from rainfall. An-

other major constraint is the availability of data: the model should not be data-intensive. The only

observational data available in the Mandovi basin are rainfall and discharge, making the choice of

a usable model more difficult. It is also worth noting that discharge data are not available for most

of the west-coast rivers, ruling out the use of the discharge data in the model parameterisation.

4.2 Soil Conservation Service (SCS) method

The Soil Conservation Service Curve Number (SCS-CN) method is one of the most popular mod-

els available for converting rainfall into runoff. An empirical model, the SCS-CN method, was

derived from the analysis of runoff volumes from several experimental catchments maintained by

the United States Department of Agriculture [Mockus, 1949]. The method requires only rainfall as

the input data and uses a single parameter called Curve Number (CN ) that defines the antecedent

conditions. Since its simplicity matches that of the existing modelling framework, we adopt the

SCS-CN method (hereafter referred to as just the SCS method) to parameterise the separation of

runoff into surface and subsurface runoff.

Despite its inherent limitations [Lyon et al., 2004; Michél et al., 2005; Ponce and Hawkins,

1996], the SCS method (or a variant) is used in all types of hydrological modelling systems like



Rainfall-runoff modelling 61

the water-yield models like SWAT, CREAMS, AGNPS, etc. [Arnold et al., 1993; USDA, 1980;

Young et al., 1989], continuous hydrological simulation models [Geetha et al., 2007; Choi et al.,

2002; Mishra and Singh, 2004], and grid-based and GIS-based models [White, 1988]. However,

the SCS method is a purely conceptual model derived empirically from the rainfall-runoff data. It

has been shown subsequently by various authors [Hawkins et al., 2001; Mishra and Singh, 1999;

Yu, 1998; Steenhuis et al., 1995] that the method can be derived throughprocess based approach.

This physical basis and empirical soundness, combined with the underlyingsimplicity, makes the

SCS method probably the most widely used hydrological-process model in hydrological modelling

systems [Smith and Thomas, 2008].

The SCS method was developed as an event-based model to generate the direct runoff from

the rainfall excess due to the rainfall event [Ponce and Hawkins, 1996]. To use the model in

the THMB framework, a day’s rainfall is considered as an event and therunoff is generated for

the day (e. g., Choi et al. [2002]; Geetha et al. [2007]). The temporalvariations are introduced

by taking into account the moisture condition prevailing before the event (day). Although the

shortcomings of this assumption, which extends the event-based SCS method tocontinuous, long-

term hydrological modelling, have been pointed out by various authors (e. g., Ponce and Hawkins

[1996]), it has been applied with success in many continuous-modelling studies [Choi et al., 2002;

Geetha et al., 2007; Mishra and Singh, 2004].

The SCS method is a conceptual model and is therefore not limited by the size ofthe watershed

[Mishra et al., 2003]. By itself, however, it does not take into account spatial variations because it

was developed as a lumped model, in which the basin-runoff-generation processes are lumped into

a single mechanism. Distributed or cell-based models like THMB, which require the input data

and parameters to be specified for each grid cell, have become the preferred choice for modelling

because of the observed spatial variability. In the THMB framework, rainfall is mapped onto the

grid cells defined by the DEM, and the runoff forcing is generated for each grid cell. In the rest

of this section, we incorporate the SCS method into the THMB framework to parameterise the
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rainfall-runoff relationship.

According to the SCS method, the ratio of the actual runoff to potential runoff is equal to

the ratio of the amount of water detained in the basin and the maximum storage in thewatershed

[Mishra and Singh, 2003]. ForP > Ia,

Fa

S
=

Rs

P − Ia

, (4.1)

whereFa is the water detained in the basin,S the storage or potential maximum detention in the

basin,P the rainfall,Rs the direct or surface runoff, andIa the initial abstraction or amount of

rainfall for which there is no runoff. All the above quantities are in mm. Then, the water-budget

(or mass-conservation) requirement implies

P = Rs + Ia +Fa. (4.2)

From Equations (4.1) and (4.2), we obtain

Rs =
(P − Ia)

2

(P − Ia +S)
. (4.3)

A part of the water (detained in the basin) that infiltrates the surface layer isstored as soil

moisture, a part penetrates to recharge the groundwater, and the rest flows as subsurface runoff

towards a river or water body. As data on infiltration are meagre, estimation of infiltration, and

therefore of the subsurface runoff, is difficult. The subsurface runoff is defined as in Geetha et al.

[2007] as

RD = bFa, (4.4)

whereb is the base flow index, which varies between 0 and 1. Since baseflow is smallin the

Mandovi basin, we assumed that all the water that infiltrates contributes to thesubsurface runoff,

i. e., b = 1. Hence, as in the original THMB formulation, there is no groundwater-recharge term

in the model and the only loss term is the initial abstraction (evapotranspiration). The direction

of flow of this subsurface runoff is assumed to be the same as that of the surface runoff; only the
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time scale associated with this subsurface flow is greater than that associatedwith the surface flow.

Then, from Equations (4.2) and (4.4),

RD = P −Rs− Ia. (4.5)

Equations (4.3) and (4.5) give the surface and subsurface runoff (RS andRD), which are used to

force THMB. Thus, we have replaced THMB’s originalα parameterisation with the SCS method.

This is a very important addition to THMB, and this model is called hereafter THMB-SCS. Once

the SCS parameters are estimated, THMB-SCS (see the modelling framework schematic in Fig-

ure 4.3) can be used for discharge simulations.

4.2.1 Parameters of the SCS method

The two unknown quantities in Equations (4.3) and (4.5) areIa andS, which are parameterised

by the SCS using two dimensionless quantities called initial abstraction coefficient λ and Curve

Number (CN ).

Model calibration and validation

Before going into the details of the estimation of parameters, it is necessary to address the prob-

lem of parameter calibration. The optimum values of parameters are derivedby comparing the

discharge simulations with the observed discharge. For most of the west-coast rivers, however, the

observed discharge data are not available. Hence, parameter calibration should not be based on a

mere comparison of simulated and observed discharge: it should be process-oriented. Therefore,

observed discharges are not used in the THMB-SCS parameterisation.

Furthermore, instead of employing global optimum parameters (derived using all the years of

observed data), we used a calibration and validation approach. Only a part of the observations

are used for model calibration; the rest are used for validating the parameterisation. To build the

model parameterisation, or to calibrate the model, we use three of the available 18 years (1981–
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Figure 4.3 Schematic representation of the THMB-SCS. The Soil Conservation Service Curve
Number (SCS) method was incorporated to parametrise the rainfall-runoff relationship. The
top panel shows how the surface (subsurface) runoffRS (RD) are parameterised using the SCS
method.RS andRD derived from the SCS method, then used to force THMB. THMB schematic
is same as in Figure 2.2.
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1998) of rainfall and discharge data. The remaining 15 years are usedsubsequently to validate

the model. The three years (1986, 1990 and 1992) chosen to calibrate themodel represent the

inter-annual variability of the data: they are years of low, high, and average rainfall respectively

(see Figure 4.4). These are also three of the six years for which rainfall data are available for all 20

stations (Table 3.1), thus yielding the best possible spatial rainfall maps. A Kolmogorov-Smirnov

test (e. g., see Papoulis and Pillai [2002]) shows that the data for these three years are only qual-

itatively representative of the inter-annual variability (Figure 4.5). The inter-annual variability is

much more than can be statistically represented by a small subset of the 18-year data set. Increas-

ing the number of sample years, however, does not lead to an improvement inthe parameterisation

because the number of potential variables is very high and the information available is very low.

Hence, we use only these three years as the test data for calibration.

Initial abstraction coefficient, λ

The initial abstraction represents the minimum amount of rainfall required to generate surface

runoff. To simplify estimation of runoff, the SCS proposed a linear relation betweenS andIa on

the basis of empirical evidence. Hence,

Ia = λ×S, (4.6)

whereλ is the initial abstraction coefficient, a dimensionless quantity that conceptually represents

the loss term in the model. The losses consist of surface detention, interception, and infiltration, all

of which finally evaporate or transpire to the atmosphere. Therefore, theinitial abstraction term as

well as the storage in the basin are a function of evapotranspiration. The SCS recommends using

λ = 0.2 even though theoreticallyλ can vary from zero to infinity [Mishra and Singh, 2003]. The

empirical basis for this choice ofλ are the experiments carried out in watersheds in the United

States [SCS, 1985; Mishra and Singh, 2003] that yield a scatter of values, 50% of which lie in the

range 0.095–0.38. Though the SCS recommends a constantλ, it is a space-time varying parameter
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Figure 4.4 Annual observed discharge (top, in Mm3) and the catchment-integrated rainfall nor-
malised by the catchment area (bottom, in cm); the abscissa shows the year. The discharge and
rainfall increase monotonically over the abscissa. The two vertical lines divide the 18 years into
three bands: low rainfall, average rainfall, and high rainfall. 1986, 1992, and 1990 are represen-
tative of these three bands, respectively. The central horizontal line marks the mean discharge or
rainfall and the other two horizontal lines mark one standard deviation fromthis mean.
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depending on the geographic and climatic conditions of the watershed [Ponce and Hawkins, 1996;

Mishra and Singh, 2003]. A wide range ofλ (0–1) has been reported in the hydrology literature

related to models based on the SCS method (see Table 4.1).

StorageS and Curve Number CN

The storageS is mapped onto a dimensionless quantity called Curve Number (CN), which is given

by:

S =
25400
CN

−254, (4.7)

whereS is in mm. Since higher (lower) storage implies lower (higher) surface runoff, higher

(lower) CN implies higher (lower) discharge.S depends on the physical properties of the wa-
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Figure 4.5Kolmogorov-Smirnov diagram showing the cumulative distribution plot for dailydis-
charge during June–September for all 18 years (red curves for high-rainfall years, black curves
for average-rainfall years and blue curves for high-rainfall years). Though 1986, 1992, and 1990
represent the low-, average-, and high-rainfall years, the spectrum of variability is too high for any
reasonable sample of the data to be representative of the whole.
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tershed, and thereforeCN depends on the soil type, vegetation cover, land use, and hydrological

and moisture conditions.CN , as defined in Equation (4.7), varies from 0–100, with a value of

0 implying infinite storage (capacity) and therefore no runoff, and a valueof 100 implying that

all the rainfall runs off because there is no storage in the basin. A more practical range forCN ,

however, is defined by various authors to be 40–100, implying a range of0–381 mm forS.

The values ofCN for basins having different physical characteristics (soil type, land use, vege-

tation cover, hydrologic conditions) have been prepared and tabulated by the SCS [Mishra and Singh,

2003]. TheseCN values are based on the rainfall-runoff calculations done over a large number of

watersheds in the United States. Only a subset of this table is relevant for theMandovi and these
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Table 4.1A wide range ofIa is used in the models based on the SCS method.

Range References Region Remarks
(Mean)

0–0.26
Springer et al. [1980]

USA Small humid and arid catchment

0–0.3
Cazier and Hawkins
[1984] and Bosznay
[1989]

0.05
Hawkins et al. [2001]

USA Useful in lower rainfall depths or lower
CNs

0.014–0.037
Baltas et al. [2007]

Greece Experimental watershed

0.01–0.154
Shi et al. [2009]

China Three Gorges Area of China

Mishra et al. [2005] USA

Basins classified into 5 categories
0–1 (0.06) P ≤ 12.7mm
0–1 (0.06) 12.7≤ P ≥ 25.4mm
0–1 (0.17) 25.4≤ P ≥ 38.1mm
0–1 (0.37) 38.1≤ P ≥ 50.8mm
0–1 (0.2) P ≥ 50.8mm

CN values are listed in Table 4.2, based on which we pick 60–90 as the possible range ofCN for

the Mandovi basin.

Antecedent Moisture Conditions (AMC)

TheCN values given by SCS represent an average hydrologic condition in the basin, i. e., they do

not account for the variability in antecedent conditions. The variability in theantecedent moisture

conditions translates into the basin’s runoff generation potential and thus tovariability in CN .

This variability is incorporated in the SCS method by a simple parameterisation scheme called

AMC (Antecedent Moisture Conditions) to differentiate dry and wet soil conditions from normal

or average soil condition [Chow et al., 1988; Mishra and Singh, 2003].TheCN for dry AMC is

usually denoted asCN(I) and that for wet AMC asCN(III); CN(II) is theCN for average

AMC. Thus, CN(II) (written simply asCN ) represents the central tendency in the rainfall-
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Table 4.2A subset of the Curve Number (CN(II)) classification.CN for different hydrologi-
cal characteristics in humid range lands or agricultural uncultivated landshas been adapted from
Mishra and Singh, (2003). Although these CNs are based on basins in theUnited States, sim-
ilar ranges ofCN are applicable to India, especially in the Sahyadris (see Tables 1 and 2 in
Mishra et al. [2008]).

Land use description
Hydrologic Hydrological soil group

condition A B C D

Woods or forest land
Poor 45 66 77 83
Fair 36 60 73 79
Good 25 55 70 77

Wood-grass combination
Poor 57 73 82 86
Fair 43 65 76 82
Good 32 58 72 79

runoff data, andCN(I) andCN(III) represent the two extremities of the dispersion in the data

[Mishra and Singh, 2003].CN(I) andCN(III) are calculated from the normal AMCCN by

the empirical expressions given below [Chow et al., 1988]:

CN(I) = 4.2× CN(II)

10−0.58CN(II)
; (4.8a)

CN(III) = 23.0× CN(II)

10+0.13CN(II)
. (4.8b)

For example, ifCN(II) = 90, implying a basin with low storage capacity, thenCN(I) = 79

andCN(III) = 95. Thus, once the centralCN is determined for a watershed on the basis of

its soil type, etc., the impact of differing hydrological conditions (dry to wet)is determined using

Equation (4.8). All that needs to be determined is how to assess what type ofmoisture condition

is prevalent at any given time, i. e., we need to determine the rainfall thresholds for the AMC.

The most popular method to determine the AMC thresholds is based on the amountof the

rainfall in the preceding five days (5-day antecedent rain), called the antecedent precipitation index

(API). Although the term antecedent does not specify a limit on the number of days, the AMC

is determined based on a range of from 5 to 30 days [Mishra and Singh, 2003]. SCS [1971]
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uses the 5-day rainfall for the AMC thresholds. Other methods similar to API include antecedent

baseflow index (ABFI), soil moisture index (SMI), and the more recent antecedent runoff condition

[Mishra and Singh, 2003]. Nevertheless, the 5-day AMC remains the mostpopular, owing to

its simplicity and applicability [Mishra and Singh, 2003]. Although SCS [1971] gives the 5-day

rainfall value to determine the AMC for watersheds in the United States, it also recommends

developing separate AMC criteria for different watersheds [see also Ponce and Hawkins, 1996].

As an example, we note that the factors for convertingCN(II) to CN(I) andCN(III) differ

from Equation (4.8) [Mishra et al., 2008].

4.3 Application to the Mandovi basin

Application of the above parameterisation (with the 5-day AMC thresholding) tothe Mandovi

demands estimation of the optimum values of the SCS parameters:CN , λ, and the AMC thresh-

olds. An inherent assumption in optimization is that the observations, with which simulations are

compared, are without error and that the model is a true representation ofdata. Obviously, both

these assumptions are not correct: hence, it is important to check the sensitivity of simulations to

the SCS parameters.

4.3.1 Sensitivity toCN

For theCN range 60–90, we carried out simulations to test the sensitivity of the simulated dis-

charge toCN (Figure 4.6). In all these experiments, the initial abstraction coefficientλ was set

to 0.2 (SCS-recommended), and the lower and upper AMC thresholds were100 and 250 mm re-

spectively. Five-day antecedent rainfall less (greater) than 100 (250) mm is equivalent to lower or

dry (upper or wet) AMC and correspondinglyCN(I) (CN(III)) is used. Moreover, the AMC

setting was also constant for the basin. The correlation between the simulatedand observed dis-

charge was comparable across thisCN range, but was highest forCN = 80. The results were
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similar to SimulationS0 in the sense that higher (lower)CN values resulted in higher (lower)

simulated discharge irrespective of seasonality.

The range ofCN values for the above experiments was based on the different soil and hy-

drological characteristics in the basin. In spite of its small size, the Mandovibasin shows a great

degree of variability in these characteristics. On one hand, the regime of theSahyadris, with steep

slopes and hard soils, implies largeCN values; on the other hand, the coastal sandy area implies

low CN . Therefore, an average value ofCN (CN = 70) was considered representative of the

entire basin.

Sensitivity to λ

The initial abstraction coefficientλ also depends on the geographical and climatic conditions in

the watershed. Simulations were done for different values ofλ: 0.05, 0.2, 0.3, and 0.6. For all

these simulations,CN was fixed at 70 for the entire basin and the AMC thresholds were also fixed

as in theCN sensitivity tests. The results (Figure 4.6) show that the simulated discharge isnot

as sensitive toλ as it is toCN . Note that in these sensitivity tests,λ varied by over 100% in

comparison to the∼ 10% variation in theCN sensitivity tests.

Sensitivity to AMC thresholds

Sensitivity tests were carried out by varying the lower AMC threshold between 50 and 150 mm

and the upper AMC threshold between 200 and 400 mm. The other two parameters, CN(II)

andλ, were set to 70 and 0.2, respectively. The simulations show (Figure 4.6) that the simulated

discharge is not sensitive to the definition of the AMC thresholds.

A histogram and a cumulative frequency curve (Figure 4.7) of the 5-day-rainfall pick 100 and

250 mm as the appropriate lower threshold (distinguishing the dry and average AMC) and upper

threshold (distinguishing the average and wet AMC), respectively. These thresholds were chosen

such that 1/e ( 36%) of the days had rainfall above the lower threshold and 1/e2 (∼ 14%) of the
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Figure 4.6The SCS parameters were constant in space and time. The black (red) curve shows the
observed (simulated) discharge and the light grey band shows the rangeof the simulated discharge
over the parameter range in the sensitivity test; the units are Mm3. The bold tick marks on the
abscissa indicate beginning and end of a month. (a) Sensitivity toCN(II) . CN(II) was varied
in the range 60–90; for all the experiments, we setλ = 0.2 and the AMC thresholds to 100 and
250 mm. CN(I) andCN(III) were estimated using Equation (4.8). The simulated discharge
was higher for higher values ofCN(II). (b) Sensitivity to initial abstraction coefficientλ , which
was varied in the range 0.05–0.6. For all the experiments,CN(II) was set to 70 and the AMC
thresholds to 100 and 250 mm. The simulated discharge was higher for lower values ofλ. (c)
Sensitivity to the lower AMC threshold, which was varied in the range 50–150mm. For all the
experiments,CN(II) was set to 70 andλ = 0.2 . The simulated discharge was higher for lower
values of this threshold. (d) Sensitivity to the upper AMC threshold, which was varied in the
range 200–400 mm. For all the experiments,CN(II) was set to 70 andλ = 0.2. The simulated
discharge was higher for lower values of this threshold.
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days had rainfall over the upper threshold;∼ 22% of the days experienced the “average” rainfall.

The hydrologic rationale for these numbers is as follows. The soil and landare expected to adjust

to the normal or expected runoff over most of the rainy season. Hence,we assume that the dry

CN , implying greater storage and lower runoff, would hold for (1−1/e) of the days and that the

averageCN would hold for(1−1/e) of the remaining 1/e days, leaving 1/e2 of the days in the

higher-than-average-rainfall band. The simulations also suggest thatthis argument is reasonable:

the best results are obtained for these thresholds of 100 and 250 mm. Therefore, these were the

AMC values used for theCN andλ sensitivity tests.

Figure 4.7 Determination of the AMC thresholds for SimulationS1. The histogram shows the
percentage of the total days (during May–October) that had a 5-day antecedent rainfall in the
rainfall bands (mm) marked on the abscissa. The histogram was drawn byaveraging the number
of days in each band over the entire basin and summing over the three years1986, 1992, and
1990. The curve is the cumulative fraction. The vertical lines representthe lower and upper
thresholds. The lower (upper) threshold at 100 (250) mm; the cumulative fraction curve shows
that 1/e (∼ 36%; bottom horizontal line) of the days had rainfall above the lower threshold and
1/e2 (∼ 14%; top horizontal line) of the days had rainfall over the upper threshold.
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4.4 Results and discussion

We useCN = 70,λ = 0.2, and AMC thresholds of 100 and 250 mm as the optimum basin-average

values to simulated discharges (SimulationS1) for 18 years (1981–1998). The simulations showed

marked improvement; there were two major improvements inS1 overS0 (Figures 4.8 and 4.2).

First, as expected, the baseflow decreased during the weak spells of thepeak-monsoon season

(July–August). Second, as with the observed discharge, there was greater variability in the sim-

ulated discharge in SimulationS1 than in SimulationS0. The reason for these improvements is

that the highCN values in the average and wet periods lead to a dominance of surface runoff at

these times and the relatively lowCN during the dry periods allows much of the rainfall to be

abstracted.

One drawback of SimulationS1 is the underestimation of the discharge following the peak

of the monsoon, i. e., the simulated baseflow in September is lower than observed. The main

drawback, however, lies in the simulated discharge being much higher than the observed dis-

charge during the onset phase of the monsoon in May–June (Figure 4.2). One possible reason is

an overestimate of the runoff on the lee side, which is drier than the windwardside and should

therefore have lowerCN values compared to the slopes of the Sahyadris. The SCS parameters

in SimulationS1 were, however, constant across the basin, and did not account for such spatial

or geographical differences. Another possible reason is that the onset-phaseCN is overestimated

on the windward side too. The basin is much drier before the monsoon than after onset, and the

storage capacity should therefore vary accordingly. The SCS parameters in SimulationS1 did not,

however, vary with season, leading to a possible overestimate of the onset-phase surface runoff.

The sensitivity of the simulations to the SCS parameters implies a large potential variation in the

rainfall-runoff relationship across the basin, and possibly also in time. In other words, the 5-day

AMC used inS1 is not sufficient to capture the spatial and temporal variations that are likely in

the SCS parameters even within this small basin. Nevertheless, incorporatingthe SCS method
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Figure 4.8 Observed discharge (black), discharge simulated by SimulationS1 (red), and the
catchment-integrated rainfall(blue) at Ganjem for May–October, (a) 1986, (b) 1992, and (c) 1990.
The units are Mm3/day. The bold tick marks on the abscissa indicate beginning and end of a
month.
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into THMB does improve the simulated discharge, suggesting that this simple parameterisation

is useful. Further improvements can be made by incorporating spatial and temporal variations in

the SCS parameters. The challenge is to incorporate these variations in a manner that is not only

physically reasonable, but also simple. Incorporating spatial and temporalvariations in the SCS

parameters is the subject of the next chapter.



Chapter 5

Spatio-temporal variability in

rainfall-runoff model

5.1 Introduction

SimulationS1 was a major improvement overS0. The reason for this improvement was incorpo-

ration of the SCS method into THMB: THMB’s simple parameterisation (a single parameterα)

was replaced by the more complex parameterisation of the SCS method (CN , λ, and AMC thresh-

olds). In SimulationS1, the SCS parameters used were constant in both space and time. Constant

parameters represent an average condition of the basin. This parameterisation ignores spatial and

temporal variability in rainfall (see Figures 3.3 and 4.1). It also ignores spatial variability of other

runoff-generating parameters (such as soil, land cover and use and other physical properties of

the basin). This variability in runoff-generating parameters implies a spatio-temporal variability

in runoff and therefore in the SCS parameters. Incorporation of this spatio-temporal variability in

SCS parameters in order to improve the discharge simulations is the subject of this chapter1.

1Work reported in this chapter is compiled in a manuscript for publication [Suprit et al., 2011].
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5.2 Spatial variations

Ideally, estimating the SCS parameters requires rainfall and runoff data from the catchment area,

or, in the case of a distributed model like THMB, from each grid cell. Thoughthe rainfall-mapping

procedure provides rainfall information for each grid cell, we do not have runoff information for

the cells. The only information available on runoff is the discharge at Ganjemand Kulem. THMB

is a distributed model, but we do not have the runoff data in the same distributedsense in order to

build an empirical, cell-based parameterisation of the SCS parameters. Hence, for incorporating

spatial variability into these parameters, we take recourse to a semi-lumped approach, wherein the

basin is divided into four sub-basins or hydrologically coherent regions.

5.2.1 Regionalisation

The reason for spatial variation in the SCS parameters (CN , λ and AMC thresholds) is the spatial

variation in soil type, vegetation cover, land use, and hydrological and moisture conditions. As

with runoff, we do not have cell-specific information for these characteristics: the only cell-based

data available are elevation and rainfall. Hence, we use the elevation to divide the basin into four

hydrological regions: the leeward side of the Sahyadris (Lee), the ridge and the windward slope

above 200 m (Ridge), the foothills of the Sahyadris or the region on the windward side between

elevation contours 40 and 200 m (Foothills), and the coastal plains or the region at an elevation

below 40 m (Coast). (The names in the parentheses are used to refer to these regions.) The

regions were delineated using the 40 and 200 m contours on the smoothed (using 5 cells× 5 cells

averaging) DEM. The resulting regions were made uniform by eliminating pockets or enclosures.

Thus, the basin was divided into four contiguous regions (Figure 5.1), and the SCS parameters

were determined for each of these regions. It is evident from Figure 5.1that the sharp change in

elevation that marks the Sahyadris occurs around the 200-m contour. Likewise, the 40-m contour

separates the low-lying Coast region from the relatively higher Foothills.
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Figure 5.1The four spatial regions,Coast, Foothills, Ridge, andLee, in the Mandovi basin (region
bounded by black curve). The regions were defined by smoothing the GLOBE DEM over 25 cells
(5 cells× 5 cells). Theridge (blue curve; Figure 3.1) separates the regionsLeeandRidge, the
smoothed 200 m (green) contour separates the regionsRidgeandFoothills, and the smoothed 40
m (purple) contour separates the regionsFoothills andCoast. Elevation is in metres. The filled
triangles mark the cells used for plotting Figures 5.4 and 5.6.

5.2.2 Estimation of parameters

TheCN was estimated on the basis of the runoff-generation capacity of the soil in a region because

detailed information on soil cover was not available. The dominant soil type and land usage for

the four regions are listed in Table 5.1. TheRidgeregion is dominated by forests with a thin layer

of laterite soil over an impervious layer of rock [Gokul et al., 1985], implying that it belongs to

Soil GroupD. As the hydrologic condition of theRidgeregion is not known, we average theCN

over the three types of hydrologic conditions tabulated by SCS (Table 4.2),yielding CN = 75.

From the soil type listed in Table 5.1, it is evident that theRidgeregion has the maximum runoff-

generation capacity, followed byFoothills, Lee, andCoast.

The estimation ofλ was done similarly. The minimum value used in the literature (Table 4.1)
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Table 5.1Basin soil and hydrologic characteristics and SCS parameters for SimulationS2 (SCS
parameters allowed to vary in space).

Parameter Lee Ridge Foothills Coast Remarks

Soil Red, Shallow soils Red, Sandy soil, Representative
type laterite over rock Sandy loam

Hydrologic
soil group B/C D C A —

CN(II) 65 75 70 60 —

AMC (mm) Dry < 100 < 150 < 100 < 100 5-day antecedent
AMC (mm) Wet > 100 > 400 > 250 > 200 rainfall

λ 0.3 0.05 0.1 0.3 SCS value (0.2)

was used for theRidgeregion because of its steep slopes and impervious, rocky soil. The highest

value ofλ (0.3) was used for Lee (Table 4.1) because of its gentle topography andSoil Group (B

andC), which would allow more of the rainfall to be abstracted. The same value wasused for

Coastbecause it belongs to Soil GroupA, which implies low runoff, and has a gentle topography.

As with CN andλ, the AMC thresholds were prescribed for each of the four regions. The

antecedent rainfall, however, was computed separately for each grid cell and the condition (dry

or average or wet) is determined for each cell. As done earlier for the entire basin, the AMC

thresholds for each of the four regions were determined on the basis of ahistogram of rainfall

during May–October and a cumulative frequency curve of the 5-day rainfall (Figure 5.2): the

thresholds, listed in Table 5.1, were chosen such that∼ 36% (∼ 14%) of the days had rainfall

above the lower (higher) threshold.

5.2.3 SimulationS2

We extended the SCS parameterisation in THMB to permit spatial variation in the SCS parameters

(SimulationS2, Table 5.1). The simulated discharge (Figure 5.3) is similar to that in Simulation
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Figure 5.2As in Figure 4.7 but for SimulationS2, in which the AMC thresholds depend on the
spatial region:Lee(top left) orRidge(top right) orFoothills (bottom right) orCoast(bottom left).
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S1 (Figure 4.8): the spatial variation of the SCS parameters has but a minor impact on the sim-

ulated discharge at Ganjem. The higherCN(II) (75) in the high-rainfall Ridge region leads to

an improvement in the simulated discharge during July–September: the peak discharge increases,

and so does the baseflow during the weak spells and following the monsoon peak in September.

This increase in the RidgeCN(II), however, leads to an increase in the overestimate of discharge

during the onset phase in May–June. Thus, only spatial variation of the SCS parameters is not

sufficient to simulate the Mandovi discharge accurately. So, we explore the impact of the temporal

variation of the SCS parameters on the generation of runoff.

5.3 Temporal variations

As discussed earlier, most of the west-coast rainfall (∼ 90%) occurs during the summer monsoon

(June–September), with negligible rainfall during December–April (Figure1.8). Correspondingly,
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Figure 5.3 Observed discharge (black), discharge simulated by SimulationS2 (red), and the
catchment-integrated rainfall (blue) at Ganjem for May–October. (A) 1986. (B) 1992. (C) 1990.
The units are Mm3/day. The bold tick marks on the abscissa indicate beginning and end of a
month.
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the daily discharge during December–April is of the order of 0.1 Mm3 in contrast to the 100 Mm3

discharge observed in bursts during the peak of the summer monsoon (July–August, Figure 4.1).

The transition from the dry to the wet season occurs in May–June. Thereis considerable

rainfall during this onset of the summer monsoon, but there is no hydrological response: the

discharge remains low, responding only to rainfall bursts during this onset phase (Figure 4.1).

Even during these bursts, however, the discharge is much lower than the catchment-integrated

rainfall. Thus, most of the rainfall during the onset phase is abstracted or lost to the river flow.

After some time following the onset of the monsoon, the discharge starts mirroring the rainfall.

The sharp discharge peaks observed during June–August coincidewith the rainfall peaks, as is

evidenced by the lack of any time lag between the rainfall and discharge on the daily time scale

(Figure 4.1). This coincidence of peaks has two implications. First, surface runoff or overland

flow dominates following the onset of the monsoon, and there is practically no subsurface runoff

or baseflow. The Mandovi originates on the lee side of the Sahyadris andflows for ∼ 37 km

before reaching the gauging station at Ganjem. The time taken for this flow to reach Ganjem

is just 2–3 hours, leading to the coincidence of rainfall and discharge peaks. Second, success

in simulating the peak discharge during June–August is contingent on success in mapping these

rainfall peaks accurately. As shown in Figure 4.1, the peak summer-monsoon discharge, even

allowing for a 15% error in the discharge measurement, is invariably greaterthan the catchment-

integrated rainfall. The rainfall-mapping algorithm is unable to resolve the peak rainfall events

and underestimates the rainfall during these bursts. The cause of this underestimation lies in the

sparsity of rain gauges (see Figure 3.1): there are too few gauges foran accurate mapping of the

strong rainfall gradients across the Sahyadris and this problem is exacerbated for the shorter time

scales. This underestimation of rainfall has implications for the simulated discharge.

Though the baseflow is negligible in the Mandovi, there are two seasons when it makes a

contribution. First, the negligible discharge during the lean season (December–April) comprises

primarily of baseflow. Second, the discharge during early September, atthe conclusion of the
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peak-monsoon season, exceeds the catchment-integrated rainfall (seeFigure 3.1). This excess

flow is also probably sustained by baseflow resulting from the heavy rainfall during the preceding

bursts.

Therefore, our objective for incorporating temporal parameterisationsis to focus on three as-

pects of the discharge in the Mandovi. First, we seek an improved simulation ofthe observed

discharge throughout the rainy period from the onset of the monsoon in late May or early June to

the end of October, by when the baseflow declines to negligible levels beyond the scope of this

model. Second, though the baseflow following the peak monsoon is small, it is almost two orders

of magnitude larger than the lean-season flow and is therefore significantenough (∼ 10 Mm3)

to merit better simulation. Third, the large abstraction during the onset phase of the monsoon is

important, but neither SimulationsS1 nor S2 could simulate it correctly: simulating this large

abstraction is important.

5.3.1 The seasonal change in abstraction

The excess rainfall in the Mandovi basin appears neither as streamflow (immediately following the

rain) nor as baseflow (appearing after a lag) (Figures 1.9 and 4.1). This excess rainfall must there-

fore either recharge the groundwater or be returned to the atmosphere through evapotranspiration.

On the catchment scale, groundwater recharge is a small quantity [Coe, 2000; Maŕechal et al.,

2009] and has been neglected in the THMB formulation. Evapotranspirationis therefore the only

loss term in this model and it is parameterised using the initial abstraction, which isa function of

CN andλ in the SCS method. In any case, evapotranspiration observations are rare in the region

[Maréchal et al., 2009], and estimates of initial abstraction are non-existent.

Before monsoon onset, the soil is dry, temperature is high, and relative humidity is low. Tran-

spiration through the vegetation canopy also leads to a loss of water from thebasin [Maŕechal et al.,

2009]. Therefore, there exists a large potential for initial water retentionand evapotranspiration

whenever moisture becomes available. These conditions prevail till the system changes from a



Spatio-temporal variability in rainfall-runoff model 85

moisture-deficient state to a moisture-saturated state. The rate at which thesechanges occur de-

pends on the process of monsoon onset, i. e., fewer rainy days in June make this transition slow,

allowing more abstraction.

The basin characteristics change dramatically once the monsoon sets in. Thesoil begins to

soak up moisture, temperature decreases, and relative humidity increases. Evapotranspiration is

highest during this transition period. It is higher than during the precedingdry season because the

actual evapotranspiration is limited by the amount of water available. Hence, abstraction is at its

peak during the onset phase. Not accounting for this high abstraction leads to an overestimate of

the discharge at this time (Figures 4.8 and 5.3).

During the peak-monsoon season, availability of water is no longer a limiting factor, but lower

temperatures and high relative humidity, in combination with the increase in the number of rainy

days, ensure low evapotranspiration and low initial abstraction.

Immediately after the monsoon peaks, the soil is still saturated. Hence, the runoff responds

rapidly to rainfall and the abstraction remains low. Therefore, the catchment rainfall at this time is

comparable to the observed discharge (Figures 4.8 and 5.3), but the runoff generated in the model

is low, leading to an underestimate of the discharge even if the SCS parametersare allowed to vary

spatially (Figure 5.3). Later the soil dries out, but the availability of water becomes the limiting

factor and abstraction remains low till the following year’s monsoon onset.

Thus, the SCS parameters exhibit an inherent seasonality that cannot beaccounted for by the

5-day AMC parameterisation. In other words, there is a difference between a dry (or wet) spell,

based on the 5-day antecedent rainfall, in the dry and wet seasons. Hence, temporal variation of

the SCS parameters needs to be incorporated into the rainfall-runoff model.

One way to incorporate seasonality in the SCS parameters is implementing a similar param-

eterisation like AMC, but for a longer time scale of 30 days. The idea is that a 30-day param-

eterisation forCN(II) andλ might be able to capture seasonal or low-frequency variations by

accounting for rainfall over a longer time scale in addition to the higher frequency variations. The
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basis for this assumption lies in the lower rainfall in May–June compared to August–September,

implying a lower (higher)CN during monsoon onset (post-monsoon) for the same 5-day an-

tecedent rainfall. This 30-day AMC-like parameterisation was used in addition to the 5-day AMC.

The simulation is better than SimulationS2 over only a part of the rainy season, but it is worse at

other times.

The reasons for the inability of a second, longer, AMC-like parameterisation to account for the

low-frequency variability are the rapid decrease in rainfall following the peak of the monsoon and

the sudden increase in rainfall during onset. The soil also does not seem to dry as much during the

weak phases of the peak-monsoon season. Such weak spells are different from a similar rainfall

regime either during the onset or following the peak monsoon. In other words, it is not enough

that a longer, 30-day window is used for determining the runoff: equally important is the location

of this window in the seasonal cycle of rainfall. Hence, the temporal parameterisation has to

incorporate the seasonal cycle of soil moisture in order to generate the appropriate runoff.

5.3.2 Seasonal variation of SCS parameters

In order to build a time-dependent parameterisation of the SCS parameters, we need to distinguish

the different rainfall-runoff regimes during the seasonal cycle and define objective criteria for

transition from one regime to another. The only data available, however, are the daily rainfall used

to force the model and the observed daily discharge. We use both rainfalland discharge to describe

these temporal regimes, but use only the rainfall and its accumulation over theyear, which we call

cumulative rainfall(CR), as the criteria for transition from one regime to another.

5.3.3 The temporal regimes

The temporal regimes are described in Table 5.2 and depicted graphically in Figure 5.4. The

discharge, rainfall, and CR curves show that there exist five distinct temporal regimes in the Man-

dovi basin. The first regime is theLean-SeasonRegime (A) at the beginning and end of a calendar
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Table 5.2Classification of hydrological regimes (temporal) and of the transitions fromone regime
to the next. See Figure 5.4 for the corresponding graph.

Classification Condition Rain CR Discharge

A Lean-Season Very dry (scanty
rainfall)

Very small No discharge

TransitionAB First spells of
rain

Small inflection —

B Onset-
Monsoon

Wet unsaturated Rain in bursts or
continuous rain
peaks

Rising Does not
respond to rain

TransitionBC Bigger burst
that continues
into peak-
monsoon (3–6
days into the
burst)

First large ups-
lope inflection

Starts respond-
ing to rain

C Peak-
Monsoon

Very wet Intense and con-
tinuous

Rising rapidly
(with plateaus
during weak
spells)

Follows rainfall
curve

TransitionCD Rain break
(little or no
rainfall) for 5
(more) days

Second large
downslope
inflection

Recedes expo-
nentially

D End-
Monsoon

Wet saturated late-monsoon
active period or
rain bursts

Flattening out
some bumps

Still responds
big rain bursts

TransitionDE Longer break of
10–15 days

Smooth decline
continues

E Post-
Monsoon

Moist unsaturated Scattered bursts
of low rain

Plateau Stops respond-
ing to the rain

TransitionEA 30 days of no
rainfall

Maximum —

A Lean-Season Very Dry No or scanty
rainfall

Maximum No discharge



Spatio-temporal variability in rainfall-runoff model 88

year. This regime is very dry and the discharge is due to a baseflow that is three orders of mag-

nitude smaller than the peak discharge during the year. The transition (calledAB) to the second

regime, which is theMonsoon-OnsetRegime (B), is marked by the first spells of rain. RegimeB is

wet, but the soil is unsaturated. In other words, while there is frequent rainfall, the discharge does

not respond to the rainfall. The transition (BC) to the third regime, which is thePeak-Monsoon

Regime (C), is marked by a big rainfall burst and a sharp inflection of the CR curve;the soil is

saturated by now and the discharge starts responding to the rainfall during this transition (instanta-

neous pooling). Rainfall is more sustained during this transition and lasts a few days, leading to a

different slope for the CR curve during this regime in comparison to the RegimeB. The transition

(CD) to the next regime, called theEnd-MonsoonRegime (D), is marked by a break in rainfall.

There is little or no rainfall for five or more days, the CR curve plateaus off(marking a second

major inflection point), and the discharge recedes exponentially. During RegimeD, there are some

rainfall bursts, but they are weaker than during RegimeC, and the discharge still responds to these

bursts because the soil is wet and saturated. The transition (DE) to the next regime, called the

Post-MonsoonRegime (E), is marked by a longer rainfall break, which lasts for 10–15 days. Dur-

ing this regime, the soil is moist (but unsaturated), and the discharge stops responding to the weak

and scattered rainfall. The last transition (EA) is back to Regime (A): it occurs towards the end of

the calendar year and is marked by a longer (∼ 30 days) rainfall break.

5.3.4 Objective criteria for transition

The transitions described above need quantification, i. e., a set of objective criteria are needed to

determine the period of transition. The criteria we use (see discussion belowand Table 5.3) are

applied to each grid cell of the Mandovi basin. Hence, a transition can occur on different days

for different cells within a spatial region. The rainfall data, however, indicate that the transition

occurs for most cells within a week of the first transition in the region.

The rainfall is cumulated starting in January every year because Transition EA, marking the
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Figure 5.4 The temporal regimes,A–E, and the inter-regime transitions. The vertical lines mark
the transition from one regime to the next. The observed discharge (dotted curve, in Mm3), daily
rainfall over one grid cell in a region (solid black curve, in mm), and the cumulative rainfall (CR;
solid red curve, in mm) in the cell are shown. The cell chosen has the average rainfall in a region
during May–October and is marked by the filled triangle in Figure 5.1. The four panels are for the
Ridge(first), Foothills (second),Coast(third), andLee(fourth) regions during 1992.
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Table 5.3Objective criteria for transition from one regime to the next. Note that CR is estimated
starting from the beginning of a year.

AB BC CD DE EA

CR ≥ 75mm CR1 CR2 — —

AMC — — — AMC ≤ 30
mm for 5
consecutive
days

—

P (1) Sum of 3-
dayP ≥ 30mm.
(2) P ≥ 5mm
on each of 3
days

P ≥ 150mm P ≤ 5mm for
one day

P ≤ 5mm
for 15 con-
secutive
days

P ≤ 1mm
for 30 con-
secutive
days

Note Both conditions (1) IfP con-
dition true,
transition after
5 days. (2) If
not, then CR1
condition. (3)
Transition if
one of the above
is true

CR2 condition
first and then
rain. The AMC
applied only
once, then P
applied

AMC first,
and thenP .

Transition in
December

CR1 Fit a straight line to the CR data and compare the deviation of the curve from
the line. Transition occurs if the deviation (concave-up inflection) exceeds one
and half standard deviation for five consecutive days

CR2 Fit a straight line to the CR data and compare the deviation of the curve from
the line. Transition occurs if the deviation (concave-down) exceeds one and
half standard deviation for five consecutive days.
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start of the lean-season regime, occurs in December. The first transition tobe determined isAB,

i. e., the onset date (phase) of the monsoon. Since scattered pre-monsoon showers may occur in

April and May, the first condition is that the cumulative rainfall (CR) shouldexceed 75 mm. A

second condition to ensure that an isolated event is not taken to herald the monsoon onset, is that

the accumulated rainfall over three consecutive days has to exceed 30 mmand the rainfall on each

of these three days has to exceed 5 mm. This latter condition is similar to that usedby IMD to de-

termine the date of onset of the monsoon over Kerala [Ananthakrishnan etal., 1968; Pai and Nair,

2009]. A more complex criterion recently adopted by IMD results in a similar datefor mon-

soon onset [Pai and Nair, 2009]. These two conditions constitute the criterion for TransitionAB

(Table 5.3).

The second transition,BC, is marked by a sharp increase in rainfall, and the CR curve shows

a sharp, concave-upward inflection (Figure 5.4), which we capture bynoting the deviation of the

curve from a line fitted to the CR curve over RegimeB. This procedure is implemented as follows.

1. First, RegimeB is assumed to last at leastLC (least count, set to 5) days. From the starting

point (SP ) of RegimeB, a least-squares regression line is fitted to the CR curve.

2. Once RegimeB is LC days long, a comparison is made between the actual deviation (AD)

of the curve from this line with the positive standard deviation (PSD) of the fitted line;

the difference between these two deviations (IC is AD minusPSD ) is a measure of the

concave-up inflection of the CR curve.

3. If IC exceeds zero for a minimum number of days (MD), then transition is declared on the

last of theseMD days.

LC andMD are determined by the typical time scale associated with these rain events. Rain-

fall observations suggest that the time scale for this period is∼ 5 days, the typical time scale for

dry and wet spells [Kulkarni et al., 2006] . Thus, we set the minimum numberof days for both
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LC andMD to 5. It is worth mentioning here thatMD is not equated to one so as to prevent an

isolated rain event from determining the transition. Such an isolated event can, however, change

the hydrological characteristics of the cell if the rainfall associated with thisevent exceeds some

threshold. Hence, if the rainfall on some day during RegimeB exceeds 150 mm, transitionBC

is assumed to take place five days after this event. Thus, two conditions constitute the criterion

for BC, but only one of these two conditions has to be fulfilled for the transition to takeplace

(Table 5.3).

The third transition,CD, is opposite toBC. The CR curve plateaus off, resulting in another

sharp inflection, but now in the opposite direction, i. e., the inflection is concave-down (Figure 5.4).

RegimeC is assumed to last at least 60 days. This is a reasonable time-period since thecore of the

summer monsoon lasts through July and August. The procedure to detectCD remains similar, but

opposite to that used forBC. In other words, ifIC is less than zero forMD consecutive days and

rainfall is less than or equal to 5 mm for a day, then transitionCD is deemed to occur. As done for

transitionBC, MD was set to 5 forCD. The second condition, that rainfall is less than or equal to

5 mm for a day, is needed to ensure that the transition does not take place during a rainfall burst,

even if it is a weak event (Table 5.3).

Once RegimeD sets in, the CR curve is too flat to be used as a criterion to determine Transition

DE (Figure 5.4). Hence, the following two conditions constitute theDE criteria. First, the 5-day

antecedent rainfall has to be less than 30 mm for five consecutive days.Once the first condition is

fulfilled, then the rainfall has to be less than 5 mm for 15 consecutive days for TransitionDE to

occur. Once the first condition is fulfilled, if the rainfall exceeds 5 mm after(say) 10 days, then

only the second condition is used again: the first condition is applied only once, but the second is

used more than once, if necessary, to determine the transition (Table 5.3).

The transition to the lean-period regime,EA, is deemed to occur if the daily rainfall is equal to

or less than the trace rainfall (1 mm) for 30 consecutive days. TransitionEA occurs in December,

and from January, the next year’s CR is computed (CR is reset to 0 on 1 January) and the process
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is repeated.

5.3.5 Estimation of the SCS parameters

The SCS parameters have to be estimated for each regime for each of the four regions. The AMC

thresholds were determined the same way as done forS1 andS2 (Figures 4.7 and 5.2): 1/e

(∼ 36%) of the days in a regime had rainfall above the lower threshold and 1/e2 (∼ 14%) of the

days had rainfall over the higher threshold;∼ 22% of the days experienced the “average” rainfall.

The AMC thresholds are listed in Table 5.4.

The exceptions to this rule were RegimesB and C. During RegimeC, the Peak-Monsoon

Regime, it rains on most days and the soil is wet and saturated. Therefore, the discharge curve

follows closely the rainfall curve (Figure 4.1), and almost all the rain is expected to run off on

most days even if the rainfall is relatively low. Hence, the thresholds for RegimeC (Table 5.4)

were determined using an inversion of the exponential cut-offs used earlier. We assumed that only

1/e2 (∼ 14%) of the days were dry, or had rainfall below the lower threshold (CN(I)), and 1/e

(∼ 36%) of the days were wet, or had rainfall below the higher threshold. Thus,∼ 22% of the

days had average rainfall (CN(II)) and∼ 64% of the days had rainfall over the higher threshold

(CN(III)).

During RegimeB (onset of monsoon), the discharge does not correspond to the rainfall curve.

Since it needs to rain more for the rain water to run off during this regime, we assumed that 1/e2

(∼ 14%) of the days had rainfall over the lower threshold and 1/e3 (∼ 5%) of the days had rainfall

over the upper threshold. Thus,∼9% of the days in this regime experienced average rainfall, 5%

heavy rainfall, and∼ 86% low rainfall; hence, most days in this regime were set toCN(I).

Just as the AMC thresholds show considerable variation with season, so must CN andλ.

We used the “mean conditions” to define the average basinCN(II) and used thisCN(II) to

estimate the dry-period and wet-periodCN(II). The average conditions are represented for the

Mandovi by RegimeE, the post-monsoon season, when the soil is still moist but unsaturated.
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Hence, the averageCN(II) used for the four regions were applied to this regime. We used this

CN(II) and Equation (4.8a) to estimate the dry-periodCN(II), which was applied to Regime

B, the monsoon-onset phase, and used it and Equation (4.8b) to estimate the wet-periodCN(II),

which was applied to RegimeD, the end-monsoon phase. RegimeA is even drier and represents

an extreme case in which there is little spatial variation in the basin’s hydrological characteristics:

hence, the lowestCN(II) value (40) noted in the literature [Mishra and Singh, 2003] was applied

to all regions in this regime. There is less spatial variation during the extremely wet and extremely

dry periods in comparison to the moderately wet periods. RegimeC is also an extreme case

and almost all the rainfall is converted to surface runoff because the soil is completely saturated.

Hence, for this regime, we set theCN(II) for all four regions to 90. Empirical estimates of

CN(II) for Indian watersheds spanning a range of hydrological regimes suggest that a high value

is appropriate during rainfall events [Mishra and Singh, 2003] . TheCN(II) values we use are

comparable to, but less than, the ones reported by Mishra and Singh [2003] because their estimates

were based on very few events.

Thus,CN(II) varies in both space and time. The spatial variation for selected days during

each regime is shown in Figure 5.5 and the temporal variation at the four locations marked in

Figure 5.1 is shown in Figure 5.6.

Shankar et al. [2004] and Suprit and Shankar [2008] also noted thatanother variable that might

require parameterisation is the residence time for the subsurface-runoffreservoir (TD in Fig-

ure 2.2). Their conjecture was that the residence time was likely to vary in space and time, just as

α seems to do. Simulations show, however, that the small baseflow in the Mandovi basin implies

a minor role forTD in the water balance. Hence, for all the simulations, we keepTD constant (15

days).
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Figure 5.5Variation ofCN in the basin on selected days during each temporal regime in 1992 .
RegimesA (top left),B (top right),C ((middle left),D (middle right),E (bottom left) and back to
regimeA (bottom right). Note that the scales are different .
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Figure 5.6 Variation of CN in time for the four regions. The locations are marked by the filled
triangles in Figure 5.1.
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5.4 Results and discussion

5.4.1 SimulationS3

SimulationS3 was made using the spatio-temporally varying parameters listed in Table 5.4. The

results (Figure 5.7) show a significant improvement over SimulationS2 (and SimulationsS0 and

S1; Figure 5.8). The simulated discharge matches the observed discharge better across a range

of conditions. Specifically, the simulated discharge increases during the rainfall bursts in July,

August, and September, resulting in a better match with observations. The increase in discharge,

however, is also seen during the weak spells in early July, when SimulationS3 performs worse

than SimulationS2. The sharp increase inCN with TransitionBC increases the discharge even

during the weak spells. It also leads to an erroneous increase in the discharge during the second

rainfall burst at the time of transition: the lowerCN in SimulationS2 leads to the simulated

discharge being closer to that observed. The results for the other two years, 1986 and 1990, are

similar (Figure 5.7).

The correlation for SimulationS3 is comparable to that for SimulationS2 (Table 5.5). Error

histograms for SimulationsS1, S2, andS3 show that the major improvement inS3 is the lack

of underestimation of discharge (Figure 5.9). Though SimulationS3 has a greater tendency to

overestimate the discharge during June–August, there is an overall improvement. Figure 5.8 shows

that SimulationS3 is much better thanS0, S1, andS2. It captures the variability better over the

range of temporal hydrological regimes.

5.4.2 Evapotranspiration and abstraction

The initial abstraction represents the minimum amount of rainfall required to generate surface

runoff. It is the only loss term in the model and represents the water lost to the atmosphere owing

to evaporation and transpiration (evapotranspiration). In the model, this abstraction is a function

of the initial abstraction coefficient (λ) and Curve Number (CN ); theCN , in turn, depends on the
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Table 5.4 SCS parameters for SimulationS3 (spatial and temporal variation). The numbers in
parentheses in the first column represent the parameter choices for Simulation S2; these parame-
ters are used for RegimeE. TheCN(II) for Regime B is computed using Equation (4.8a) and
the CN(II) for RegimeE, and theCN(II) for RegimeD is computed using Equation (4.8b)
and theCN(II) for RegimeE. RegimeE therefore represents the average or central hydrologic
regime, RegimesB andD the dry and wet regimes, and RegimesA andC the extremely dry and
wet regimes.

Lean Onset Peak End Post
period Monsoon Monsoon Monsoon Monsoon
(A) (B) (C) (D) (E)
Very Wet Very Wet Moist
dry (Unsaturated) wet (Saturated) (Unsaturated)

Region Curve NumberCN

Lee (65) 40 44 90 81 65
Ridge (75) 40 56 90 87 75
Foothills (70) 40 49 90 84 70
Coast (60) 40 40 90 78 60

Region Initial abstraction coefficient (λ)

Lee (0.3) 0.3 0.2 0.05 0.2 0.3
Ridge (0.05) 0.3 0.2 0.05 0.05 0.2
Foothills (0.1) 0.3 0.2 0.05 0.05 0.2
Coast (0.3) 0.3 0.2 0.05 0.2 0.3

Region AMC (5-day antecedent rainfall range in mm)

Lee (100–200) 30–40 200–250 50–100 20–40 5–20
Ridge (150–400) 40–70 300–450 100–200 30–60 5–20
Foothills (100–250) 50–70 350–450 50–100 20–50 5–20
Coast (100–200) 50–60 400–450 50–100 20–50 5–20
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Figure 5.7Daily observed discharge (black), discharge simulated by SimulationS3 (red), and the
catchment-integrated rainfall (blue) at Ganjem for May–October for three validation years. (A)
1986. (B) 1992. (C) 1990. The units are Mm3/day. The bold tick marks on the abscissa indicate
beginning and end of a month.
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Figure 5.8 Daily observed discharge (black), catchment-integrated rainfall (blue), and simulated
discharge (red) for May–October 1992. The units are Mm3. (A) SimulationS0. (B) Simulation
S1. (C) SimulationS2. (D) SimulationS3. The bold tick marks on the abscissa indicate beginning
and end of a month.
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Table 5.5A brief description of the simulations and their results (Figure 5.8). The last column
lists the square of the correlation between the simulated and observed discharge over the period
May–October. The first number is the correlation for the three years (1986, 1990, and 1992) used
to calibrate the model; the second number (in parentheses) is for the other 15years (model valida-
tion). The major improvement occurs with the inclusion of the SCS method in SimulationS1. The
other refinements — spatial and temporal variation of the parameters — resultin improvements
over a part of the simulation, but the overall May–October correlation does not improve any more.

Simulation Detail Parameters Simulated r2

discharge

S0 Only THMB α = 0.3 Figure 4.2 0.68
(No SCS) (0.67)

S1 THMB+SCS CN(II) (70) Figure 4.8 0.78
simulation λ (0.2) (0.76)
(constant parameters) AMC

(100–250mm)

S2 THMB+SCS Table 5.1 Figure 5.3 0.78
simulation (0.77)
(spatially varying param-
eters)

S3 THMB+SCS Table 5.4 Figure 5.7 0.79
simulation (0.80)
(spatio-temporal varying
parameters)
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Figure 5.9Absolute error histograms showing the difference between simulated and observed dis-
charge (Mm3) for the SimulationsS1, S2 andS3. Histograms are drawn for the three calibrations
year 1986, 1992, and 1990 during the summer monsoon (June–September). The ordinate shows
number of days averaged over three years. The vertical lines indicate the standard deviation.
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average-conditionCN (CN(II)) and the AMC thresholds.

The simulations suggest high abstraction during the monsoon-onset regime (B) (Figure 5.10).

Abstraction decreases sharply following monsoon onset and increasesagain slightly after the mon-

soon. It is low in the dry season because the limiting factor then is the availability of moisture.

It is shown by Shankar et al. [2004] and Suprit and Shankar [2008]in their annual simulation

that evapotranspiration is very small compared to rainfall. Therefore, in the Mandovi basin, the

net fractional abstraction during the year is low because the abstraction isnegligible when the

rainfall peaks. It is only during the onset phase that the fraction of rainfall abstracted (∼ 68%

over the 18 years for June) matches the high values suggested for Indiaby some recent studies

[Jain et al., 2007; Narasimhan, 2008]. Similar profiles have been estimated for evapotranspira-

tion using the Penman method for some west-coast cities [Krishna Kumar et al., 1987] and for

reference (or potential) evapotranspiration using satellite data for the Krishna basin (Musi River)

[Bouwer et al., 2008]. It is also evident from the simulations that large-scale data sets like those

based on the NCEP-NCAR (National Center for Environmental Prediction/National Center for At-

mospheric Research) Reanalyses [Kalnay et al., 1996] considerably underestimate the abstraction

(Figure 5.10).

5.4.3 Discussion

We built the model parameterisation using data for only three of the 18 years (Figure 4.4) for

which rainfall and discharge data are available. Validation of the model is done using the data

for the other 15 years. The error histogram for these 15 years (Figure 5.11) is similar to that for

the three years (Figure 5.11). The results of SimulationS3 for all the 15 other years are shown

in Figure 5.12. The model parameterisation works as well for the entire data set as it does for

the three calibration years (Table 5.5). Indeed, the strength of SimulationS3 lies in its ability

to simulate the discharge better across the spectrum of variability from the seasonal to the inter-

annual (Figure 5.13). The simpler 5-day AMC parameterisation fails to account for this spectrum
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of variability not only over a season, but also across years.

Nevertheless, there is a tendency to overestimate the discharge at some times insome years. In

1990 and 1995 (Figures 5.7 and 5.12), TransitionBCoccurs a little earlier than it probably should,

the peak-monsoon regime sets in early, and the simulated discharge is higher at the beginning of

RegimeC. In 1992 and 1998 (Figures 5.7 and 5.12), there is a long break during the peak-monsoon

season and the soil probably becomes unsaturated; hence, the discharge is overestimated. Other

than these discrepancies, the model performance is remarkable, and the simulated discharge cor-

relates well with the observed discharge across all the regimes (Table 5.5). Note that the major

improvement in the correlation (Table 5.5) was achieved by incorporating theSCS method, i. e,

the correlation increased significantly from SimulationS0 to S1, but there was not much change

in correlation from SimulationS1 to SimulationS3. The improvement brought about by incor-

porating the spatio-temporal variation is more subtle: the temporal variation helps improve the

discharge simulation acrossall temporal regimes, and though it is not possible to verify it, the

spatial variation probably helps improve the simulation acrossall regions.

In summary, even for a small basin like the Mandovi, the variations in space and time are

significant enough for them to be incorporated in the rainfall-runoff model.Since the Mandovi is

a typical west-coast river, our framework has major implications for the hydrology of other west-

coast rivers. A discussion on the strengths and caveats of the framework, and of its applicability

to other west-coast rivers is the topic of the next chapter.
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Figure 5.10 Abstraction (blue curve) during May–October in SimulationS3. The observed
discharge (black curve) and the evapotranspiration from the NCEP-NCAR Reanalysis (red curve)
are also plotted. The units are Mm3. The bold tick marks on the abscissa indicate beginning and
end of a month. (a) 1992. (b) 1986. (c) 1990.
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Figure 5.11Absolute error histograms showing the difference between simulated and observed
discharge (Mm3) for the SimulationsS1, S2 andS3. Histograms are drawn for the 15 vali-
dation years (1981–1998 excluding years 1986, 1992, and 1990) during the summer monsoon
(June–September). The ordinate shows number of days averaged over 15 years. The vertical lines
indicate the standard deviation.
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Figure 5.12Daily observed discharge (black), discharge simulated by SimulationS3 (red), and
the catchment-integrated rainfall at Ganjem (blue) for May–October (a) 1981, (b) 1982, (c)1983,
and (d) 1984. The units are Mm3. The bold tick marks on the abscissa indicate beginning and end
of a month.
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Figure 5.12(continued) Daily observed discharge (black), discharge simulated by SimulationS3
(red), and the catchment-integrated rainfall at Ganjem (blue) for May–October (a) 1985, (b) 1987,
(c)1988, and (d) 1989. The units are Mm3. The bold tick marks on the abscissa indicate beginning
and end of a month.
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Figure 5.12(continued) Daily observed discharge (black), discharge simulated by SimulationS3
(red), and the catchment-integrated rainfall at Ganjem (blue) for May–October (a) 1991, (b) 1993,
(c)1994, and (d) 1995. The units are Mm3. The bold tick marks on the abscissa indicate beginning
and end of a month.
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Figure 5.12(continued) Daily observed discharge (black), discharge simulated by SimulationS3
(red), and the catchment-integrated rainfall at Ganjem (blue) for May–October (a) 1996, (b) 1997,
and (c) 1998. The units are Mm3. The bold tick marks on the abscissa indicate beginning and end
of a month.
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Figure 5.13Correspondence plot between the daily observed discharge (abscissa; Mm3) and sim-
ulated discharge (ordinate; Mm3) for June–September for the 15 validation years. SimulationS3
(red hollow circles) performs much better than SimulationsS1 (hollow blue stars) andS2 (filled
black triangles). The maximum daily observed discharge is 406.5 Mm3, but we have truncated
the abscissa to 200 Mm3. Only seven data points were discarded over the 15 years (1830 days):
discharge is in the range 200–250 Mm3 on four days, in the range 250–300 Mm3 on two days,
and is 406.5 Mm3 on one day. The underestimation seen in the simulations occurs mostly during
July–August, and arises owing to the underestimation of peak rainfall events in the basin.
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Chapter 6

Implications of the modelling

framework

6.1 Introduction

The modelling framework developed in the preceding chapters has major implications for the hy-

drology of the Indian subcontinent. There is a dearth of information on the hydrological variables

in the country [Shankar et al., 2004]. Apart from a fairly consistent and long-term data set on rain-

fall, data on other hydrological variables is non-existent: river discharge is another variable for

which some data is available. Only a few of the rivers have sufficient data length; data for the rest

of the rivers is available only for the short term. Most of this data is scanty and not easily available.

The number of stream gauges is declining world over [Radhakrishna, 2003]. The situation is worse

for other hydrological variables like evapotranspiration [Rao et al., 1971; Rao, 2001; Narasimhan,

2008; Maŕechal et al., 2009], soil moisture, infiltration rate, for which data on the catchment scale

is non-existent. A much bigger problem, though, is the dearth of modelling studies or quantitative

frameworks. The focus of modelling studies in the country is limited to small catchment scales

for managing hydrological projects, or to solve very specific problems using complex hydrologi-
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cal models. There is also a spate of work on climate-change scenarios andtheir related feedback

systems on the hydrology of the country. Hydrological simulation studies on the catchment (or

larger) scale are not readily available: discharge simulations on daily scaleare much rarer. Most

of the information on hydrology in the country is available on either very small scale or based on

some gross statistics over a region (state level) [Shankar et al., 2004; Rao, 1975; Jain et al., 2007].

This is despite the fact that freshwater (river discharge) is crucial for climate and water resources.

Shankar et al. [2004] realised and addressed this problem: they initiated the building of a

hydrological framework consistent with the realities of the data availability of the country. They

proposed that any framework should follow these four basic guiding principles.

1. The framework should include a simple hydrological model that can provide a reliable water

balance of a river system.

2. Demands on the database required by the model should be consistent withthe realities of

the country.

3. The packages that incorporate the model should be able to handle a range of spatial scales,

from small rivers to continental scales, to enable many groups working independently on

different river basins, to dovetail their analyses into a coherent picture on the larger scale.

4. The models and their ancillary software should be freely accessible.

Hence, while developing our modelling framework, we have kept these guidelines in mind.

Instead of going for a complex procedure with a very specific application,we have opted for a

more simple approach, with a view to make it applicable in the general scenario.

6.2 Generality of framework: West-coast rivers

The modelling framework was tested for the Mandovi river. Simulations showed that the frame-

work was able to simulate daily discharges for the Mandovi river basin remarkably well. There
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were three reasons for choosing the Mandovi river for model-building. First, the Mandovi is typi-

cal of the westward flowing west-coast rivers; if the framework workshere, it is expected to work

elsewhere on the west coast also. Second, both the rainfall and discharge data were available for it,

allowing us to build the parameterisation by validating discharge simulations with the observation.

Third, it is the largest and the most important river of Goa (flowing near theNational Institute of

Oceanography in Panaji).

The most critical assumption is that the Mandovi is a river typical of the westcoast. Successful

application of our method to other west-coast rivers is contingent on the validity of this statement.

We have selected two more rivers for which we had observed dischargedata: Ulhas river to the

north of Mandovi and Aghanashini river to the south (Figure 6.1). Combined with Mandovi, the

three rivers cover a considerable fraction of the west coast, enablingus to examine the variability

along the coast. A plot of the observed discharge (normalised for comparison) of these three rivers

suggests (Figure 6.2) that the discharge patterns are comparable across most of the coast: the

inter-river variability is no more than the interannual variability for any river. A similar result is

obtained by performing a Kolmogorov-Smirnov test on the discharge data: the inter-river spread

in the curves is comparable to the interannual spread for a river (Figure6.3), suggesting that this

method should work for the other rivers.

6.2.1 Annual variability and spatial variability

The rivers (on the west coast) for which the parameterisation is likely to require modification are

the ones in Kerala because it experiences rain during the winter monsoon too, the longer west-

coast rivers like the Narmada and the Tapti because their basins encompass a wider spectrum of

hydrological regions, and the dry-region rivers like the Mahi ([Ramakrishnan et al., 2009]) and the

Sabarmati.
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Figure 6.1 The location of discharge gauges for the Ulhas (blue, discharge gaugeat Badlapur)
Mandovi (black, Ganjem), and Aghanashini (red, Santeguli). The three rivers cover a large fraction
of the Indian west coast. The catchment area of the Mandovi, Aghanashini and Ulhas are 872 km2,
1070 km2, and 785 km2 respectively, at the location of the discharge gauge.
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Figure 6.2Daily normalised discharge for 1990–1994 for three west-coast rivers (Figure 6.1). The
discharges are normalised by the highest daily discharge among any of therivers occurring in the
particular year. The rivers are Ulhas (blue), Mandovi (black), andAghanashini (red).
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Figure 6.3 Kolmogorov-Smirnov diagram showing the cumulative distribution plot for daily
discharge during June–September for 1990–1995 for the Ulhas (blue), Mandovi (black), and
Aghanashini (red) rivers.
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6.3 Assessment of the framework and future directions

6.3.1 Caveats of the modelling framework

The modelling framework simulates the daily discharges for Mandovi river across the whole range

of seasonal variability. This was achieved by improving the SCS parameterisation. Obtained using

limited data, this parameterisation needs further improvement. One notable drawback is the need

to specify a minimum duration (MD) of 60 days for the peak-monsoon regime. This specification

was necessitated by the need to preclude a prolonged weak spell or break, triggering a transition to

the post-monsoon regime. Would such a constraint be valid in a year as exceptional as 2002, which

saw one of the worst droughts on record, with the July rainfall deficit across India being almost

50% [Gadgil et al., 2002]? If such a break dries out the soil, a tendency for which was noted even

in the simulations for 1992 and 1998, it is likely that the AMC thresholds and theCN(II) values

would be different. A more elaborate parameterisation scheme is needed to handle such singular

cases.

Another caveat is the specification of absolute rainfall thresholds as oneof the criteria for

TransitionBC. Absolute thresholds are prone to giving erroneous results when the rainfall is “not

normal”.

A more serious caveat is the averaging of AMC thresholds across a region. There is consider-

able variation in rainfall even within a region, with the rainfall changing by a factor of over two in

the Ridge and Foothills regions (Figure 2.4). The thresholds should therefore be allowed to vary

across the region. Likewise, the absolute rainfall thresholds used to determine the TransitionsEA

andABshould also be allowed to vary within a region.

Hydrologically, monsoon onset, as defined here, is a process, not an event. This phase begins

with sustained, continual rainfall with its occasional showers marking the end of the dry season.

This phase ends when the discharge starts mirroring the rainfall. Since discharge gauges are not

available in most basins, it is not convenient to use the discharge as a parameter to define Transition
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BC, making it the most difficult transition to capture. Improvements in this part of thealgorithm

are needed to preclude the overestimation of discharge just before the transition occurs.

6.3.2 Strengths of the modelling framework

The framework simulates the hydrology of integrated terrestrial freshwater systems. It has the

capability of resolving linked terrestrial hydrological systems, which include lakes and wetlands.

Although lakes and wetlands are not important for the Mandovi basin, it is still advantageous to

have such capabilities.The framework is also highly scalable and can be used to simulate river

basins ranging from a very small scale to the continental scale.

Figure 6.4Simulated runoff for July 1992 (in m3 s−1) in the Mandovi river basin. The catchment
area is shown in colour along with the position of two discharge gauges: Ganjem and Kulem
(black circles). The spatial variability in runoff is captured well. Some of themajor tributaries
(Rivers Khandepar, Mhapsa, Dicholi, Valvat) are identified on the map. The modelling framework
allows one to calculate the freshwater discharge at any point along the river including the total
river discharge into the Mandovi estuary at its mouth at Panaji (red circle) for which there is
no information available. From Ganjem to Panaji, discharge doubles approximately, with major
contribution from tributaries in between.
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Apart from temporal variability in discharge, a major feature of this modelling framework

is that it resolves spatial variability in discharge also (Figure 6.4). In addition to its obvious

implications on water resources, spatial variability of discharge has crucial implications in many

applications. For example, ocean models require discharge at the mouth of the river and also as a

function of the coast line. Even to study the estuarine systems, discharge all along the estuarine

network is a necessary requirement. For Mandovi, the discharge gaugeat Ganjem, located at the

upstream end of the estuary, is∼ 50 km upstream of the mouth of the river. This is typical of

the river discharge measurements; gauges were put beyond the influence of tidal action. There are

no observations for events that happen from the gauging locations to the mouth of the rivers. For

estimating river discharge at its mouth, the normal practice is to use the discharge observation as it

is, or in some cases by some means of extrapolation; this is an unsuitable measure of the discharge

at the mouth.

For example, an estimate of the Mandovi’s discharge was reported by Rao [1975]. The Gan-

jem gauge did not exist then and Rao [1975] used a classification and extrapolation scheme to

estimate the discharge. Based on the data for gauged rivers in India, Rao[1975] estimated that the

discharge for river basins with ‘high’ rainfall was of the order of 65 Mm3 per 100 km2 of basin

area. This method yielded a value of∼ 1320 Mm3 for the Mandovi, which is almost a third of

the discharge measured at Ganjem. This result is not surprising becausethe data used by Rao was

from rivers spread across India, and rainfall varies from over 600 cm to less than 20 cm across the

country. Our estimate of the discharge at Panaji was over 6004 Mm3, with a standard deviation of

890 Mm3. The ratio of the simulated discharge at Panaji to that at Ganjem varied between 1.8–

2.1. Thus, discharge in the Mandovi increases almost two-fold from Ganjem to Panaji (Figures

6.5 and 6.6). A large fraction of this increase comes from the tributaries Khandepar (∼ 45%),

Valvat (∼ 25%; includes Dicholi and Kudnem rivers), and the Mhapsa (∼ 14%; includes Moide

and Asnoda rivers); the balance (∼ 16%) directly flows into the estuary from the land adjoining

it (Figures 6.4 and 6.6). The model river channel terminates at the point where the height falls
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below mean sea level in the GLOBE DEM. For the Mandovi, this point (where the river ends) is

in the vicinity of Panaji. The rest of the Mandovi basin, which consists of theAguada Bay, does

not form a part of the river-runoff computations in THMB because the bottom of the bay is below

mean sea level and therefore forms a part of the sea.

Figure 6.5Similar to Figure 3.5 with simulated discharges at Panaji included. The observed and
simulated discharge at Ganjem are plotted for comparison with Panaji simulation.
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This modelling framework makes very low demands on hydrological data. Apart from some

information on the soil type in the basin, the entire model parameterisation is built using only the

rainfall forcing. All model parameters are derived on the basis of the rainfall, which is a basic

requirement for any hydrological model. In this low demand on input data liesthe strength of the

modelling framework. Furthermore, the results (Figures 6.2 and 6.3) suggest that the model should

work for other basins on the Indian west coast too. That the model doesnot need to be calibrated

separately for each river is an important point because most of these basins are ungauged. Hence,

though the model has been validated only for the Mandovi, its potential regionof application is

considerable and spans most of the Indian west coast. In the context ofPrediction in Ungauged

Basins (PUB) [Sivapalan et al., 2003], this potential of the model is significant because, although

most of these basins are ungauged, the discharge of these rivers into the eastern Arabian Sea is not

small [Fekete et al., 2002], making them an important element of the local climate system.
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Figure 6.6 Bar chart showing the spatial variation of annual simulated discharge on the model
grid. The height of the bar represents annual discharge (in Mm3) from Ganjem (on the right) to
Panaji (on the left) for 1992 as a function of distance (abscissa is the number of grid cells from
Panaji to Ganjem) along the main channel of river. Discharge in the channel increases almost two-
fold from Ganjem to Panaji, most of this increase coming from the runoff from the Khandepar,
Valvat (including Dicholi), and Mhapsa rivers (Figure 6.4). The contributions of these tributaries
are shown in black.
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6.3.3 Future directions

Our modelling framework provides a tested tool to simulate the hydrology of the west coast of

India. The next logical step is to apply it to the remaining west-coast rivers. In the course of

this study, we have already collected an exhaustive data set of daily river discharge (from CWC)

and daily rain-gauge data (from IMD). Daily-discharge data were available for 47 stations in 34

river basins. Rain-gauge data were collected from 589 stations covering the whole of the west

coast, from Gujarat in the north to Kerala in the south. Availability of this crucial data implies

that the framework can be extended to the whole of the west coast. Nevertheless, we did not
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implement this framework for the other west-coast rivers. One of the reasons for not doing so

was the inability of GLOBE DEM to resolve the west-coast river basins accurately: as discussed

in chapter 2, considerable editing of GLOBE DEM is required to resolve the narrow channel.

Like any other DEM, GLOBE gives average elevation for a grid cell. Also,like most of the

other west-coast rivers, the Mandovi river is much narrower (∼ 100 m) than the resolution of the

GLOBE DEM, especially in its upstream reaches [Shankar et al., 2004]. Thus, GLOBE DEM

topography and river directions derived from the topography required editing to represent the

basin geometry accurately in the modelling framework. The DEM editing tool developed by

Shankar et al. [2004] and Kotamraju and Shankar [2004] requires visual editing. High resolution

of the GLOBE DEM (large number of grid cells) and the presence of a complex topography of

the coast along with narrower streams, implies investment of large amount of time. So, instead of

extending the framework to other rivers, we chose the more important task of building the model

parameterisations. It is worth noting that this issue is not only related to the coarser resolution

of GLOBE DEM with respect to west-coast rivers. Even a high-resolution DEM like SRTM

[Farr et al., 2007] was unable to resolve the Mandovi channel. We testedthe SRTM data (original

resolution 3 arc seconds) by averaging the 3-arc-seconds elevation tothe 30-arc-seconds GLOBE

grid. The resulting DEM was used for a simulation. The results show that there are far fewer pits

in the coarsened SRTM than were seen in the GLOBE DEM (Figure 6.7 (Figure 5 of Shankar et al.

[2004])), implying that the elevations are reasonably good. The river does not, however, flow to

the sea, the map of river flux showing instead a large number of short, unconnected channels

(Figure 6.8). This lack of a well-defined river implies the need for manual, subjective editing.

Hence, at least at coarsened resolutions like 30 arc seconds, the SRTM DEM is also unable to

capture the river valleys sufficiently well (Figure 6.8). Using a higher-resolution DEM increases

the computational expense considerably. Since a major potential application of this study is to

estimate the river discharge into the Indian seas, even the 30 arc secondsresolution is sufficient

for most of the oceanographic applications. Extension of this modelling framework to the rest
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of the west coast is, however, a logical course for future studies. Weenvisage achieving this

goal in two steps. First, as discussed earlier, application of the frameworkrequires editing of the

DEM, an exhaustive task in terms of the available resources. What is required is an automated

editing algorithm to make the DEM hydrologically correct and resolve the river basin geometry.

In GRASS GIS, watershed analysis tools liker.watershed andTerraFlow are available and

they can be used to obtain a hydrologically correct DEM.

Figure 6.7Figure 5 in Shankar et al. [2004]. The stream network is not resolved,most of the local
runoff piles up in 30–50 m deep pools, none of which exist in reality. The water level (in metres)
is also shown. This was owing to the inability of the DEM to resolve the Mandovi river valley,
which is much less than 1 km wide over much of its length. The large ‘lake’ seenin the centre of
the basin is just upstream of the stream-low gauging station at Ganjem. Comparewith the runoff
map with the edited GLOBE DEM, where the stream network is resolved quite well(Figure 6.4).
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Moduler.watershed uses a least-cost search algorithm designed to minimize the impact

of DEM data errors [Ehlschlaeger, 2001]. ModuleTerraFlow, a part of a software project

called computations on massive grids [Toma et al., 2001, 2003] derives a hydrologically correct

version of high resolution DEMs such as SRTM [Arge et al., 2000]. The project is designed using

efficient algorithms for flow computation on massive numbers of grid cells containing terrain,

such as SRTM DEM.TerraFlow computes the flow routing (path when a volume of water is

poured on the terrain) and flow accumulation (amount of water flowing through the terrain) from
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Figure 6.8Runoff (m3 s−1) simulated for July using (a) GLOBE DEM (edited) and (b) the 3 arc
seconds SRTM downscaled to 30 arc seconds (unedited). As with the unedited GLOBE DEM, the
river does not flow in a continuous stream to the sea.
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a given DEM. It is much faster (2 to 1000 times) than the other algorithms and has been used on

massive datasets, up to 109 (1 billion) in size [Toma et al., 2003]. It uses a flooding algorithm to

fill the sinks in a DEM [Arge et al., 2001]. Moduler.watershed is more accurate than module

r.terraflow, but this accuracy comes with the drawback of large computer time. A more

careful approach (using case studies) is required to ascertain the relative accuracy of these two

algorithms, which will require stream-network data (rivers digitized from toposheets). For a recent

work on flood-assessment methodology in Goa [CFFSC, 2009], we usedboth the algorithms to

resolve the river basin geometry. We filled the SRTM DEM with ther.terraflow algorithm

and then usedr.watershed for watershed analysis. This combination of modules resolved the

basin geometry of the rivers of Goa (Figure 6.9).

This result is significant, because once the need for manual editing is eliminated, hydrologi-

cally corrected DEMs can be used in the framework for the whole of the west coast. Implementa-

tion of format conversion between these two geometries and incorporation of the algorithms to the

modelling framework is not expected to be as big an issue as managing the much greater computer

time required when using the higher resolution SRTM DEM: running THMB with SRTM requires

1000 times more grid cells than the GLOBE DEM, implying much higher computational cost per

simulation. Possible solutions to this problem are to use an averaged SRTM DEM, i. e., a coarser
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Figure 6.9 GRASS GIS modules are used to generate the hydrologically corrected andfilled
SRTM DEM for Goa. Again the GRASS moduler.watershedcan be used to derive the basin
geometry. The areas plotted in grey are the watershed area over the location (red star) mentioned
for the rivers of Goa. The place names mentioned on the map are the nearest town. Inclusion of
these modules in the modelling framework is the next step.
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resolution, or even parallelising THMB to run on a cluster computer.

Second, since rainfall is the main forcing field, we plan to prepare a high-resolution spatial

rainfall data set for the west coast of India using the available rain gauge data and the method

described in Chapter 3.

Thus, our work can be interpreted as a move in the right direction to address the problem

of developing a modelling framework to quantify the hydrological variables,an important but

often neglected issue. We hope that this thesis will provide a much needed impetus and a modest

beginning in the direction of preparing a quantitative water budget for the whole country and

an estimate of the discharge into the Indian seas. Simulated river discharge on the subcontinent

scale can then be used for a variety of studies, including ocean and estuarine modelling, terrestrial

ecosystem modelling, GCM studies, and water-resource studies.



Chapter 7

Summary

We have described a hydrological modelling framework to simulate the discharge of the west-

coast rivers. The framework was tested for simulating the daily dischargeof the Mandovi, a

typical west-coast river. Discharge simulations compared well with the observations, capturing

the spatio-temporal variability in the hydrological variables. This large spatio-temporal variability

is a major feature of the west-coast rivers, which are fed by the summer monsoon rainfall. It is a

direct consequence of the large spatial and temporal variability in the rainfall and its interaction

with the other basin properties such as complex topography and characteristics of the soil.

The components of the modelling framework were described in Chapter 2. The framework

was applied to the Mandovi basin. The framework consists of a hydrological routing algorithm

(THMB), GLOBE DEM and GRASS-GIS. The framework is highly scalable and can be applied

to both, the small river basins of the west coast and the big basins like the Ganga and Brahmaputra.

It also requires little input data: for the rain-fed west-coast rivers, rainfall was the main input.

There is a large variability in rainfall on both spatial and temporal scales. Most of the west

coast rainfall (∼ 90%) occurs during the summer monsoon (June–September), with considerable

inter-annual and intra-annual variability. Rainfall on the west coast, due to its orographic nature,

also shows large spatial variability. Resolving this spatial variability was important as THMB
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requires rainfall mapped on the model grid. Rainfall increases from west to east in the basin and

owing to the barrier-like effect of the Sahyadri mountains, heavy rainfall occurs on the hills and

slopes of the mountain range. Rainfall then collapses as we move further eastward to the leeward

side of the Sahyadris. The annual rainfall varies from an average of286 cm at Panaji on the coast

to an average of 661 cm at Gavali on the windward slope of the Sahyadris. At Valpoi, which lies at

the foothills of the Sahyadris, the average annual rainfall is 413 cm. On theleeward side, at Asoga,

the average rainfall declines to 161 cm. The distance between Valpoi and Gavali and that between

Gavali and Asoga is about 10 km. Capturing this sharp variability was a challenge because of

the sparsity of the rain gauges. In the Mandovi (basin area 2032 km2) only five rain gauges are

available.

In Chapter 3, we have presented a method to resolve the orographic rainfall. The method was

incorporated into the modelling framework to map the rainfall on the model grid. Amultivariate

interpolation method (RST), using elevation as the third variable, was used for interpolating the

rainfall. The method requires locations and heights of the rain gauges, along with a DEM, to

obtain the rainfall maps. The key feature of the interpolation was to specify aridge line to separate

the windward and leeward sides of the Sahaydris in order to reduce the underestimation of the

heavy rainfall on the hills and slopes. The interpolation was done separately for the leeward and

windward sides by specifying the ridge linea priori. The resulting spatial fields were merged

together to get the rainfall forcing.

In Chapter 4, we introduced a rainfall-runoff model, called the SCS method,into THMB. On

the daily time scale, the complex relationship between rainfall and runoff implied that the simple

parameterisation of THMB could not work. The SCS method, which was empirically derived,

converts rainfall into runoff based on the basin properties and antecedent conditions. The SCS

method was incorporated into THMB: the parameterα was replaced by the parameters of the SCS

method (CN , λ, and AMC thresholds). This new parameterisation improved the daily simulations

of discharge.
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Initially, the SCS parameters were kept constant for the Mandovi basin, but the large variabil-

ity of rainfall, and hence runoff in the basin, demanded a spatio-temporal variability in the SCS

parameters also. There was still scope for improving the discharge simulations by including this

variability. CN andλ depend on the physical characteristics of the basin and antecedent con-

ditions (soil moisture condition). The physical characteristics of the basin vary in space and the

soil moisture conditions (or AMC) vary with season. Although the short-termvariations in SCS

parameters were taken care of by the 5-day AMC conditions, the variability due to the seasonal

cycle was not considered. Hence, the model parameters had to be a function of both space and

long-term variations or season. The strong seasonality of rainfall, and hence the soil-moisture

conditions, makes it important to resolve this variability.

In Chapter 5, incorporation of this spatio-temporal variability in model parameters was dis-

cussed. A major contribution was to develop an objective method to distinguish the long-term

moisture regimes. This method uses only the rainfall data to define the different states of prevail-

ing moisture conditions. According to the different regimes, model parameters are determined

and used in the simulations. Incorporation of this spatio-temporal variation in model parameters

improved the overall discharge simulations. The strength of the parameterisation lies in the limited

demand it makes on the input data: apart from some information on the average soil type in the

basin, the parameterisation is built solely on the basis of the rainfall that is used to force the model.

In summary, we have developed a modelling framework to simulate river discharges of the

west coast of India. The modelling framework is highly scalable, it simulates river discharge

considerably well, and its demand on input data is minimal. The salient points of thethesis are

presented below.

1. The modelling framework is applied and tested for the Mandovi river. The discharge simu-

lations compare well with the observations on annual to daily timescales.

2. Rainfall is the most important variable in the modelling framework owing to its availability
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and relative accuracy. The complex mountainous terrain of the west coast, the large gra-

dients of rainfall, and the small geographical area of the west-coast basins lead to a large

underestimation of rainfall in existing global and regional rainfall datasets. To resolve this

orographic rainfall on the west coast and obtain the rainfall forcing field, a rainfall-mapping

algorithm was incorporated into THMB.

3. Resolving spatial and temporal variability in the runoff-generation process, which is param-

eterised by the SCS-CN method, requires exhaustive data on the physical,geographical,

and biological characteristics, which are not easily available. The strength of our method is

that these processes, especially long-term seasonal variations, are parameterised using only

rainfall as input data. For most of the west-coast river basins, rainfall is the only available

data owing to the sparse distribution of rain gauges. That the model does not need to be

calibrated separately for each river is important because most of these basins are ungauged.

Hence, though the model has been validated only for the Mandovi, its potential region of

application is considerable for prediction in the several ungauged basinson the Indian west

coast.

The implications of this modelling framework for the hydrology of the west coast are immense.

The framework can be used to study the water budget of the region, providing valuable information

in diverse fields for potential users. The two communities expected to benefit from this work are

the oceanographic modelling community and water-resource planners.



Appendix A

Basic hydrological variables

A.1 Precipitation

Precipitation denotes the quantity of water falling on the land surface from theatmosphere. The

liquid form of the precipitation is called rainfall, which is different from solid forms such as

snowfall and hailstorm. It is common to use rainfall and precipitation interchangeably unless

specified otherwise. The rainfall is caused by the adiabatic cooling and subsequent condensation

of water vapour in a rising parcel of air. Based on the lifting mechanism of the air parcel, rainfall

is classified into the three categories: frontal rainfall, convective rainfall, and orographic rainfall.

Rainfall is measured by rain gauges, which give the rainfall amount in depth units over a

certain accumulation period. The period of accumulation is generally 24 hours. Another inter-

esting variable is rain intensity or rain rate, but its measurements are done onlyfor important

meteorological stations, and they are not common. In India, rainfall measurements are made by

the India Meteorological Department (IMD; URLhttp://www.imd.gov.in). It provides

quality-controlled rain-gauge data to researchers. During the course of this work, rain-gauge data

from 589 west-coast stations for the period 1975–2000 were collected from IMD.

http://www.imd.gov.in
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A.2 Evapotranspiration

Evapotranspiration denotes the amount of water transferred from the land surface to the atmo-

sphere through its conversion from liquid to gaseous state. Conceptually,evapotranspiration is

similar to precipitation, but reverse in direction of transfer. Evapotranspiration is also represented

in depth units. Evapotranspiration consists of two processes, evaporation and transpiration. The

term evaporation refers to the loss of water from the land surface through surface water bodies,

soil moisture and vegetation surfaces. Transpiration refers to the process by which plants transfer

water from the soil through their roots to the small openings in the leaves (stomata), from where

water escapes to the atmosphere.

Evapotranspiration is a complex process depending upon the energy balance, prevailing wind,

and relative humidity; availability of moisture is the limiting factor. A major concept to under-

stand evapotranspiration is potential evapotranspiration. Potential evapotranspiration denotes the

amount of water evapotranspired when the moisture supply is not limited. Measurement of actual

evapotranspiration is very difficult. Except in short-term field experimentsfor land-atmosphere

interaction studies, direct observations are not used in hydrological studies. In hydrology, evap-

otranspiration is generally estimated indirectly [Beven, 2001]. Evapotranspiration studies and

estimates for India are still rare [Rao et al., 1971; Narasimhan, 2008; Krishna Kumar et al., 1987;

Maréchal et al., 2009]. It is estimated only in full observatories of IMD.

A.3 Subsurface water

The most complex hydrological process takes place under the land surface [Beven, 2001]. A large

part of the rainfall that reaches the land surface is infiltrated into the surface soil layer to become

subsurface water. The water that infiltrates the soil either becomes soil moisture (to evaporate

later) or flows close to the surface asthroughflow(unsaturated flow) or it percolates under gravity

to become groundwater flow (saturated flow) through the soil or rock strata. Flow is saturated when
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the porous medium (soil) has voids and these are completely filled with water andis unsaturated

when some of the voids are still filled by air. Rainfall enters the soil zone andmoves downwards

into the water table. Water table is the surface where water in the pores is still atatmospheric

pressure; it marks the upper layer of the saturation zone. Above the water table is the capillary

fringe in which, owing to capillary action, pores are under saturation. Below the soil and capillary

fringe is the intermediate zone where the movement of water is mainly downward.These zones are

highly dynamic and show high variation in both temporal and spatial domain [Ward and Robinson,

2000]. Both saturated and unsaturated flow processes are important for surface-water hydrology as

subsurface and groundwater outflow occur when the subsurface water emerges to become surface

flow in a stream or spring [Chow et al., 1988]. Apart from these outflows, the groundwater is of

no interest for surface hydrology as average residence time for groundwater is around 300 years

[Ward and Robinson, 2000].

A.3.1 Infiltration

Infiltration is the process by which water from rainfall is absorbed into the soil. The infiltration rate

is the rate at which water enters into the soil at the surface. It is measured incm/s. The maximum

rate at which a given soil can absorb water is itsinfiltration capacity. When rainfall intensity

exceeds the infiltration capacity, surface ponding occurs and overlandflow results. Infiltration rate

depends upon the state of soil surface, vegetation cover, property ofthe soil (hydraulic conductivity

and porosity), and antecedent moisture condition.

A.3.2 Soil water

Soil water is the water contained in the soil profile and the subsurface waterin the unsaturated

layers above the water table. This definition includes region of soil upto the subsoil layers, which

can be from tens to even hundreds of meters below the surface. The abilityto absorb and retain

moisture is a very important control of the surface hydrological processes. Over thin and/or imper-
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meable soils, rainfall runs off quickly, while deep and permeable soils can store moisture longer

to contribute to river flow in even dry conditions. The soil-moisture capacity of a soil depends on

its texture and structure.

A.3.3 Groundwater

A part of the infiltrated water goes into the ground to be stored as groundwater. The groundwater

is stored in saturated layers of the soil column. The top layer of this deep saturated zone of soil is

called the water table. Although sitting deep, the groundwater also interacts withthe surface water

based on topography.

A.4 Surface water

Surface water is water stored or flowing on the earth’s surface. Rivers or streamflow form the most

important component of surface-water hydrology.

A hydrologist quantifies the amount of water flowing in a river by a quantity called river

discharge. At any point along the channel of a river, river discharge is defined as a volumetric flux

of water through that location. Integration of this volume flow rate over a period of time gives

the volume of water brought by the river at that point. Being a very important parameter in many

fields, river discharge is known by a variety of names such as streamflow, inflow, river runoff, or

freshwater influx. All these quantities denote river flow and the only difference is in describing

flow in terms of volumetric rate or absolute volume.

An important concept to understand river flow is hydrograph or streamhydrograph. It is

a plot of river discharge (both volume or volumetric flow) versus time at a location on a river.

Surface runoff is defined as anoverlandflow that contributes to the stream hydrograph or flow

in the river at any point. The surface runoff or overland flow is generated mainly by two basic

processes. The first process isinfiltration excess runoff, where runoff is generated when rainfall
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intensity exceeds the infiltration capacity of the soil surface. This is also known asHortonian

runoff based on the name of Robert E. Horton. The second process issaturation excess runoff,

where runoff is generated by rainfall on the saturated soil surface. In this case, rainfall intensity

may not exceed the infiltration capacity of the soil. Surface runoff can be used to represent the

point-scale processes (or grid scale) in the catchment or can be used atthe catchment scale to

represent a part of discharge (hydrograph) due to overland flow.

Different from the surface flow is the subsurface flow. This is the flow contributed to the river

flow purely by subsurface processes. The major component of the subsurface flow is thebaseflow.

Baseflow was classically defined as the contributing part of the river flowwhich occurs even after

the rainfall event has stopped, but, this usage is not strictly true. There isalways some contribution

of subsurface flow during a rain event.

A.4.1 River discharge measurements

The river discharge at a location is estimated by measuring the velocity of the stream and the

cross-sectional area of channel at that point. Whenever measurement of velocity is not possible

owing to operational reasons, river discharge is estimated by measuring the stage (water level in

the stream) and using a stage-discharge rating curve to obtain the river discharge. The location

where these measurements are obtained is called the stream gauging station and the measurements

are called stream gauging. In India, the main agency involved in stream gauging is the Central

Water Commission (CWC), from where discharge data was obtained for this thesis. Apart from

CWC, many states have their own agencies involved in gauging operations.

A.5 Basin geometry

Watershed is the basic hydrological unit for surface water flow. It represents a geographical region

contributing to the flow in the river at any point. The runoff (surface andsubsurface) generated
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over this area only is translated to the flow at the given point on the stream. The point for which

this area is defined is known ascatchment outletand the area is known as thecatchment areaover

this point. The entire area drained by a river along with its tributaries is knownasbasin, and the

outlet is a sea, an inland lake, or wetlands.



Appendix B

Rainfall-mapping algorithm

B.1 General problem of mapping

In general, what are available are point measurements of rainfall. A general formulation of inter-

polation can be defined as follows (following Mitas and Mitasova [1999]): Given theN values of

rainfall Pn, wheren = 1,2, · · · ,N , measured atn distinct pointsxn within a defined region in a

d-dimensional space (d = 1,2,3, . . .),

xn = [x1
n,x2

n, · · ·xd
n], (B.1)

find thed-variate functionF (xn), that passes through all the given rainfall pointsPn, i. e.,

F (xn) = Pn, (B.2)

wheren = 1,2, · · · ,N . As there are an infinite number of functions satisfying the above criterion,

additional conditions are required to arrive at a particular solution. A whole suite of different

interpolation techniques are designed by choosing different additional conditions. The choices

depend on the problem in hand, and are usually based on the different requirements of the ap-

plications. The most common interpolation techniques are usually based on geometrical surface

interpolation, where each point influences the resulting surface at a certain finite distance (such as
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Inverse-Distance Weighted (IDW)), or based on variational techniques like interpolation based on

mathematical surface that have certain property (such as splines), or onthe geo-statistical concept

of random variation (such as kriging).

B.2 Multivariate interpolation by regularised spline with tension (RST)

The general mathematical description of regularised spline method is given by Mitasova and Mitas

[1993] and Mitasova et al. [1995]. The RST method (both its 2-d and 3-d formulation) was used

by Hofierka et al. [2002] for interpolation of rainfall. The mathematical derivation given below

follow from Hofierka et al. [2002].

The RST interpolation is a type of variational interpolation. Variational interpolation is based

on the assumption that the interpolation should pass through (or as close as possible) to the data

points and, at the same time, should be as smooth as possible. The spline functionS(x) used for

interpolation fulfills the above two requirements simultaneously, reducing the tworequirements

into a single condition:

1. it minimises the deviations from the measured points, and

2. at the same time, it is as smooth as possible, where the smoothness seminorm,I(S) (also

known as smooth seminorm or roughness penalty) is the measure of smoothness.

Hence, the interpolation problem reduces to minimising
N

∑
n=1

|pn−S(xn)|2wn +woI(S), wherewn

andwo are positive weighting factors (wo/wn is the smoothing parameterw), andpn is measured

value at discrete pointsxn (see Equation (B.1)), wheren = 1,2, · · ·N within a region of ad-

dimensional space. Forwo/wn = 0 the functionS(x) passes exactly through the data. The general

solution of above minimisation can be represented as a sum of two components ([Talmi and Gilat,

1977])

S(x) = T (x)+
N

∑
n=1

λnR(x,xn), (B.3)
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whereT (x) is a ‘trend’ function andR(x,xn) is a radial basis function. The explicit form of

R(x,xn) depends upon the choice ofI(S). In the literature, there exist numerous choices of

splines [see Mitas and Mitasova, 1999, for previously known splines]. For the RST method,I(S)

is chosen such that it can synthesise properties of previously known splines into a single function

and have desired properties like an explicit form, multi-variate formulation, smooth derivatives

of higher orders and variational freedom through tension and smoothing[Hofierka et al., 2002].

The explicit forms (for 2, 3, andd dimensions) ofI(S) for RST are given in [Mitas and Mitasova,

1999; Hofierka et al., 2002]. The RST method is related to ANUSPLIN [Hutchinson, 1998a,b], a

rainfall interpolation software, but uses a different form ofI(S), leading to different properties of

the interpolated function. With a particular choice of coefficients, as mentioned in Hofierka et al.

[2002], an explicit form of the RST function in 3-d (d = 3) is

S(x) = a1 +
N

∑
n=1

λn

[
√

π

ρ
erf(

√
ρ)−2

]

, (B.4)

whereρ = (ϕr/2)2, r2 = ∑d

i=1(xi−xi,n)2 is the squared distance, erf is the error function, and

ϕ is the generalised tension parameter. The interpolation function given by Equation (B.3) is

obtained by solving a system ofN linear equations for the coefficientsa1 andλn.

To resolve the effect of topography on precipitation, RST interpolation can be formulated with

elevation as the third dimension (based on approach similar to Hutchinson and Bischof [1983]).

Given theN values of rainfallPn, wheren = 1,2, · · · ,N , measured atn distinct pointsxn within

a defined region in a 3-d space (following Hofierka et al. [2002]),

xn = [x1
n,x2

n,x3
n], (B.5)

we can compute a functionp = F (x1,x2) representing the spatial distribution of precipitation over

the terrain surfacex3 = G(x1,x2) as

p = F (x1,x2) = S
(

x1,x2, cG(x1,x2)
)

, (B.6)

wherec is the vertical rescaling parameter andS is the trivariate RST function.
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The main advantage of the RST method is its flexibility, which is the result of a set of inter-

nal tuning parameters within a single basis radial function. This is in contrastwith user-supplied

variogram (subjective based on observed co-variances) used in geo-statistical method like kriging.

The RST parameters like tension, smoothing and vertical scaling control the character of the re-

sulting interpolated surface or volume. The resolution and smoothing of the DEM influences the

spatial variability of the resulting precipitation map (Equation (B.6)). These parameters can be

selected empirically or may be based on a cross-validation procedure.

B.2.1 Implementation of RST in modelling framework

The spline methods are used for interpolation of various spatial variables like terrain and

bathymetry [Mitasova and Mitas, 1993], climatic variables like rainfall [Hutchinson and Bischof,

1983; Hutchinson, 1995, 1998a; Hofierka et al., 2002], chemical concentrations and soil proper-

ties, and image rectification [see Mitas and Mitasova, 1999].

An advanced interpolation method like RST, with its flexibility and potential application in

wide-ranging applications, becomes a desirable choice for incorporatingin a GIS. A potential

drawback of RST is the computational expense required to solve the systemof linear equations

for large datasets. As computer time scales asN3, processing of large datasets makes a heavy

demand on computer time. This problem was solved by implementing a segmentation process in

the GRASS-GIS [Neteler and Mitasova, 2002]. The segmentation procedure is based on the fact

that splines have a local behaviour and the impact of data points decreases rapidly with increasing

distance from the given location. A detailed discussion of the RST method as implemented in

GRASS-GIS as modulev.vol.rst is given in chapter 3.

Though, the RST method is computationally intensive, the GRASS-GIS implementation was

fast enough to be used for interpolating monthly rainfall for a small domain likethe Mandovi

basin. For extension of the modelling framework to daily simulations and its use in bigger do-

main, the extra computational overheads required to work in a GIS environment are avoidable.
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Hence, source code (inC) of RST implementation in GRASS (v.vol.rst) was extracted to be a

stand-alone program. The extracted RST module was incorporated into the modelling framework.

The stand-alone RST interpolation function is called from within THMB code. Since THMB is

in FORTRAN, mixed programming paradigms (C-FORTRAN inter-operability techniques) were

used to achieve this task. This stand-alone program was parallelised usingMPI (Message Passing

Interface) to be used exclusively for rainfall mapping for much larger-scale applications, such as

mapping rainfall for the entire west coast.
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J. C. Maŕechal, M. R. R. Varma, J. Riotte, J. M. Vouillamoz, M. S. M. Kumar, L. Rui, M.Sekhar,

and J. J. Braun. Indirect and direct recharges in a tropical forested watershed, Mule Hole, India.

Journal of Hydrology, 364:272–284, 2009. 84, 112, 133

J. Martin, J. D. Burton, and D. Eisma.River Inputs to Ocean Systems. United Nations Press,

New York, 1981. 12

C. Michél, A. Vazken, and C. Perrin. Soil Conservation Service curve numbermethod: How to

mend a wrong soil moisture accounting procedure.Water Resources Research, 41:1–6, 2005. 60

J. Miller, G. Russell, and G. Caliri. Continental scale river flow in climate models. Journal of

Climate, 7:914–928, 1994. 3, 22

S. K. Mishra and V. P. Singh.Soil Conservation Service Curve Number (SCS-CN) Methodology,

volume 42 ofWater Science and Technology Library. Kluwer Academic Publishers, Dordrecht,

Netherlands, 2003. 62, 65, 66, 67, 68, 69, 70, 94

S. K. Mishra and V. P. Singh. Long-term hydrological simulation based onthe Soil Conservation

Service curve number.Hydrological Processes, 18:1291–1313, February 2004. 61

S. K. Mishra and V. P. Singh. Another look at SCS-CN method.Journal of Hydrologic Engi-

neering, 4(3):257–264, 1999. 61

S. K. Mishra, V. P. Singh, J. J. Sansalone, and V. Aravamuthan. Modified SCS-CN method:

characterization and testing.Water Resources Management, 17:37–68, April 2003. 61

S. K. Mishra, M. K. Jain, P. K. Bhunya, and V. P. Singh. Field applicabilityof the SCS-CN-Based

Mishra–Singh general model and its variants.Water Resources Management, 19:37–62, 2005.

10.1007/s11269-005-1076-3. 68

S. K. Mishra, R. P. Pandey, M. K. Jain, and V. P. Singh. A rain durationand modified AMC-



Bibliography 152

dependent SCS-CN procedure for long duration rainfall-runoff events. Water Resources Man-

agement, 22:861–876, 2008. 69, 70

L. Mitas and H. Mitasova.Geographical Information Systems: Principles and technical issues,

volume 1, chapter Spatial Interpolation, pages 481–492. John Wiley & Sons, 1999. 35, 36, 138,

140, 141

H. Mitasova and L. Mitas. Interpolation by Regularized Spline with Tension: I. Theory and

implementation.Mathematical Geology, 25:641–665, 1993. 35, 36, 139, 141

H. Mitasova, L. Mitas, W. M. Brown, D. P. Gerdes, I. Kosinovsky, andT. Baker. Modelling

spatially and temporally distributed phenomena: new methods and tools for GRASS GIS. In-

ternational Journal of Geographical Information Systems, 9:443–446, 1995. special issue on

integrating GIS and Environmental modelling. 139

T. N. Narasimhan. A note on India’s water budget and evapotranspiration. Journal of Earth

System Science, 117(3):237–240, 2008. 12, 103, 112, 133

T. N. Narasimhan. Water: Science and society.Current Science, 89(5):787–793, 2005. 12

M. Neteler and H. Mitasova.Open Source GIS: A GRASS GIS Approach. Kluwer Academic

Publishers, Dordrecht, Netherlands, 2002. 26, 35, 36, 37, 141

M. G. New, M. Hulme, and P. D. Jones. Representing twentieth-century space–time climate

variability. Part I: Development of a 1961–90 mean monthly terrestrial climatology. Journal of

Climate, 12:829–856, 1999. 28, 35

M. G. New, M. Hulme, and P. D. Jones. Representing twentieth-century space–time climate

variability. Part II: Development of 1961–90 monthly grids of terrestrial surface climate.Journal

of Climate, 13:2217–2238, 2000. 28



Bibliography 153

D. S. Pai and M. R. Nair. Summer monsoon onset over Kerala: New definition and prediction.

Journal of Earth System Science, 118:123–135, 2009. 91

A. Papoulis and S. U. Pillai.Probability, Random Variables and Stochastic Processes. McGraw

Hill Publication, 2002. 65

M. C. Peel and T. A. McMahon. Continental runoff - A quality-controlledglobal runoff data set.

Nature, 444:E14–E14, 2006. 3

G. D. Perry, P. B. Duffy, and N. L. Miller. An extended data set of river discharges for validation

of general circulation models.Journal of Geophysical Research, 101:21339–21349, 1996. 3

B. J. Peterson, R. M. Holmes, J. W. McClelland, C. J. Vorosmarty, R. B. Lammers, A. I. Shik-

lomanov, I. A. Shiklomanov, and S. Rahmstorf. Increasing river discharge to the Arctic Ocean.

Science, 298(5601):2171–2173, 2002. doi: 10.1126/science.1077445. 2

V. M. Ponce and R. H. Hawkins. Runoff curve number: Has it reached maturity? Journal of

Hydrologic Engineering, 1(1):11–19, 1996. 60, 61, 66, 70

B. P. Radhakrishna. Linking of major rivers of India - bane or boon?Current Science, 84:

1390–1394, 2003. 112

M. Rajeevan, J. Bhate, J. D. Kale, and B. Lal. Development of a high resolution daily gridded

rainfall data set for the Indian region. Technical report, India Meteorological Department, Pune,

2006a. IMD Meteorological Monograph No. Climatology 22/2005. 49

M. Rajeevan, J. Bhate, J. D. Kale, and B. Lal. High resolution daily gridded rainfall data for the

Indian region: Analysis of break and active monsoon spells.Journal of Climate, 86(3):296–306,

2006b. 7, 29, 49, 50

D. Ramakrishnan, A. Bandyopadhyay, and K. N. Kusuma. SCS-CN andGIS-based approach



Bibliography 154

for identifying potential water harvesting sites in the Kali watershed, Mahi river basin, India.

Journal of Earth System Science, 118:355–368, 2009. 114

R. Ramesh and M. G. Yadava. Climate and water resources of India.Current Science, 89(5):

818–824, 2005. 12

K. L. Rao. India’s Water Wealth: Its assessment, uses and projections. Orient Longman, New

Delhi, 1975. 12, 26, 113, 120

K. N. Rao, C. R. V. Raman, C. E. J. Daniel, and S. Venkataraman. Evaporation over India.

Technical Report PPSR No. 146, India Meteorological Department, Meteorological Office, Pune,

1971. 112, 133

P. S. Rao. Large-scale field experiments and modelling land surface processes: A review.Journal

of Agrometeorology, 3:1–21, 2001. 112

R. P. Sarkar. A dynamical model of orographic rainfall.Monthly Weather Review, 94:555–572,

1966. 48

R. P. Sarkar. Some modifications in a dynamical model of orographic rainfall. Monthly Weather

Review, 95:673–684, 1967. 48

R. Sausen, S. Schubert, and L. Dumenil. A model of river runoff for use in coupled atmosphere-

ocean models.Journal of Hydrology, 155:337–352, 1994. 3, 22

SCS. Hydrology, National Engineering Handbook. Technical report,Soil Conservation Service,

United States Department of Agriculture, Washington, D.C, 1971. 69, 70

SCS. Hydrology, National Engineering Handbook. Technical report,Soil Conservation Service,

United States Department of Agriculture, Washington, D.C, 1985. 65

D. Shankar. Seasonal cycle of sea level and currents along the coast of India. Current Science,

78:279–288, 2000. 10



Bibliography 155

D. Shankar and S. R. Shetye. Why is mean sea level along the Indian coast higher in the Bay of

Bengal than the Arabian Sea?Geophysical Research Letters, 28:563–565, 2001. 10

D. Shankar and S. R. Shetye. Are interdecadal sea level changes along the Indian coast influenced

by variability of monsoon rainfall?Journal of Geophysical Research, 104:26031–26042, 1999.

10

D. Shankar, V. Kotamraju, and S. R. Shetye. A quantitative framework for estimating water

resources in India.Current Science, 86(4):543–552, February 2004. 12, 23, 24, 26, 27, 28, 52,

94, 103, 112, 113, 123, 124

S. S. C. Shenoi, D. Shankar, and S. R. Shetye. Differences in heat budgets of the near-surface

Arabian Sea and Bay of Bengal: Implications for the summer monsoon.Journal of Geophysical

Research, 107, 2002. doi: 10.1029/2000JC000679. 10

Z.-H. Shi, L.-D. Chen, N.-F. Fang, D.-F. Qin, and C.-F. Cai. Research on the SCS-CN initial

abstraction ratio using rainfall-runoff event analysis in the Three Gorges Area, China.CATENA,

77(1):1–7, 2009. 68

M. Sivapalan, K. Takeuchi, S. W. Franks, V. K. Gupta, H. Karambiri, V. Lakshmi, X. Liang,

J. J. McDonnell, E. M. Mendiondo, P. E. O’Connel, T. Oki, J. W. Pomeroy, D. Schertzer, S. Ul-

henbrook, and E. Zehe. IAHS decade on Predictions in Ungauged Basins (PUB), 2003–2012:

Shaping an exciting future for the hydrological sciences.Hydrological Sciences, 48(6):857–880,

December 2003. 121

M. C. Smith and D. L. Thomas.Encyclopedia of water science, chapter Hydrological Process

Modelling, pages 518–520. Taylor and Francis, 2008. 61

E. P. Springer, B. J. McGurk, R. H. Hawkins, and G. B. Colthrap. Runoff curve numbers from

watershed data. A.S.C.E. Watershed management Symposium Proceedings,1980. 68



Bibliography 156

T. S. Steenhuis, M. Winchell, J. Rossing, Z. A. Zollweg, and M. F. Walter. SCS runoff equation

revisited for variable source runoff areas.Journal of Irrigation and Drainage Engineering, 121:

234–238, 1995. 61

K. Suprit and D. Shankar.Prediction in ungauged basins for sustainable water resources plan-

ning and management, chapter Simulating the discharge of the Mandovi River, Goa, pages 175–

186. Jain Brothers, New Delhi, 2006. 32, 35

K. Suprit and D. Shankar. Resolving orographic rainfall on the Indianwest coast.International

Journal of Climatology, 28:643–657, 2008. 26, 35, 41, 52, 94, 103

K. Suprit, D. Shankar, V. Venugopal, and N. V. Bhatkar. Simulating the daily discharge of

the Mandovi river, west coast of India.Hydrological Sciences Journal, 2011. Accepted for

publication. 77

A. Talmi and G. Gilat. Method for smooth approximation of data.Journal of Computational

Physics, 23:93–123, 1977. 139

L. Toma, R. Wickremesinghe, L. Arge, J. S. Chase, J. S. Vitter, P. N. Halpin, and D. Urban.

Flow computation on massive grids. InProc. ACM Symposium on Advances in Geographic

Information Systems, 2001. URLhttp://www.cs.duke.edu/geo*. 124

L. Toma, R. Wickremesinghe, L. Arge, J. S. Chase, J. S. Vitter, P. N. Halpin, and D. Urban. Flow

computation on massive grid terrains.GeoInformatica, International Journal on Advances of

Computer Science for Geographic Information Systems, 7(4):283–313, December 2003. URL

http://www.cs.duke.edu/geo*. 124, 125

M. Tomczak. Spatial interpolation and its uncertainty using automated anisotropic inverse dis-

tance weighting (IDW): Cross-validation/jackknife approach.Journal of Geographical Informa-

tion and Decision Analysis, 2:18–33, 1988. 37

http://www.cs.duke.edu/geo*
http://www.cs.duke.edu/geo*


Bibliography 157

TRMM, 2006. TRMM on-line documentation, 2006. URL

http://trmm.gsfc.nasa.gov/3b43.html. 30

USDA, 1980. CREAMS - A field scale model for chemicals, runoff, and erosion from agricultural

management systems. Congressional Research Report 26, 1980. 61

USGS. Shuttle Radar Topography Mission (SRTM), 3 arc-second scene, unfilled unfinished 2.0.

Online documentation, 2004. URLhttp://glcf.umiacs.umd.edu/data/srtm/. 26
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