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Abstract 

 
The feasibility of an artificial neural network based approach is investigated to estimate the values of 

mean grain size of seafloor sediments using four dominant echo features, extracted from acoustic 

backscatter data. The acoustic backscatter data were collected using a dual-frequency (33 and 210 kHz) 

single-beam, normal-incidence echo sounder at twenty locations in the central part of the western 

continental shelf of India. Statistically significant correlations are observed between the estimated 

average values of mean grain size of sediments and the ground-truth data at both the frequencies. The 

results indicate that once a multi-layer perceptron model is trained with back-propagation algorithm, the 

values of mean grain size can reasonably be estimated in an experimental area. The study also revealed 

that the consistency among the estimated values of mean grain size at different acoustic frequencies is 

considerably improved with the neural network based method as compared to that with a model-based 

approach. 
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A quantitative knowledge of mean grain size of seafloor sediment is of great importance for a 

wide range of applications in the field of marine geology, marine engineering, hydrographic, and 

environmental monitoring. The most reliable and accurate assessment on mean grain size of seafloor 

sediments can be obtained from the laboratory analyses of sediment samples. However, collection of 

sediment samples with grabs and/or cores or in-situ measurements is expensive as well as time 

consuming process. In addition, this conventional approach can give information on the seafloor 

characteristics only at pre-selected discrete locations in an experimental area. As an alternative 

approach, remote sensing by acoustic means has long been recognized as a rapid and cost-effective 

method for characterization and classification of seafloor sediments over a wide area of interest. The 

acoustic remote sensing essentially relies on the backscatter strength of the acoustic signal reflected 

from the seafloor. Since the backscatter strength contains information on the properties of the material at 

which the signal is scattered, it can be used for assessing the mean grain size of seafloor sediments. 

Acoustic backscatter data, obtained from common seafloor depth measurements equipments such as 

single-beam and multi-beam echo sounders, could be used for this purpose. A number of approaches 

concerning the characterization and classification of seafloor are available in literature (Jackson et al. 

1986a; de Moustier and Alexandrou 1991; Pouliquen and Lurton 1992; Jackson and Briggs 1992; de 

Moustier and Matsumoto 1993; Lyons et al. 1994; Legendre et al. 2002; Sternlicht and de Moustier 

2003a; Chakraborty et al. 2000; Hutin et al. 2005; Zhou and Chen 2005, van Walree et al. 2005; Chiocci 

et al. 2011). These approaches can be grouped into two basic categories namely model-based methods 

and model-free techniques. Model-based methods often utilize physics-based acoustic backscatter 

models to estimate the characteristic parameters of the seafloor sediments through inversions by 

maximizing the match between the measured and the modeled signals (Gott and Martinez 1993; 

Sternlicht and de Moustier 2003b; De and Chakraborty 2011). However, the accuracy of the inversion 

result greatly depends on the scattering theory employed in the forward backscatter model. Furthermore, 

the presence of benthic flora and fauna, morphological features, and the density fluctuations within 

sediment volume can also influence the process of echo formation and thus imposes additional 

challenges in the estimation of the seafloor characteristic parameters from acoustic measurements at 

different frequencies (Lyons and Orsi 1998; van Walree et al. 2006). In contrast, model-free techniques 

such as statistical methods and neural network approaches are used for characterization and 

classification of seafloor sediments using echo characteristic features (or echo features) that are 

extracted from the acoustic backscatter signal reflected from the seafloor (Orlowski 1984; Pace and Gao 
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1988; Chivers et al. 1990; Stewart et al. 1994; Tegowski and Lubniewski 2000, 2002; Chakraborty et al. 

2003b, 2007; van Walree et al. 2005, De and Chakraborty 2009). However, in model-free approaches, 

ground-truth measurements from sediment samples are essential to interpret the results (obtained from 

the backscatter signal) by associating with the true sediment properties. 

Acoustic backscatter strength from the seafloor is primarily controlled by the contrast in acoustic 

impedances between water and sediment, contributions from the seafloor interface roughness, the 

sediment volume inhomogeneity or layering, and the acoustic frequency used for measurements. The 

effect of seafloor interface roughness on scattering is relatively more important at higher acoustic 

frequencies, whereas, the scattering due to sediment volume inhomogeneity is relatively more 

significant at lower acoustic frequencies. In soft sediments, after penetrating into the sediment, the 

acoustic energy is likely to be scattered from the buried inhomogeneities (coarse sand particles, pebbles, 

shell hash, gas bubbles etc.) or buried layers. The intensity of the scattered energy depends on the sizes 

of these buried inhomogeneities relative to the impinging acoustic wavelength and is expected to 

decrease with an increasing acoustic frequency because of the enhanced absorption inside the sediment 

volume. As a result, various complex dynamic processes affect the interaction and scattering of acoustic 

energies from the seafloor and interpretation of backscatter data mainly depends on the level of 

understanding of the scattering mechanism of acoustic energies from the seafloor. Thus, studies on 

validation and applicability of various theoretical models over a wide range of acoustic frequencies are 

indispensable (Jackson et al. 1986b; Jackson and Briggs 1992; Jackson et al. 1996; Sternlicht and de 

Moustier 2003a, 2003b; van Walree et al. 2006; Snellen et al. 2011; De and Chakraborty 2011). If a 

forward model is sufficiently close to the true sediment model, inversion algorithms using a physics-

based model can provide true solutions of the seafloor characteristic parameters. Recently, an 

investigation on the applicability of a physics-based temporal backscatter model to estimate the seafloor 

sediment parameters at two conventional frequencies (33 and 210 kHz) of a single-beam echo sounder 

revealed that a single power-law relief spectrum (usually assumed in backscatter models) might be too 

simple to describe the seafloor scattering mechanism over a wide range of acoustic frequencies (De and 

Chakraborty 2011). In addition, laboratory experiments under controlled conditions revealed that there is 

a significant difference in the backscatter strength measured with two acoustic frequencies over two 

sediments with different mean grain sizes and this persistent difference in the frequency range 150 kHz 

to 2 MHz could be explained by a ratio of mean grain size to wavelength (Ivakin and Sessarego 2007). 

Recent field experiments also revealed that above 150-200 kHz a new scattering mechanism is coming 
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into play for the backscatter data collected from the Sediment Acoustic eXperiments conducted in 1999 

(SAX99) and 2004 (SAX04) in the northeastern Gulf of Mexico (Williams et al. 2002, 2009). Therefore, 

estimation of the seafloor sediment characteristic parameters from the frequency-dependent acoustic 

backscatter energy warrants detailed understanding of the changing scattering mechanism above 150 

kHz due to the variations in physical properties of the seafloor sediments at different scales, lateral 

inhomogeneity of sub-bottom layers, and their density gradients. 

Hence, a model-free approach using artificial neural networks is exploited in this paper to 

estimate the values of mean grain size of seafloor sediments using the acoustic backscatter data at 33 

and 210 kHz. The model-free approaches using artificial neural networks provide the most promising 

alternative to various conventional classification methods. Different techniques based on neural 

networks have successfully been demonstrated earlier for classification of seafloor (Ghosh et al. 1992; 

Alexandrou and Pantzartzis 1993; Stewart et al. 1994; Michalopoulou et al. 1995; Stepnowski et al. 

2003; Chakraborty 2003a, 2004; De and Chakraborty 2009, 2010). These self-adaptive, non-linear, data-

driven models are capable of adjusting itself to the input data without any explicit expression of the 

underlying model and successfully used for seafloor classification in the real world (Chakraborty et al. 

2001, 2003a, 2003b; Zhou and Chen 2005). In general, echo features, extracted from the acoustic 

backscatter data, are used in neural network based techniques for seafloor classification. Proper selection 

of echo features is an important criterion to save the computational time as well as to achieve improved 

success in the classification using a neural network based approach (De and Chakraborty 2010). The aim 

of this paper is to investigate the feasibility of a neural network based approach to estimate the values of 

mean grain size of sediments at two acoustic frequencies without exploring the physics responsible for 

the acoustic interaction with the seafloor and the scattering mechanism at different frequencies. The 

values of mean grain size of sediments thus estimated are compared with that estimated from a model-

based approach (De and Chakraborty 2011). Though earlier model-based study by De and Chakraborty 

(2011) deals with the estimation of the values of four seafloor parameters, in this paper, only the value 

of mean grain size is estimated using the neural network based method because of non-availability of the 

ground-truth data on other seafloor parameters in the experimental area. Furthermore, in the absence of 

ground-truth data, the effectiveness of the neural model is investigated to predict the values of mean 

grain size for seafloor sediments at five unknown locations.  
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Measurements 

Acoustic backscatter echo data were acquired at 20 locations along three tracks (Fig. 1) in the 

central part of the western continental shelf of India in the Arabian Sea using a hull-mounted Reson 

Navitronic NS-420 normal-incidence, single-beam echo sounder operated at 33 and 210 kHz. The pulse 

lengths of the transmitted continuous wave pulse signals are 0.97 and 0.61 ms, respectively, for 33 and 

210 kHz. The widths (-3 dB) of the conical shaped beam of the echo sounder are 20º and 9º respectively, 

for 33 and 210 kHz. Acoustic backscatter data were acquired at each location when the ship was stopped 

for collection of sediment samples. In the initial pre-processing stage, the echo data (after removing the 

received signals with saturated voltage) are subjected to Hilbert Transform to obtain the echo envelopes. 

Due to the transducer heave motion and small variations of seafloor depth over consecutive pings (while 

recording the backscatter data), initial rise times of the envelopes are not same for all the echoes 

collected at a particular location. Therefore, it is essential to use stable acoustic signals for further 

analyses. To obtain stable acoustic signals, backscatter echo envelopes are first aligned and then 

averaged using 20 successive envelopes with 95% overlap (i.e., the echoes are averaged in a moving 

average sense with sequences 1-20, 2-21, and so on till the end of the number of consistent echo 

envelopes available in the dataset) (De and Chakraborty 2009).  

The shapes of the acoustic signals scattered from the seafloor vary significantly with the seafloor 

depth because of the variation of footprint size of the transmitted beam, even if the seafloor sediment 

remains unchanged. An echo recorded at a greater depth (compared to a reference depth) is stretched 

along the time axis and an echo recorded at a lesser depth (compared to the reference depth) is 

compressed along the time axis. To overcome this difficulty, time adjustments are made on the averaged 

echo envelopes at a reference seafloor depth of 50m, which is the approximate average of all the spot 

depth measurements (Pouliquen 2004). Finally, four echo features are extracted from the normalized 

averaged echoes. These features are backscatter strength, statistical time-spread, statistical skewness, 

and Hausdroff dimension. Backscatter strength, the ratio in decibels (dB) of the sound intensity 

backscattered from a unit seafloor area and the incident intensity at a unit distance from the source, is 

computed from the measured acoustic data (Chakraborty et al. 2007). The statistical echo shape 

parameters, time-spread and statistical skewness, are calculated from the second and the third central 

moments respectively, in the time domain (van Walree et al. 2005). The fourth echo feature Hausdroff 
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dimension (fractal dimension) is a measure of the complexity of the seafloor echo envelope (Tegowski 

and Lubniewski 2000).  

Sediment samples were collected using a Van-Veen grab sampler at the same 20 locations, 

where the backscatter echo data were acquired, in order to obtain ground-truth values on mean grain size 

of the seafloor sediments as well as the sediment types. The grain sizes are commonly expressed either 

in millimeters or in phi (φ ) units and these two units are related as )(log2 gDd −= , where gD  is the 

grain diameter in millimeters and d is the corresponding value in φ  units. The mean grain size of 

sediments (hereafter referred to as φM ) in φ  units is calculated as 3/)( 845016 dddM ++=φ , where 

xd  is the grain size in φ  units at which x% of the grain sizes are smaller than xd  in the sediment 

sample. Laboratory analyses of the surficial sediment samples revealed that four types of seafloor 

sediments, namely clayey-silt, silt, silty-sand, and sand, are available in the experimental area. The 

ground-truth values of φM  for clayey-silt and silt sediments vary within 5.83-6.79φ  and 6.20-6.50φ , 

respectively, whereas for silty-sand and sand samples, the values of φM  vary within 1.99-4.02φ  and 

1.16-2.42φ , respectively. 

Estimation of mean grain size of sediments using a neural network 

An artificial neural network is a nonlinear information processing system that uses mathematical 

algorithms to learn the relationships and the hidden patterns in a given dataset. Multi-layer perceptron 

neural network trained with back-propagation algorithm is one of the most widely used neural network 

models for characterization and classification of seafloor sediments (Alexandrou and Pantzartzis 1993; 

Stewart et al. 1994; Michalopoulou et al. 1995; Chakraborty et al. 2003a). In this paper, a multi-layer 

perceptron model is used to estimate the values of φM  using the four echo features, extracted from the 

acoustic backscatter data. A typical network consists of an input layer, one or more hidden layers, and an 

output layer. In a typical operation, each neuron of a network receives inputs from other interconnected 

neurons and/or from the external source and finally the processed information is obtained through the 

output layer. The neurons in the hidden layers enable a network to learn complex patterns of the input 

data applied to the network. During the process, each neuron in a layer receives the collective weighted 

information from the neurons in the previous layer and finally an activation function is applied to 

modify the sum of the weighted input signal to produce the output signal. This process is called learning 
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or training of a network and the input data used for this purpose is called the training data. This training 

process essentially adjusts the weights of interconnecting neurons in various layers of a network with an 

objective to achieve an expected output response at an acceptable level. Back-propagation is an efficient 

learning method to capture the inherent characteristics of a given set of input-output pairs. In back-

propagation, the deviation of the actual output from the expected response is propagated backwards 

through the network from output to input layer through the hidden layer(s) and the network performs a 

nonlinear optimization to minimize the error between the actual and the expected outputs. More 

information on the theory of neural networks can be found in Masters 1993 and Haykin 2003. 

A uniform scaling is essential in neural network analysis for equalizing the importance of all the 

input-output variables. In this study, at each layer of the network, hyperbolic tangent sigmoid functions 

are used as activation functions for nonlinear conversion of the summed inputs. Thus, input and output 

data are scaled in such as way that all the values lie within a range –1 to +1 (MATLAB 7.0, 2004). In 

addition, scaling of data is carried out in such a way that the data used in training are proportional with 

that used for testing the network. Though various partial derivative based back-propagation algorithms 

are available, in this paper, a resilient back-propagation algorithm is used as a training algorithm 

(Reidmiller and Braun 1993). As mentioned, sigmoid transfer functions are generally used in the hidden 

layers of a multi-layer perceptron network. If the inputs to these functions are large, the slopes of these 

functions approach to zero. In partial derivative based back-propagation algorithms, a small gradient 

makes small changes during the adjustment of weights and biases, even if the weights and biases are far 

their optimum values. The advantage of a resilient back-propagation algorithm is that only the sign of 

the derivative is used to determine the direction of weights update; and the magnitude of the derivative 

does not play any role in the weights update. For training a network with resilient back-propagation 

algorithm, a function ‘trainrp’, available in Neural Network Toolbox of MATLAB (2004), is used here. 

The training algorithm uses the mean square error minimization scheme to minimize the error between 

the actual output from a network and the expected outputs. 

De and Chakraborty (2010) investigated the relative importance of seven echo features 

(extracted from the acoustic backscatter data) for classification of seafloor sediments using a multi-layer 

perceptron network trained with back-propagation algorithm. Dual frequency (33 and 210 kHz) acoustic 

backscatter echo data, collected from an experimental area in the Arabian Sea, were used in that study. 

The study demonstrated that the best performance of a neural network based sediment classifier could be 
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achieved if a proper set of input echo features is selected. The use of more number of echo features in 

the input dataset compared to the optimum number of features does not increase the success rate of a 

neural classifier. However, the computational time increases considerably. The study also revealed that 

backscatter strength, time-spread, statistical skewness, and Hausdroff dimension are the most dominant 

echo features (when used as a set) to a neural network based sediment classifier at 33 and 210 kHz in the 

experimental area (De and Chakraborty, 2010). It was demonstrated that if the above-mentioned 4 

features are used together as an input to a neural network based sediment classifier, the highest 

percentage of success could be achieved. The same acoustic backscatter data, which were used earlier to 

investigate the dominant echo features for seafloor classification (De and Chakraborty 2010), are used in 

this study also. As a result, in this paper, these four dominant echo features, backscatter strength, time-

spread, statistical skewness, and Hausdroff dimension, are selected as a set of input parameters to the 

network for estimating the values of φM . 

In this paper, a network structure consisting of an input layer, two hidden layers, and an output 

layer are used to estimate the values of φM . The number of neurons in the input and output layer are 

equal to the number of inputs parameters (i.e., four) and the number of output parameter (i.e., one) 

respectively. The number of neurons in the hidden layer(s) of a network is usually optimized by trial and 

error methods. A network with optimum size is less likely to learn the noise in the training dataset, and 

may therefore generalize better to a new dataset applied to the network (Haykin 2003). Initially, a 

network architecture consisting of an input layer, one hidden layer, and an output layer is experimented 

with the number of neurons in the hidden layer varying from 1 to 55 to decide the optimum number of 

neurons in the first hidden layer. Subsequently, the number of neurons in the second hidden layer is 

varied from 1 to 30 for optimization. From these experiments, the numbers of neurons in the first and 

second hidden layers are optimized as 25 and 10 for both the frequencies. No significant improvements 

in the results are observed by increasing the number of hidden neurons beyond the optimum number. As 

a result, in this paper, a network configuration [4-25-10-1] is optimized for the estimation of the values 

of φM . Having optimized the network architecture, the percentage of data used for training the network 

is optimized by varying it from 5% to 40% of the total dataset. If the training dataset increased beyond 

15% of the total dataset, no significant improvements in the success rates are observed during the testing 

of the network. As a result, in this paper, 15% of the total dataset is used as a training dataset and the 

remaining 85% of the total dataset is used as a testing dataset for both the frequencies.  
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The performance of a network (i.e., the percentage of success in estimating the true values of 

φM  during training and testing) is evaluated by computing the ratio of the number of data points giving 

‘true estimation’ to the total number of data points used for training or testing. If the estimated value of 

φM  falls within a range of ± 5% deviation from the ground-truth value for a particular sediment, it is 

considered as the ‘true estimation’. Thus, if the estimated value of φM  lies within a range of 

1.16± 0.06φ  for a sandy sediment sample with a ground-truth value 1.16φ , it is considered as the ‘true 

estimation’ during training or testing. This ± 5% tolerance value (from the ground-truth value) is chosen 

arbitrarily to compute the percentage of success during training and testing of the network. However, it 

is observed that the final result depends on the values of interconnecting weights chosen initially during 

the training of a network (if other computational parameters are kept unchanged). Therefore, a particular 

network is trained and tested 10 times with 10 different sets of randomly generated initial weights. The 

number ten is chosen arbitrarily to take into account the variations of initial weights on the performances 

of the neural network. Subsequently, an average percentage of success is computed by taking the 

average of these 10 sets of results. The neural network toolbox available in MATLAB 7.0 (2004) is used 

in this paper. 

Initially, the total dataset (comprising of echo features from all the sample locations) is used for 

training and testing of the network. As mentioned earlier, 15% of the total dataset is optimally used as 

training dataset and the remaining 85% of the total dataset is used as a testing dataset for both the 

frequencies. The estimated values of φM  obtained from this experiment are compared with the ground-

truth data as well as with that estimated from a model-based method. The details of the model-based 

approach and the discussion on the estimated values of φM  using the model are available in another 

paper (De and Chakraborty 2011). The values of φM  obtained from this model-based approach are used 

for comparison study in this paper. Furthermore, the network is trained with the data from 15 sample 

locations and subsequently, the values of φM  are estimated for all the 20 samples using the trained 

network. The results are compared with the ground-truth data to explore the effectiveness of this model-

free technique to predict the values of φM  at five unknown samples for real-time applications while a 

research vessel is underway. 
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Results and Discussion 

An average value of φM  is computed by taking the mean of all the estimated values for a 

particular sediment sample using the neural network [4-25-10-1]. Subsequently, an overall average value 

of φM  is computed by taking the mean of 10 sets of average values of φM  obtained from the network 

trained with 10 different sets of interconnecting weights. These overall average values of φM  are used 

for comparing the results with the ground-truth data as well as with that obtained from a model-based 

approach (as mentioned earlier).  

The estimated average values of φM  for surficial seafloor sediments obtained from a neural 

network based model are expected to correlate with the laboratory-measured values of φM  (i.e., ground-

truth data). The linear regression analysis between the estimated average values of φM  and the 

laboratory-measured values of φM  is shown in Fig. 2. The analysis revealed that the determination 

coefficients ( 2r ) are 0.9879 and 0.9979, respectively for 33 and 210 kHz. The p-values associated with 

these correlations indicate that these correlations are statistically significant at 5% level of significance 

(computed using student’s t-distribution). The analysis also indicates that these regression lines are 

capable to explain about 99% of the variances in the estimation of φM  using the neural network model 

at both the frequencies. Furthermore, the results indicate that the least square line obtained from the best 

fit of the 210 kHz estimation gives the best evaluation of φM  when compared with the 1:1 straight line 

(i.e., the line with unit correlation coefficient). It is also observed that the estimated average values of 

φM  for coarse sediments (i.e., silty-sand and sand samples with φφ 4<M ) have relatively more 

fluctuations (evident from the error bars in Fig. 2) as compared to the fine sediments (i.e., clayey-silt and 

silt sediments with φφ 4≥M ). In addition, the fluctuations associated with the estimated values of φM  

for silty-sand samples are comparatively bigger than that of sand samples. Earlier model-based inversion 

study in the present experimental area revealed that the inverted values of φM  using 33 kHz data 

provided relatively improved estimations over the 210 kHz data (De and Chakraborty 2011). The model-

based study also revealed that the least square line obtained from the best fit of the φM  values at 33 kHz 

inversions showed improved results when compared with the 1:1 straight line. The values of 2r , 
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obtained from the linear regression analysis between the laboratory-measured values of φM  and the 

inverted average values of φM , were 0.9544 and 0.9184, respectively for 33 and 210 kHz (De and 

Chakraborty 2011). In contrast, the estimations from neural network analysis (as presented in this paper) 

indicate that the value of 2r  is marginally lower for 33 kHz as compared to 210 kHz (Fig. 2). This 

comparison shows that the neural network based approach is capable to estimate the values of φM  more 

accurately as compared to the model-based approach. 

Fig. 3 shows the consistency among the values of φM  estimated from the model-based approach 

and the neural network based approach using 33 and 210 kHz backscatter data. The consistency among 

the average values of φM  obtained from the model-based approach at 33 and 210 kHz is comparatively 

lower because of the possible change in the mechanism of scattering phenomena at different acoustic 

frequencies (which may not be incorporated in the model, as mentioned earlier). The value of 

2r obtained from the regression analysis of the inverted values of φM  at 33 and 210 kHz using the 

model-based approach is 0.9178 (Fig. 3). In contrast, the consistency among the estimated values of φM  

obtained from the neural network based approach at 33 and 210 kHz is relatively higher ( 2r  = 0.9916). 

As a result, in the absence of a suitable backscatter model, capable to explain the detailed mechanism of 

scattering from the seafloor at different acoustic frequencies, the neural network based approach may be 

feasible and advantageous to estimate the values of φM  in an experimental area at 33 and 210 kHz. 

The average estimated values of φM  and the percentages of success for ‘true estimation’ are 

given in Table 1 for two cases: (1) Case A - the network is trained with the data chosen from all the 20 

sample locations, (2) Case B - the network is trained with the data chosen from 15 sample locations only 

and the values of φM  are estimated for all the 20 samples. The asterisk (*) marks (in Case B) indicate 

that the data from these sample locations are not used for training the network. The regression analysis 

for the Case B, between the laboratory-measured values of φM  and the average estimated values of φM  

using the neural network based method at all the 20 sample locations, indicate that the statistically 

significant (computed using student’s t-distribution) values of 2r are 0.9815 and 0.9898 respectively, for 

33 and 210 kHz. The values of 2r  at both the frequencies are decreased in comparison with those 
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obtained from the same network trained with the data chosen from all the sample locations (Case A). 

However, the regression models (for Case B) can still explain about 98-99% of the variances in the 

estimations of φM . Though the success rate for ‘true estimation’ (as shown in Table 1) degrades for all 

the unknown samples, the effectiveness of the network to predict the values of φM  for soft sediments is 

comparatively better than that for coarse sediments. 

Conclusion 

This study demonstrates that in the absence of detailed understanding on the mechanism of the 

seafloor scattering phenomena as well as the accurate model to interpret the backscatter data at different 

acoustic frequencies, neural network based approach is advantageous for estimating the values of mean 

grain size of sediments in the frequency range 33-210 kHz. In general, estimation of the values of mean 

grain size using a physics-based model through an inversion algorithm is computationally demanding. In 

contrast, the values of φM  could be estimated using a neural network based approach at much shorter 

computational time. The results revealed that the performance of the neural network based approach at 

210 kHz is relatively better as compared to that at 33 kHz. In the absence of independent ground-truth 

information, it is feasible to characterize the prevailing seafloor sediments using the model-free 

approach. In addition, neural network based approaches may be useful for rapid assessment of the 

characteristics of seafloor sediments while a research vessel is underway. Furthermore, these model-free 

approaches could be effectively used to decide the possible locations for further collection of ground-

truth samples in real time in a wide experimental area. 
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Figure Captions 

Fig. 1   Study area showing sediment sample locations and the sediment types. The depth contours are 

in meters. 

Fig.  2  Scatter plot showing the correlation between the laboratory-measured values of φM  and the 

estimated average values of φM  obtained from the neural network [4-25-10-1] using 33 and 

210 kHz data. Diagonal dotted lines indicate the 1:1 line. The error bars indicate one standard 

deviation in either direction. The values of determination coefficients ( 2r ) are also indicated 

in the plot. 

Fig. 3 Scatter plot showing the consistency among the values of φM  estimated from a model-based 

approach and the neural network (NN) based approach using 33 and 210 kHz data. The values 

of determination coefficients ( 2r ) are indicated in the plot. 

 

 

Table Caption 

Table 1   Estimated average values of φM  and percentages of success for ‘true estimation’ 

obtained from the neural network based approach 
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Table 1    Estimated average values of φM  and percentages of success for ‘true estimation’ 
obtained from the neural network based approach 

Stn 
No. 

Case A Case B Laboratory- 
Measured

φM  

True 
Sed. 
Type 

33 kHz 210 kHz 33 kHz 210 kHz 
Avg

φM  
% 

Success 
Avg

φM  
% 

Success 
Avg

φM  
% 

Success
Avg

φM  
% 

Success 

1 6.70 100 6.71 100 6.71 99 6.71 100 6.71 CS 
2 6.70 100 6.68 100 6.71* 100 6.67* 100 6.68 CS 
3 6.69 100 6.67 100 6.70 100 6.67 100 6.67 CS 
4 6.36 96 6.32 100 6.53* 45 6.38* 49 6.32 CS 
5 5.86 95 5.82 87 5.87 90 5.88 91 5.83 CS 
8 6.65 100 6.64 97 6.18* 67 6.46* 73 6.66 CS 
13 6.67 98 6.72 98 6.71 99 6.75 99 6.79 CS 
9 6.43 100 6.42 100 6.43 100 6.40 99 6.42 Si 
10 6.48 98 6.47 98 6.02* 64 5.78* 36 6.50 Si 
14 6.24 91 6.33 80 6.04 84 6.39 68 6.20 Si 
11 3.45 28 3.8 50 3.43 30 3.71 56 4.02 SS 
17 3.05 25 2.55 62 3.06 24 2.54 64 2.40 SS 
18 2.15 41 1.99 86 2.15 37 1.99 92 1.99 SS 
19 2.97 24 3.39 61 2.98 23 3.30 70 3.32 SS 
6 1.79 70 1.89 29 1.73 68 1.68 40 1.69 Sa 
7 2.38 68 2.25 48 2.40 63 2.22 56 2.31 Sa 
12 1.95 23 2.02 77 1.71* 11 1.56* 17 2.03 Sa 
15 2.32 53 2.39 51 2.35 63 2.37 72 2.42 Sa 
16 1.48 19 1.44 42 1.49 25 1.43 59 1.16 Sa 
20 2.43 23 2.07 94 2.41 24 2.08 100 2.07 Sa 

 
Case A – data chosen from all the 20 sample locations are used for training the network, 
Case B – data chosen from 15 sample locations only are used for training the network,  
Asterisk marks (*) - No data is used for training from these 5 sample locations in the Case B 
(and are referred to as unknown samples in the text), 
Sediment types: CS - Clayey Silt; Si – Silt; SS - Silty Sand; Sa - Sand 
 

 


