Carbon dioxide emissions from Indian monsoonal estuaries

V.V.S.S. Sarma, R. Viswanadham, G.D. Rao, V.R. Prasad, B.S.K. Kumar, S.A. Naidu, N.A. Kumar, D.B. Rao, T. Sridevi, M.S.R. Krishna, N.P.C. Reddy, Y. Sadhuram, and T.V.R. Murty

National Institute of Oceanography, Council of Scientific and Industrial Research, 176 Lawsons Bay Colony, Visakhapatnam – 530 017, India Email: sarmav@nio.org

Estuaries are known to be strong source for atmospheric CO₂, however, little information is available from Indian estuaries. In order to quantify CO₂ emissions from the Indian estuaries, samples were collected at 27 estuaries all along the Indian coast during discharge (wet) period. The emissions of CO₂ to the atmosphere from Indian estuaries were 4-5 times higher during wet than dry period. The pCO₂ ranged between ~300 and 18492 µatm which are within the range of world estuaries. The mean pCO₂ and particulate organic carbon (POC) showed positive relation with rate of discharge suggesting availability of high quantities of organic matter that led to enhanced microbial decomposition. The annual CO₂ fluxes from the Indian estuaries, together with dry period data available in the literature, amounts to 1.92 TgC which is >10 times less than that from the European estuaries. The low CO₂ fluxes from the Indian estuaries are attributed to low flushing rates and less human settlements along the banks of the Indian estuaries.

1. Introduction

The oceans act as a net sink for atmospheric CO₂ (*Gruber et al.*, 2009; *Takahashi et al.*, 2009); however, the role of coastal bodies on global CO₂ fluxes remains unclear due to lack of data (*Borges et al.*, 2005; *Cai et al.*, 2006; *Chen and Borges*, 2009; *Laurelle et al.*, 2010). The estimated absorption of CO₂ from the continental shelves, with limited data, is 0.22 to 1.0 PgC y⁻¹ (1 Pg=10¹⁵ g; *Borges*, 2005; *Borges et al.*, 2005; *Cai et al.*, 2006; *Chen and Borges*, 2009), and of CO₂ emission by estuaries to the atmosphere is 0.27 PgC y⁻¹ (*Laruelle et al.*, 2010). An estimation of CO₂ emissions from European Estuaries, based on data of 9 estuaries, which were relatively polluted with organic matter, was between 30 and 60 TgC (1 Tg=10¹² g) which represents 5 to 10% of present anthropogenic CO₂ emission for Western Europe (*Frankignoulle et al.*, 1998). The estimates from the estuaries suffer from large uncertainties due to large variability and lack of systematic data collection. It is especially true for Southeast Asian estuaries as the biogeochemical cycling of material are different due to high atmospheric temperature, seasonality driven by monsoons, seasonal discharge etc (Sarma et al., 2011). These regions are also highly under-sampled with reference to time and space.

Estuaries in India are influenced by monsoonal rainfall and therefore called Monsoonal estuaries and have characteristic runoff periods and exhibit non-steady state behaviour (*Vijith et al.*, 2009). Seasonal runoff into these monsoonal estuaries far exceeds the total volume of the estuary during the times of peak discharges and entire estuary assumes riverine condition (*Sarma et al.*, 2009; 2010, 2011). Discharges of variable magnitudes occur for a period of 4-6 months and the upstream rivers almost dries up during the other periods allowing for the dominance of seawater in the estuary. Hence, the biogeochemical processes in monsoonal estuaries during discharge period could be completely different from those in dry period. Recently *Sarma et al.* (2011) reported record levels of partial CO₂ pressures (pCO₂) of >30,000 µatm in the Godavari estuaries, such as Mandovi-Zuari (*Sarma et al.*, 2001), Cochin estuary (*Gupta et al.*, 2009), Chilka estuary (*Gupta et al.*, 2008) whereas several fold lower pCO₂ levels (<1000 µatm) were found during dry periods in these estuaries. The objective of this study is to estimate contribution of CO₂ emissions from the Indian estuaries to the atmosphere.

2. Sampling and measurements

Earlier observations in the Indian estuaries suggested that the emission from the Indian estuaries during discharge period (wet period) was higher by 4 to 5 times than that of dry period (Sarma et al., 2001; Gupta et al., 2008, 2009; Sarma et al., 2011), hence sampling was carried out in all major estuaries along the Indian coast during discharge period. We have simultaneously estimated surface pCO₂ and related atmospheric fluxes during discharge period in 27 Indian estuaries all along the Indian coast (Figure 1). River discharge data were collected from the dam authorities and no data were available from minor river where no dams were constructed. From each estuary, samples were collected at 3 to 5 locations spanning from mouth to upstream of the estuary. All samples were collected within 3 weeks (28th July to 18th August 2011). Temperature, salinity and depth were measured using a CTD system (Sea Bird Electronics, SBE 19 plus, USA). Nutrients were measured using spectrophotometric method following Grashoff et al. (1992). Dissolved Oxygen (DO) was measured using Winkler's titration method of Carritt and Carpenter (1966). The analytical precision, expressed as standard deviation, was 0.07% for DO. About 1 litre of water samples was filtered through pre-combusted GF/F filter, at 300° C for 6 h, at low vacuum and dried at 60° C for at least 24 h. Filters were acid fumigated for 12 h in the desiccators to remove inorganic carbon and POC on the filter was measured using Elemental analyzer (Thermo Fisher, Germany). The pH and total alkalinity were measured by potentiometric (Metrohm, Switzerland) Gran titration methods following Standard Operating Procedures (SOP) suggested by DOE (1998). Dissolved inorganic carbon (DIC) was measured using a Coulometer (UIC Inc., USA). The precision for pH, TA and DIC were 0.002, 2.0 and 1.8 µmol l⁻¹ respectively. The accuracy of the DIC measurement were tested using Certified Reference Material supplied by Dr. A.G. Dickson, Scripps Institute of Oceanography, USA and internal standards and found to be within 1.5%. The pCO₂ was computed using measured salinity, temperature, nutrients (phosphate and silicate), pH and DIC using dissociation constants given by Millero et al. (2006) for 0 to 40 salinity ranges using CO_2 sys program (Lewis and Wallace, 1998). Daily wind speed data were obtained from the Indian Meteorological Department (IMD) from the stations close to the respective estuaries. The CO₂ fluxes were estimated using seasonal mean wind speed, pCO₂ difference between water and atmosphere and transfer velocity coefficient given by Wanninkhof (1992). The flux estimates based on Wanninkhof's coefficients may provide under-estimates due to the tidal enhancement of turbulence (Zappa et al., 2003; Borges et al., 2004). Atmospheric pCO₂ data obtained from a nearest station in India (Cape Rama, 15.08° N, 73.83° E)

corresponding to the period of study (Global view, 2011). Excess CO2 was computed based on Abril et al (2000) and Apparent oxygen utilization (AOU) was computed using Garcia and Gordon (1992).

3. Results and discussions

The data collected in the Indian estuaries display a range of different hydrological conditions, from low freshwater flow and longer residence time in the estuary to high freshwater flow and short residence time in other estuaries. The rate of mean annual discharge from the Indian estuaries varied from ~28 to $3500 \text{ m}^3 \text{ s}^{-1}$ and relatively higher discharge was found in the estuaries located in the northern than southern part of India. Discharge has significant impact on magnitude of organic matter brought to the estuary and its residence time in the estuary. These two processes are key for modification of organic matter in the estuary and formation of CO₂.

The pCO₂ showed wide variations in the Indian estuaries (Table 1). It varied between ~ 300 and 15210 μatm in the estuaries located along the east coast of India and between 1840 and 18492 μatm in the west coast of India. The pCO₂ levels observed in the Indian estuaries are in the range of world estuaries (Table S1; supplementary information). Low pCO₂ values were observed in estuaries which receive less discharge and due to mixing with the seawater (Rushikulya, Nagavali, Ambalyaar and Vaigi). Close to or >10,000 µatm of pCO₂ were noticed in 6 estuaries (Table 1), out of which four of them (Haldia, Mahanadi, Godavari, Ponniyaar estuaries) were located along the east coast of India (Fig. 1). Though the mean pCO₂ values of the estuary showed strong positive relation with the rate of discharge ($r^2=0.71$; p < 0.001; Fig. 2a), except in Tapti which is highly polluted estuary, suggesting that the magnitude of discharge has significant impact on the CO₂ fluxes. Higher POC concentrations were found (339±60 μ M) in estuaries receiving >1000 m³ s⁻¹ of discharge than lower discharge (<300 m³ s⁻¹) estuaries $(152\pm40 \mu M)$ and positive relation with pCO₂ (Supplementary figure S1a) suggesting that increased inputs of substratum (POC) led to enhanced bacterial degradation of organic matter. Sarma et al. (2011) observed that high bacterial respiration (20.6 \pm 7.2 μ MC l⁻¹d⁻¹) in the Godavari estuary resulted in very high pCO₂ levels of \sim 30,000 µatm during wet season. Similarly high pCO₂ levels were observed in other Indian estuaries such as Cochin estuary (Gupta et al., 2009), Chilka estuary (Gupta et al., 2008) and Mandovi-Zuari estuarine systems (Sarma et al., 2001) associated with dominant heterotrophic respiration than autotrophic production (Ram et al., 2003; Gupta et al., 2009; Sarma et al., 2009). The dissolved oxygen in the Indian estuaries was mostly below the saturation levels during wet period and

ranged between 62 and 99% and slight super-saturation was noticed only at Penna, Vellar, Cauvery and Vaigai estuaries, where the rate of discharge was small ($<100 \text{ m}^3 \text{ s}^{-1}$) and pCO₂ levels were close to the atmospheric values (Table 1). In addition to this, high concentrations of nitrate, by an order of magnitude, were noticed in the estuaries along the west coast of India (12-70 μ M) than east coast of India (2-6.5 µM) and this pattern was consistent with the dissolved oxygen saturation. The oxygen saturation showed strong negative correlation with pCO₂ ($r^2=0.56$; p<0.001; Fig. 2b) suggesting that intense organic matter decomposition in the estuaries resulting in a decrease in pH and enhanced pCO₂ levels. In addition to this, apparent oxygen utilization (AOU) was positively correlated with excess CO2 (Supplementary Figure S1b). This clearly indicates that the magnitude of discharge has significant impact on microbial processes and associated carbon and nitrogen cycling. This observation is consistent with the recent observations in the Godavari estuary where perennial dominance in heterotrophy was observed and ~40-80% of the heterotrophic carbon demand was supported by terrestrial organic matter brought by river discharge resulting in high nutrients levels (Sarma et al., 2009, 2010). On the other hand, it has been observed that most of the labile carbon, which is respired by heterotrophs, is anthropogenic in polluted European estuaries (Kempe, 1982; Wollast, 1988; Frankignoulle et al., 1998). Other pollution-related processes, such as nitrification may also acidify estuarine water and favor the CO₂ flux to the atmosphere (Billen, 1975; Frankignoulle et al., 1996). The ammonium concentrations in the Indian estuaries are high- they are relatively higher in the estuaries located along the west coast (1.4-16.6 µM) than east coast of India (0.2-7.0 µM) suggesting that occurrence of nitrification is also possible mechanism, besides organic matter decomposition, to enhance pCO₂ levels in the Indian estuaries.

The CO₂ efflux from the Indian estuaries ranged between -0.0.2 and 362 mMC m⁻² d⁻¹ during wet period. Higher fluxes were noticed in the Baitarini, Godavari, Penniyaar, Tapti, Netravathi estuaries while low fluxes were (<20 mMC m⁻² d⁻¹) found in other estuaries (Table 1). Such high fluxes in these estuaries were driven by not only high pCO₂ levels but also winds. The mean flux from the Indian estuaries amounts to 27 mMC m⁻² d⁻¹. India houses 14 major, 44 medium and 162 minor estuaries and the total surface area of Indian estuaries comes to 27000 km² calculated from the mouth of the estuary to the region where tidal oscillations are almost negligible. The mean flux of CO₂ from the Indian estuaries (27 mM C m⁻² d⁻¹) is an order of magnitude less than that found in the European estuaries (mean flux of 170

mMC m⁻² d⁻¹; *Frankignoulle et al.*, 1998). The emission of CO₂ from the Indian estuaries amounts to 1.60 TgC during wet period of 6 months.

The contribution of CO_2 fluxes to the atmosphere from Indian estuaries differs significantly from wet to dry period. Earlier observations in the Indian estuaries suggested that pCO₂ levels during dry period were less than 1000 µatm in Godavari (*Bouillon et al.*, 2003; *Sarma et al.*, 2011), Mandovi-Zuari (*Sarma et al.*, 2001), Cochin estuary (*Gupta et al.*, 2009), Chilika estuary (*Gupta et al.*, 2008), Mahanadi and Krishna rivers (our unpublished data). Such low pCO₂ levels were attributed to occurrence of phytoplankton blooms supported by increased flushing time (residence time of water column), and decreased suspended matter (increase in light penetration depth). Our daily observations in the Godavari estuary over 3 years show (*Sarma et al.*, 2011; and our unpublished data) that sometimes the pCO₂ is below equilibrium during peak bloom period, and similar observations were made elsewhere (*Borges and Frankignoulle*, 1999). Nevertheless, the contribution of CO₂ fluxes to the atmosphere during dry period of 6 months were <20% to that of wet period.

The above considerations have been used to estimate annual CO₂ emission from Indian estuaries that amounts to 1.92 TgC y⁻¹. In the case of European estuaries, *Frankignoulle et al.* (1998) estimated CO₂ fluxes as 30-60 TgC, representing 5 to 10% of the European anthropogenic emission of 1995. The anthropogenic carbon emission from the Indian subcontinent is 508 TgC y⁻¹ for 2009 (*Boden et al.*, 2011). Recently *Patra et al.* (2011) estimated CO₂ absorbtion by Indian landmass to be 300 TgC y⁻¹. Our results suggest that Indian estuaries contribute negligible percentage to the anthropogenic CO₂ emission and land mass absorption by the Indian subcontinent.

4. Concluding remarks

Our study suggests that Indian estuaries do act as source for atmospheric CO₂, stronger during wet season. The ranges of pCO₂ observed in some of the Indian estuaries were less than those found in the world estuaries except in the case of a few estuaries where record levels of pCO₂ were found. The magnitude of discharge is proportional to the pCO₂ levels and organic matter concentrations indicating that aerobic microbial respiration due to the large amounts of organic matter brought to the estuaries is a major mechanism leading to CO₂ efflux to the atmosphere. Since the river discharge is concentrated for only a period of a couple of months in the Indian estuaries and the mean flushing time for the Indian estuaries is <10 days whereas it is >40 days for the estuaries from Europe and USA (calculated from

mean discharge and volume of the estuary from *Vijith et al.*, 2009), there is less time available for the microbes to decompose organic matter before it is removed from the estuary, leading to incomplete decomposition. The mean CO_2 flux from the Indian estuaries (27 mM C m⁻² d⁻¹) is significantly lower than European estuaries (170 mM C m⁻² d⁻¹). Such low fluxes in the Indian estuaries are attributed to significantly low flushing time of water in the estuary during wet period and less human settlement along the riverine banks compared to developed regions in the world. Exceptions are a few estuaries such as Mahanadi where the population density and port activities are high and Narmada and Tapti where pollution related to industry and domestic pollution is high. As a result, Indian estuaries emit relatively less CO_2 to the atmosphere than elsewhere in the world.

Acknowledgements: We would like to thank Director, National Institute of Oceanography and Scientist-in-charge, Regional Centre for constant encouragement and support. We would like to thank Council of Scientific and Industrial Research (CSIR) for financial support through Supra Institutional Project. We would appreciate Drs. R. Rengarajan and P. Parameswaran for their help during sampling along the west coast of India. We would like to thank two anonymous reviewers for their constructive criticism to improve the presentation of the manuscript. This is NIO contribution number......

References

Abril, G., H. Etcheber, A.V. Borges, M. Frankignoulle (2000). Excess atmospheric carbon dioxide transported by rivers into the Scheldt estuary. *Earth and Planet. Sci.*, 330, 761-768.

Billen, G. (1975). Nitrification in Scheldt estuary (Belgium and Netherlands). *Estuarine Coastal Shelf Science*, *3*, 79-89.

Boden, T.A., G. Marland, and R.J. Andres. 2011. Global, Regional, and National Fossil-Fuel CO₂ Emissions. Carbon Dioxide Information Analysis Center, Oak Ridge National Laboratory, U.S. Department of Energy, Oak Ridge, Tenn., U.S.A. doi 10.3334/CDIAC/00001_V2011 (http://cdiac.ornl.gov/trends/emis/tre_ind.html).

Borges A.V., B. Delille, L.-S. Schiettecatte, F. Gazeau, G. Abril & M. Frankignoulle (2004) Gas transfer velocities of CO2 in three European estuaries (Randers Fjord, Scheldt and Thames), *Limnology and Oceanography*, 49, 1630-1641

Borges, A.V., B. Delille and M. Frankignoulle (2005), Budgeting sinks and sources of CO2 in the coastal ocean: Diversity of ecosystems counts. *Geophysical Research Letters*, *32*, No. L14601, doi: 10.1029/2005GL023053.

Borges, A.V., and M. Frankignoulle. (1999). Daily and seasonal variations of the partial pressure of CO₂ in surface seawater along Belgian and southern Dutch coastal areas. *J. Mar. Sys.*, *19*, 251-266.

Borges, A.V. (2005). Do we have enough pieces of the jigsaw to integrate CO2 fluxes in the coastal ocean. *Estuaries*, 28, 3-27.

Bouillon, S., M. Frankignoulle, F. Dehairs, F. *et al.*(2003), Inorganic and organic carbon biogeochemistry in the Gautami Godavari estuary (Andhra Pradesh, India) during pre-monsoon : The local impact of extensive mangrove forests. *Global Biogeochemical cycles, 17*, No.1114, doi: 10.1029/2002GB002026.

Cai, W.J., M.H. Dai, and Y.C. Wang (2006), Air-sea exchange of carbon dioxide in ocean margins : A province-based synthesis, *Geophys. Res. Lett.*, *33*, L12603, doi : 10.1029/2006GL026219.

Carritt, D.E., and J.H. Carpenter (1966). Comparison and evaluation of currently employed modifications of Winkler method for determining dissolved oxygen in seawater – a Nasco report. J. Mar. Res. 24, 286.

Chen, C.T.A. and A.V. Borges (2009), Reconciling opposing views on carbon cycling in the coastal ocean : continental shelves as sinks and near-shore ecosystems as sources of atmospheric CO₂, *Deep-Sea Res.*, *Part II*, 56 (8-10), 578-590, doi : 10.1016/j.dsr2.2009.01.001.

DOE (1998), Hand book of methods for the analysis of the various parameters of the carbon dioxide system in seawater. Ver. 2, A.G. Dickson and C. Goyet (eds), ORNL/CDIAC-74.

Frankignoulle, M., G. Abril, A.V. Borges, I. Bourge, C. Canon, B. DeLille, E. Libert, and J.-M. Théate (1998), Carbon dioxide emissions from European estuaries. *Science*, *282*, 434-436.

Frankignoulle, M., I. Bourge, R. Wollast (1996). Atmospheric CO₂ fluxes in a highly polluted estuary (the Scheldt). *Limnol. Oceanogr.*, *41*, 365-369.

Garcia, E.H., and L.I. Gordon (1992). Oxygen solubility in seawater: better fitting equations. *Limnol. Oceanogr.*, 37, 1307-1312.

Global view, (2011). Cooperative Atmospheric Data Integration Project – Carbon dioxide. CD-ROM, NOAA ESRL, Boulder, Colorado.

Grashoff, K., et al., (1992), Methods of Seawater Analysis. Verlag Chemie, New York,

NY, 419pp.

Gruber N., et al. (2009), Oceanic sources, sinks, and transport of atmospheric CO₂. *Global Biogeochem*. *Cycles*, *23*, GB1005, doi :10.1029/2008GB003349.

Gupta, G.V.M., V.V.S.S. Sarma, R.S. Robin, A.V. Raman, M. Jai Kumar, M. Rakesh, and B.R. Subramanian (2008). Influence of net ecosystem metabolism in transferring riverine organic carbon to atmospheric CO_2 in a tropical coastal lagoon (Chilka Lake, India). *Biogeochemistry* 87, 265-285.

Gupta, G.V.M., S.D. Thottathil, K.K. Balachandran, N.V. Madhu, P. Madeswaran, and S. Nair (2009), CO_2 supersaturation and net heterotrophy in a tropical estuary (Cochin, India): Influence of Anthropogenic effect. *Ecosystems*, 12, 1145-1157.

Kempe, S. Long-term records of CO_2 pressure fluctuations in fresh waters. In: Degens E.T., editor. Scientific Committee on Problems of the Environment (SCOPE)/ United Nations Environment Programme (UNEP)- Transport of Carbon and Minerals in Major World Rivers, vol. 52, Hamburg, Germany: University of Hamburg, 1982, p. 91-332.

Kumar, R., R.D. Singh and K.D. Sharma. (2005). Water resources of India. Curr. Sci., 89, 794-811

Laruelle, G.G., H.H. Durr, C.P. Slomp, and A.V. Borges (2010), Evaluation of sinks and sources of CO2 in the global coastal ocean using a spatially-explicit typology of estuaries and continental shelves. *Geophysical Research Letters* 37, L15607,10.1029/2010GL043691.

Lewis, E., and D.W.R. Wallace (1998). Program developed for CO2 system calculations, Rep. ORNL/CDIAC-105. Carbon Dioxide Inf. Anal. Cent., Oak Ridge Natl. Lab., Oak Ridge, Tenn.

Millero, F.J., T.B. Graham, F. Huang, H. Bustos-Serrano, and D. Perrot, (2006), Dissociation constants of carbonic acid in seawater as a function of salinity and temperature. *Marine Chemistry*, *100*, 80-94.

Patra, P.K., Y. Niwa, T.J. Schuck, C.A.M. Brenninkmeijer, T. Machida, H. Matsueda, and Y. Sawa. (2011). Carbon balance of South Asia constrained by passenger aircraft CO2 measurements. *Atmos. Chem. Phys. Discuss*, 11, 5379-5405.

Ram, A.S.P., S. Nair, D. Chandramohan, (2003). Seasonal shift in net ecosystem production in a tropical estuary. *Limnol. Oceanogra.* 48, 1601–1607.

Sarma, V.V.S.S., M.D. Kumar, and M. Manerikar (2001), Emission of carbon dioxide from a tropical estuarine system, Goa, India, *Geophys. Res. Lettrs.*, 28, 1239-1242.

Sarma, V.V.S.S., S.N.M. Gupta, P.V.R. Babu, T. Acharya, N. Harikrishnachari, K. Vishuvardhan, N.S. Rao, N.S., *et al*,(2009), Influence of river discharge on plankton metabolic rates in the tropical monsoon driven Godavari estuary, India. *Estuarine Coastal and Shelf Science*, *85*, 515-524.

Sarma, V.V.S.S., V.R. Prasad, B.S.K. Kumar, K.Rajeev, B.M.M. Devi, N.P.C. Reddy, V.V. Sarma, and M.D. Kumar (2010), Intra-annual variability in nutrients in the Godavari estuary, India. *Continental Shelf Res.*, *30*, 2005-2014.

Sarma, V.V.S.S., Kumar, N.A., Prasad, V.R., Venkataramana, V., Appalanaidu, S., et al., (2011). High CO₂ emissions from the tropical Godavari estuary (India) associated with monsoon river discharges. *Geophy. Res. Lettrs.*, *38*, doi: 10.1029/2011GL046928.

Takahashi, T., et al. (2009), Climatological mean and decadal change in surface ocean pCO₂ and net sea-air CO₂ flux over the global oceans, *Deep Sea Res.*, *Part II*, *56* (8-10), 54-577, doi: 10.1016/j.dsr2.2008.12.009.

Vijith, V., D. Sundar, and S.R. Shetye (2009), Time-dependence of salinity in monsoonal estuaries, *Estuarine Coast. Shelf. Sci.*, 85, 601-608.

Wanninkhof, R (1992), Relationship between wind speed and gas exchange over the ocean. J. Geophys. Res., 97, 7373-7382.

Wollast R., In: Pollution of the North Sea, An assessment. W. Salonmons, B.L. Baynes, E.K. Duursma, U. Forstner. Eds. Springer-Verlag, Berlin, 1988, pp. 185-193.

Zappa, C. J., P. A. Raymond, E. A. Terray, and W. R. Mc Gillis. (2003). Variation in surface turbulence and the gas transfer velocity over a tidal cycle in a macro-tidal estuary. *Estuaries* 26: 1401-1415.

Legend to figures

Figure 1: Station locations map where major rivers are shown with larger font letters. The main course of the river is shown as dark line while tributaries were shown in grey color.

Figure 2. The relationship of pCO_2 with a) river discharge and b) dissolved oxygen saturation in the Indian estuaries. Encircled point from Tapti estuary in the figure 2a has been removed when correlation coefficient was calculated.

Estuary	Area	Annual mean	Tidal [#]	Tempe	Salinity	DIC	pН	pCO ₂	Flux
	(km^2)	discharge	amplitude	rature		(µM)	-	(µatm)	(mMC
		$(m^3 s^{-1})^{-1}$	(m)	$(^{\circ}C)$		ч <i>і</i>		mean (range)	$m^{-2} d^{-1}$)
	Rivers reaching Bay of Bengal								
Haldia	18.15	1600	7.01	30.44	0.71	1816	7.10	9752 (2926-21906)	12.32
Subarnalekha	23.15	392#	*	32.09	3.97	1340	7.96	866 (773-1012)	0.03
Baitarani	22.69	903 [#]	*	32.47	0.09	862	6.95	7247 (5920-8130)	20.72
Rushikulya	12.57	*	*	33.35	20.70	1809	8.34	293 (263-323)	-0.02
Mahanadi	13.56	2121#	2.82	29.63	0.07	1252	6.87	11632 (11708-11726) [328-901]	3.07 (0.6)
Vamsadhara	15.05	*	*	30.29	13.26	2262	8.14	669 (597-774)	0.39
Nagavali	13.94	*	2.17	31.07	28.78	2023	8.12	515 (471-561)	0.17
Godavari	241.1	3505#	2.10	30.15	0.16	1216	6.66	15210 (10231-26521) [253-1202]	60.67 (5.5)
Krishna	36.49	2213#	1.98	29.34	5.27	2915	7.29	7473 (5217-8614) [302-1008]	6.81 (1.2)
Penna	27.97	200#	*	29.82	9.27	3068	7.90	1767 (868-2182)	5.22
Vellar	20.63	*	1.51	31.27	11.57	4166	7.89	2351 (1891-3049)	17.01
Ponnayaar	9.89	*	*	29.24	0.29	3447	7.38	11153 (10310-11759)	96.32
Cauvery	20.63	677#	*	30.17	12.04	3420	7.69	2989 (1556-5826)	2.23
Ambalayaar	4.57	28	*	31.85	4.20	2686	8.61	359 (276-381)	-0.02
Vaigai	0.22	36	*	31.73	27.89	2033	8.23	400 (362-450)	0.21
		Rivers reaching Arabian Sea							
Kochi back waters	231.1	391	1.34	27.27	3.50	455	7.11	1804 (1514-1867)	8.06
Chalakudi	9.69	*	*	27.98	0.05	400	6.29	7617 (6397-8131)	12.86
Bharatakulza	19.12	*	*	29.70	0.10	280	5.98	6944 (4957-7111)	11.71
Netravathi	18.54	*	*	25.51	0.06	582	6.26	10779 (7193-12971)	70.65
Sharavathi	16.44	*	*	25.74	0.14	700	6.51	9816 (7693-10112)	10.23
Kali	17.59	152	*	27.91	5.86	682	7.25	1840 (1652-2010)	3.24
Zuari	14.62	103	2.70	27.87	7.32	837	7.27	2076 (1360-2511) [354-728]	6.43 (1.3)
Mandovi	27.68	105	2.70	26.29	0.42	361	6.50	4993 (4090-5312) [351-558]	18.06 (2.5)
Narmada	115.5	1447#	10.9	30.16	0.14	2240	7.51	5875 (3862-6069)	8.77
Tapti	41.04	472 [#]	*	26.99	0.10	3484	7.15	18492 (13531-20421)	362.45
Sabarmathi	66.29	120#	*	26.53	0.04	1760	7.17	9109 (5549-10311)	13.84
Mahisagar	14.28	*	7.63	25.93	0.11	1899	7.33	6786 (4788-6978)	10.16

Table 1: Variations in annual mean discharge, temperature, salinity, oxygen saturation, DIC, pH and pCO₂ in the Indian estuaries. Values in the parenthesis in the flux column represents dry period. Values in the square brackets in pCO₂ column represents during dry period.

*Data not available and # represents data taken from *Kumar et al.*, 2005 and others taken from Dam authorities of respective river. [#] Dr. S.R. Shetye Personnal communication.

Figure 2:

SUPPLIMENTARY INFORMATION

Fstuary/Country	CO_2 Flux	Reference		
Listuary/Country	$(mol C m^{-2} v^{-1})$	Kelefenee		
Altamaha Sound (US)	32 4	liang et al 2008		
Bellamy (US)	36	Hunt et al 2010		
Cocheco (US)	3.1	Hunt et al. 2010		
Great Bay (US)	36	Hunt et al. 2010		
Little Bay (US)	2.4	Hunt et al. 2010		
Ovster (US)	4.0	Hunt et al. 2010		
Parker River estuary (US)	1.1	Raymond and Hopkinson, 2003		
Sepelo Sound (US)	13.5	Jiang et al., 2008		
Satilla River (US)	42.5	Cai and Wang, 1998		
York River (US)	6.2	Raymond et al., 2000		
Piaui River estuary (Brazil)	13.0	Souza et al., 2009		
Scheldt (Belgium/Netherland)	63.0	Frankignoulle et al., 1998		
Elbe (Denmark)	53.0	Frankignoulle et al., 1998		
Ems (Denmark)	67.3	Frankignoulle et al., 1998		
Gironde (France)	30.8	Frankignoulle et al., 1998		
Loire (France)	64.4	Abril et al., 2003		
Douro (Portugal)	76.0	Frankignoulle et al., 1998		
Sado (Portugal)	31.3	Frankignoulle et al., 1998		
Ason Estuary, Spain	2.2	Ortega et al., 2005		
Guadalquivir (Spain)	31.1	De La Paz et al., 2008		
Saja-Besaya (Spain)	52.2	Ortega et al., 2004		
Urdaibai Estuary (Spain)	21.9	Ortega et al., 2005		
Rhine (Netherlands)	39.7	Frankignoulle et al., 1998		
Tamar (UK)	74.8	Frankignoulle et al., 1998		
Thames (UK)	73.6	Frankignoulle et al., 1998		
Changjiang (Yantze) (China)	24.9	Zhai et al., 2007		
Pearl River (China)	6.9	Guo et al., 2009		
Betsiboka (Madagascar)	3.3	Ralison et al., 2008		
Tana (Kenya)	47.9	Bouillon et al., 2007		
Chilka (India)	25.0	Gupta et al., 2008		
Cochin (India)	55.1	Gupta et al., 2009		
Godavari (India)	5.5	Bouillon et al., 2003		
Godavari (India)	52.6	Sarma et al., 2011		
Hooghly (India)	5.1	Mukhopadhyay et al., 2002		
Mandovi-Zuari (India)	14.2	Sarma et al., 2001		
Indian estuaries	9.8	This study		

Table S1: Water-air CO₂ fluxes in the different estuaries in the world

References for supplementary information

Abril, G., H. Hetcheber, B. Delile, M. Frankignoulle, and A. V. Borges (2003). Carbonate dissolution in the turbid and eutrophic Loire estuary. *Mar. Ecol. Prog. Ser.*, 259, 129-138.

Bouilon, S., F. Dehairs, L.S. Schiettecatte, and A.V. Borges (2007). Biogeochemistry of the Tana estuary and delta (northern Kenya). *Limnol. Oceanogr.*, *52*, 45-59.

De la Paz, M., A. Gomez-Parra, and J. Forja (2007). Inorganic carbon dynamics and air-water CO2 exchange in the Guadalquivir Estuary. *J. Mar. Syst.*, 68, 265-277.

Guo, X., M. Dai, W. Zhai, W.J. Cai and B. Chen (2009). CO2 flux and seasonal variability in a large subtropical estuarine system, the Pearl River Estuary, China. J. Geophys. Res., 114, G03013, doi: 10.1029/2008JG000905.

Hunt, C.W., J.E. Salisbury, D. Vandemark, and W. McGillis (2010). Contrasting carbon dioxide inputs and exchange in three adjacent New England estuaries. Estuaries and Coasts,

Jiang, L.Q., W.J. Cai, and Y. Wang (2008). Carbon dioxide degassing in river- and mainedominated estuaries: Importance of freshwater runoff. *Limnol. Oceanogr.*, *53*, 2603-2615.

Mukhopadhyay, S.K., H. Biswas, T.K. De, S. Sen and T.K. Jana (2002). Seasonal effects on the air-water carbon dioxide exchange in the Hooghly estuary, NE coast of Gulf of Bengal, India. *J. Environ. Monit.*, *4*, 549-552.

Ortega, T., R. Ponce, J. Forja, and A. Gomez-Parra (2005). Fluxes of dissolved inorganic carbon in three estuarine systems of the Cantabrian Sea (north of Spain). *J. Mar. Sys.*, *53*, 125-142.

Ralison, O.H., A.V. Borges, F. Dehairs, J.J. Middelburg, and S. Bouillon (2008). Carbon biogeochemistry fo the Betsiboka Estuary (north-western Madagascar). *Org. Geochem, 39*, 1649-1658.

Raymond, P.A., J.E. Bauer, and J.J. Cole (2000). Atmospheric CO2 evasion, dissolved inorganic carbon production, and net heterotrophy in the York River estuary. *Limnol. Oceanogr.*, *45*, 1707-1717.

Raymond, P.A., and C.S. Hopkinson (2003). Ecosystem modulation of dissolved carbon age in a temperate marsh-dominated estuary. *Ecosystems*, *6*, 694-705.

Souza, M.F., V.R. Gomes, S.S. Freitas, R.C.B. Andrade, and B. Knoppers (2009). Net Ecosystem Metabolism and Nonconservative fluxes of Organic matter in a tropical mangrove estuary Piaui River (NE of Brazil). *Estuar. Coasts, 32*, 111-122.

Zhai, W.D., M.H. Dai, W.J. Cai, Y.C. Wang, Z.H. Wang (2005). High partial pressure of CO₂ and its maintaining mechanism in a subtropical estuary: the Pearl River estuary, China. *Mar Chem.*, *93*, 21-32.

Figure S1: a) Relation between POC and pCO2 and b) AOU and excess CO2 in the Indian monsoonal estuaries.

