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Five hundred and eighteen cosmic spherules were identified among the 672 spherules handpicked from
deep sea sediments by using Scanning Electron Microscope-Energy Dispersive Spectrometry (SEM-EDS).
One of the spherules is found to enclose a spherical chondrule-like object that can be distinguished from
the rest of the spherule by its shape, texture and composition and whose petrographic features, size and
chemical composition are similar to chondrules from a chondritic meteorite, probably of carbonaceous
chondritic nature. The present finding suggests that a small fraction of the particulate extraterrestrial
matter enters the earth as fragments of larger meteorites.

1. Introduction

Nearly 30000 ± 20000 tons of extraterrestrial
material enter the earth’s atmosphere every
year (Love and Brownlee 1993a, b; Ravizza and
Mcmurtry 1993; Peuker-Ehrenbrink 1996; Engrand
and Maurette 1998; Esser and Turekian 1998;
Peuker-Ehrenbrink and Ravizza 2000); micro-
meteorites constitute a major part of this mate-
rial. Micrometeorites are collected from different
domains: polar ices by melting the ice and sub-
sequent examinations and handpicking of the fil-
trates collected from the molten ice (Thiel and
Schimidt 1961; Maurette et al. 1986; Genge and
Grady 1988; Koeberl and Hagen 1989; Harvey
and Maurette 1991; Kurat et al. 1994; Engrand
and Maurette 1998; Taylor et al. 1998, 2000;
Yada et al. 2005; Suavet et al. 2010; Ginneken
et al. 2011), deep-sea sediments using magnetic
techniques (Brunn et al. 1955; Brownlee et al. 1979;
Parashar et al. 2010; Rudraswami et al. 2011) and
by filtering large quantities of sediment (Millard
and Finkelman 1953; Blanchard et al. 1980), from

the stratosphere using different panels (Love and
Brownlee 1993a, b); using other collection devices
such as balloon born collector (Brownlee et al.
1973; Wlochowiks et al. 1976) and space collec-
tor (Brownlee et al. 1977, 2003) and from the
sedimentary rocks (Fredriksson and Gowdy 1963;
Marvin and Einaudi 1967; Taylor and Brownlee
1991). In terms of quantity, the polar and deep
sea collections enable large collections, whereas the
stratospheric collections although enable smaller
numbers of particles, some of them are highly fri-
able, pristine and in an excellent state of preserva-
tion (Brownlee 1985; Lal and Jull 2002).

Most micrometeorites of size >50 μm undergo
melting, oxidation and mass loss during entry
(Brownlee 1985; Love and Brownlee 1993a, b;
Taylor et al. 2000), which is proven by the pres-
ence of magnetite rims around the spherules and
presence of Fe-Ni bead and Pt group nuggets
(Brownlee 1985; Bonte et al. 1987; Toppani
et al. 2001; Genge 2006; Parashar et al. 2010;
Rudraswami et al. 2011). Magnetite rims will
be absent in the less heated and are present
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in more heated and oxidized cosmic spherules
(Toppani et al. 2001), Sometimes large micromete-
orites (>50 μm) survive atmospheric entry without
melting if they have low velocities and low inci-
dent angles (Brownlee 1985). The degree of melting
and mass loss of micrometeorites during atmo-
spheric entry depends on the size, velocity, entry
angle and the composition of the material (Flynn
1989; Love and Brownlee 1991; Greshake et al.
1997). Micrometeorites and cosmic spherules are
assigned/classified into different categories based
on their mineralogy, textures and chemical compo-
sitions in a more or less direct manner. Whereas,
one of the main constraints experienced in micro-
meteorite investigations is the identity of the par-
ent bodies from which they are derived. This
difficulty is compounded by the changes that the
micrometeorites undergo (heating) during atmo-
spheric entry. Micrometeorites are expected to have
been derived from parent bodies which are con-
ventional meteorites or material that have com-
positions similar to that of known meteorites; the
dominant parent bodies being carbonaceous chon-
drites CI, CM or CR chondrites (Brownlee 1985;
Kurat et al. 1994; Brownlee et al. 1997; Genge
et al. 1997; Engrand and Maurette 1998; Alexander
et al. 2002; Taylor et al. 2005; Parashar et al. 2010;
Ginneken et al. 2011) and a few are from ordinary
chondrites (Beckerling and Bischoff 1994; Genge
et al. 2008; Parashar et al. 2010; Suavet et al. 2011;
Taylor et al. 2011), iron meteorite type parent bod-
ies (Blanchard et al. 1980; Herzog et al. 1999) and
a few rare ones are from achondrites (Taylor et al.
2006, 2011; Cordier et al. 2012). The parent bodies
of micrometeorites are determined indirectly with
the help of oxygen isotopes, relict mineral grains,
chemical compositions (elemental or atomic ratios)
which are then compared with known meteorite
types. The meteorites (especially chondritic mete-
orites) comprise of a mix of chondrules, matrix,
metal, CAIs (Calcium Aluminum rich Inclusions),
AOAs (Amoeboid olivine aggregates), etc. How-
ever, one rarely recovers chondrules, CAIs or AOAs
among the tens of thousands of micrometeorites
that have been recovered so far. There are a few
rare exceptions, for example, Kurat et al. (1996)
found the fragment of radiating pyroxene chon-
drule with a diameter of 120μm in micromete-
orites; Taylor et al. (2008, 2011) reported on a CH
type-barred olivine chondrule from the Antarctic
collection. Genge et al. (2004) discovered chon-
dritic igneous objects and matrices that constitute
∼1% of their collection, which in turn suggested
a chondrule bearing asteroid as the parent body.
Recently, Taylor et al. (2011) reported on a
spherule that contained chondrule/fragments of
chondrule and that constituted nearly <0.05%
out of 5682 spherules from South Pole Water

Well (SPWW) collection. Micrometeorites enclos-
ing CAIs have been reported previously by Taylor
et al. (2008, 2010a, b, 2011), Greshake et al. 1995
and Hoppe (1995).

We have isolated a large number of cosmic
spherules from the deep sea sediments of the Indian
Ocean. For the present study, cosmic spherules
from ∼164 kg of sediment from five different loca-
tions are examined, from which we report here the
discovery of a spherule which encloses a chondrule-
like object providing direct evidence of being
derived from a carbonaceous chondritic body, more
specifically a CH chondrite. This is perhaps the sec-
ond time that a CH type chondrule has been dis-
covered inside a micrometeorite and gives a direct
indication of the parent bodies/parts of parent
bodies that eventually end up as micrometeorites.

2. Sampling and analytical procedure

Samples were collected from close-spaced loca-
tions in the Central Indian Ocean Basin (CIOB)
at depths >5000 m by using a van veen grab
onboard AA Sidorenko, a research vessel hired by
Govt. of India in 2003, during the cruise AAS-62
(figure 1a–d). Each grab sample represents an
area of 50 cm2 and a seafloor penetration of
up to 15 cm; the total area sampled for the
present study is 1.25 m2. For the 15 cm max-
imum seafloor penetration of the grab sampler,
it is estimated that the terrestrial age of the
spherules would have a range of 0–50,000 years
(Prasad et al. 2013). The sediments were washed,
sieved in a mesh size of ∼200 μm on board and
dried (figure 1e–g). The spherules were magnet-
ically separated from the >200 μm fractions of
the sieved sediments. In this study, the chondrule-
like object bearing spherule is a part of 672
spherules that are hand-picked from the mag-
netic fraction separated from the five different
sediment samples (total weight of sediment sieved –
164 kg wet weight) using the binocular micro-
scope. All the spherules were mounted in plastic
and were polished. The spherules were observed in
JEOL JSM5800LV Scanning Electron Microscope
(SEM) and images were taken using the back scat-
tered electron mode. Primary composition of the
spherules was obtained by the OXFORD INCA
Energy Dispersive Spectrometer (EDS) attached
with the SEM. Cosmic spherules (n = 518) were
identified among all the magnetically separated
spherules (n = 672) and are characterized based
on their composition and textures. Chemical com-
position of spherule having the chondrule is deter-
mined by CAMECA SX-5 Electron Probe Micro
Analyzer (EPMA) at NIO with a beam diameter of
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Figure 1. Sample collection by using van veen grab from the Indian Ocean basin: (a) van veen grab, (b) lowering the grab,
(c) lifting up the grab from water column with the sediments, (d–e) collecting sediments from grab, (f) sediments samples
collected by using grab sampler, and (g) sieving of the grab samples on board.
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∼1–2 μm, sample current of 12μA and 15 kV accel-
erating voltage. Matrix correction is done using
an online program with PAP correction (Pouchou
and Pichoir 1991). Different standards were used
for each element; for Na→Albite, K→Orthoclase,
Mg→Diopside, Si→Olivine, Mn→Willemite, Fe→
Andradite, Co→Skutterudite, Ni→Nickel Silicide,
P→Apatite, S→Pendlantite, Ca→Diopside, Cr→
Crocoite and for Ti→Benitotite. For each element,
peak time was 10 s and the detection limit for
each element was (wt%): P2O5 – 0.04, Mg2O,
Al2O3 – 0.05, SO2, K2O, Ca2O, SiO2 – 0.06, MnO2,
TiO2 – 0.07, Na2O, Cr2O3 – 0.08, FeO – 0.09, NiO –
0.17 and CoO – 0.13. The spherule under inves-
tigation is found to be partially etched; therefore
small unetched portions on the spherule and chon-
drule were chosen under high magnification for the
analysis. Analysis with a defocused beam having a
diameter of 10 μm and also 25 μm was tried, how-
ever, in view of the pitted nature of the spherule,
the totals are found to be low. Therefore, more
than 10 spots were analyzed both on the chondrule
and material surrounding the chondrule (clasts).
Average of these spot analyses is taken as the bulk
composition of the spherule. X-ray elemental maps
were acquired for the spherule with a beam current
of 12 μA and accelerating voltage of 15 kV. Other
parameters are: dwell time – 0.1 s, points per line
– 512 and step in μm – 0.441.

3. Results and discussions

The spherule under investigation has an actual
diameter of 204.1μm measured with the help of
binocular microscope and is partially etched and
contains many voids. The spherical object at the
center of the spherule can be distinguished from
the rest of the spherule by its barred structure
(figure 2a). This spherical object may be a chon-
drule. The spherule under investigation must have
undergone less heating as it lacks magnetite rim
around the spherule and preserves the chondrule-
like object. Diameter of the chondrule-like object is
72 μm. The chondrule-like object contains bars of
∼1–2 μm (figure 2b) composed of Ca-poor pyrox-
ene (En 89.9%, Fe 10.01 and Wo 0.05). The
clasts surrounding chondrule have pyroxene nor-
mative mineralogy; contain pyroxene (∼8–15 μm)
and magnetite (∼1–7 μm). Rounded and irregu-
larly shaped voids are present within the clasts
(figure 2c–e). The rounded voids could be formed
by degassing of volatile material or either by the
separation of chondrule or metal from the spherule
during atmospheric deceleration. Irregular voids in
the clasts could be due to the sea water inter-
action in the terrestrial environment. Microprobe
analysis of the chondrule-like object and the

clasts surrounding the chondrule-like object in the
present investigation are given in table 1. EPMA
result shows that compositionally there is not much
difference between chondrule-like object and clasts;
both are having pyroxene normative mineralogy.
X-ray mapping (figure 3) was done for the ele-
ments Mg, Fe, Si, Al, Cr, Ca and Mn with a beam
current of 12μA and a voltage of 15 kV. The
X-ray image for the elements Mg and Fe show clear
cut boundary between the Mg rich, Fe-poor
chondrule-like object and the clasts surrounding it;
which are enriched in Fe and depleted in Mg. Si
is distributed uniformly throughout the spherule.
Si and CI normalized composition of the chondrule
shows that the chondrule is depleted in moder-
ately volatile element such as Mn, and refractory
elements like Ca, Al and Ti with respect to
CI chondrites (figure 4). When compared to the
chondrule-like object, the clasts are depleted in
Mg and enriched in refractory and moderately
volatile elements (table 1, figure 3). Comparison
of the chondrule value with the cryptocrystalline
chondrules collected from SaU290, PAT91564 and
PCA91328 CH chondrites (Krot et al. 2000;
Nakashima et al. 2011) shows a close similarity
(figure 4). However, when we compare the bulk
elemental ratios with the other meteorites this
spherule shows a proximity to Enstatite meteorites
composition (table 2). One reason for this similar-
ity could be due to depletion of moderately volatile
and refractory element in the spherule (both in
the chondrule and the clasts) or this particular
micrometeorite must have been derived from a type
of parent body which is not yet known.

Size of the chondrule is one of the keys to iden-
tify the parent body, each chondritic meteorite has
chondrules of specific sizes except for CI (CI chon-
drite is matrix dominated). Diameter of the chon-
drule in different chondrites is given in table 3. Size
of the chondrule-like object found in the present
study is similar to the chondrules in a CH chon-
drite, which has the smallest of chondrules (0.02–
0.09 mm) compared to other carbonaceous chon-
drites. CH meteorites comprise 70% chondrules
and chondrule fragments (Scott and Krot 2003).
Most of the chondrules in CH chondrites are cryp-
tocrystalline including radial pyroxene and barred
Olivine (80%) and Porphyritic chondrules com-
prise the remaining 10% (Scott 1988), whereas
the matrix is absent in CH chondrites except in
Acfer 214 (Scott and Krot 2003). CH type chon-
drule is rare among micrometeorite collections.
Micrometeorite enclosing CH chondrite has been
first reported by Taylor et al. (2008, 2011) from
Antarctic collections. They found a barred olivine
chondrule having a diameter which is similar to
chondrules of CH chondrites. In the present study,
based on the result obtained by EPMA and SEM
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Figure 2. Back scattered images of the micrometeorite enclosing chondrule-like object (a) micrometeorite with the
chondrule-like object at the center (inside the circle), (b) magnified image of the chondrule-like object showing laths of
Mg-rich Ca-poor pyroxene, and (c–e) magnified images of the clasts surrounding the chondrule-like object. Clasts are com-
posed of pyroxene and magnetite grains. Rounded voids (inside the yellow circle) in the clasts could be the result of removal
of chondrule, Fe-Ni bead or volatile material during atmospheric entry.

analysis, the chondrule-like object is classified as
a Ca-poor barred pyroxene chondrule. The voids
present within the chondrule must have formed due
to the loss of volatile elements during atmospheric
entry.

Krot et al. (2000) suggest that the Mg-rich
cryptocrystalline chondrules in CH chondrites are
formed by direct condensation from the solar neb-
ula rather than from the dust cloud formed by the

impact of large CH body asteroids and the pro-
longed heating of the precursor chondrule mate-
rial. Absence of Fe-Ni and depletion of moderately
volatile elements in the chondrule indicates that
this chondrule is formed before the condensation of
metal and moderately volatile elements at higher
temperature (above 1200 K) in the inner part of
solar nebula and is transported from the hot solar
nebula to low temperature place (Asteroid belt)
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Table 1. Major elemental composition of (wt%) micromete-
orite enclosing chondrule-like object analysed by EPMA.

Oxides Chondrule Lithic clasts Bulk

SiO2 57.73 53.33 55.92

TiO2 0.03 0.05 0.04

Al2O3 0.96 1.75 1.29

Cr2O3 0.55 0.77 0.64

FeO(t) 6.69 14.70 9.99

MnO 0.17 0.35 0.24

MgO 33.73 27.03 30.97

CaO 0.18 0.55 0.33

Total 100.11 98.59 99.48

B.D.: below detection limit; FeO(t): total Iron; and the
analytical errors for all the major elements are <1%.

where the condensation of parent body took place
by solar winds and has escaped from further low
temperature alteration (Krot et al. 2000, 2001;
Hezel et al. 2002). Other reason for the depletion
of Fe-Ni in the chondrule could be removal of these
metals from the silicate rich chondrule melt (Krot
et al. 2000). Whereas depletion of refractory ele-
ments in the chondrule is mainly due to the frac-
tional condensation in hot solar nebula; by this
process refractory elements have condensed and
are removed during early stages of condensation
(Krot et al. 2000, 2001; Nakashima et al. 2011).
In addition, the presence of 0.6% Cr2O3 and 7%
FeO indicates that this chondrule formed under
oxidizing conditions (Krot et al. 2001). Absence of
matrix around the chondrule indicates that chon-
drule formed in a dust free environment. The lithic
clasts around the chondrule must have been added
later to the chondrule in the asteroid belt (Krot
et al. 2001). Lithic clasts of CH chondrite con-
sists mainly phyllosilicates, sulphides, magnetite
and carbonates and are chondritic (CM2, CI and
CR) in composition (Scott 1988; Weisberg et al.
1998; Greshake et al. 2001; Ivanova et al. 2009).
The lithic clasts in the spherule under investigation
are mainly composed of pyroxene and magnetite,
which could be formed by dehydration and melt-
ing of phyllosilicates and other minerals. Compar-
ison with the matrix of carbonaceous chondrites
(figure 5) shows that the clasts are depleted in Fe,
Ni and in moderately volatile elements like Na, K,
P and S. This could be due to degassing of volatile
elements and separation of Fe Ni metal from the
clasts during high velocity entry to the earth’s
atmosphere.

Micrometeorites have been suggested to be the
ablation products of meteorites (Blanchard et al.
1980; Nishiizumi 1983). Alternatively, the presence
of cosmogenic radionuclides in individual micro-
meteorites suggests that the majority of micro-
meteorites were exposed to the cosmic rays as small

bodies in the space for >1 million years and are
entitled to the title micrometeorites (i.e., mete-
orites but of smaller size) (Raisbeck et al. 1983;
Raisbeck and Yiou 1987; Nishiizumi et al. 1991,
1992, 1995, 2007; Herzog et al. 1999; Jull et al.
2007). In addition, enrichment of volatile elements
in ablation spherules compared to the microm-
eteorites; which lost their volatility during the
atmospheric entry supports the above view (Genge
et al. 2008). Lal and Jull (2002) suggested that
micrometeorites are the fragments/ablation prod-
ucts of large meteorites of size 1 m, i.e., 1 m
diameter during atmospheric entry. These particles
are absent in the stratospheric collections because
stratospheric collections are biased towards the pri-
mary particles that are entering as small micro-
meteoroids and the frequency of meteorite fall
is low compared to micrometeorites. The frag-
mented meteoritic particles would be sampled effi-
ciently from the terrestrial samples which represent
large area and time such as the deep sea sedi-
ment samples, ice samples, etc. For the present
study, large quantities of samples have been col-
lected from the deep sea region that represents an
age of up to 50,000 yrs and in an area of 1.25 m2 of
the seafloor. However, chondrules/chondrule frag-
ments, CAIs, and AOAs are found in meteorites
and are rare in micrometeorites (Kurat et al. 1996;
Taylor et al. 2011). A few investigators reported the
presence of chondrule/chondrule fragments, CAIs
and AOAs in micrometeorites, examples are: Kurat
et al. (1996) found the fragment of radial pyroxene
chondrule with a diameter of 120μm in Antarc-
tic micrometeorites. Genge et al. (2004) discov-
ered chondritic igneous objects and matrix which
constitute 1% of their collection, and suggested
a chondrule bearing asteroid as the parent
body. Micrometeorites enclosing CAIs have been
reported by Greshake et al. (1995), Hoppe (1995),
Taylor et al. (2008, 2010a, b, 2011). Taylor et al.
(2008, 2010a, b, 2011) reported on spherules con-
taining CAIs and chondrule/chondrule fragments
of CV and CH type chondrite respectively. Chon-
drules and CAIs constitute less than 1% of the
Antarctic micrometeorites collection (Engrand and
Maurette 1998; Taylor et al. 2008, 2010a, b, 2011).
Greshake et al. (1995) analyzed trace elements in
the CAIs whose composition was similar to CM
and CH chondrites.

The spherule enclosing the chondrule-like object
in the present investigation may be a fragment of
a meteorite or a meteorite ablation spherule which
entered the earth as a small body and has not
experienced much heating. The preservation of a
chondrule and the lack of magnetite rim also sug-
gests that this particle entered the earth at low
zenith angles and has undergone less atmospheric
heating. Formation of a magnetite rim depends
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Figure 3. X-ray images for Mg, Fe and Si, Al, Cr, Ca and Mn. X-ray image for the element Mg and Fe shows the boundary
of the chondrule-like object clearly, which is rich in Mg and depleted in Fe compared to the clasts surrounding it. Si is
distributed uniformly throughout the spherule. Al, Ca, Cr and Mn elements are depleted in chondrule-like object compared
to the clasts.
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Figure 4. Element to Si ratio normalized to CI (Wasson and
Kallemeyn 1988) for chondrule-like object in the present
study (coloured line). Black line represents the Si and CI
normalized chemical composition of the chondrule from CH
chondrite SaU290 (Nakashima et al. 2011) and the grey
patch shown in the figure represents the composition of Mg-
rich cryptocrystalline chondrule from CH chondrites (Krot
et al. 2000). Composition of chondrule-like object shows a
similar trend with the SaU 290 and falls in the field of
Mg-rich cryptocrystalline chondrule from CH chondrite.

Table 2. Comparison of elemental ratios of spherule, chon-
drule and lithic clasts with the chondritic meteorites.

Mg/Si Al/Si Ca/Si Fe/Si Ca/Al

Chondrule 0.90 0.02 0.00 0.05 0.17

Lithic clasts 0.80 0.02 0.01 0.20 0.20

Bulk 0.83 0.03 0.01 0.15 0.24

CI 1.09 0.08 0.09 1.73 1.07

CM 0.91 0.09 0.1 1.62 1.08

CO 0.91 0.09 0.1 1.56 1.10

CV 0.93 0.11 0.12 1.51 1.09

CH1 1.06 0.08 0.06 1.52 0.72

E 0.96 0.07 0.05 0.82 0.74

H 0.93 0.07 0.05 0.58 0.72

L 0.94 0.07 0.05 0.49 0.74

EH 0.73 0.05 0.04 0.87 0.71

EL 0.88 0.06 0.04 0.59 0.65

CI fine grained 0.92 0.09 0.01 0.54

matrix1

CM fine grained 0.96 0.12 0.03 0.94

matrix2

1Wasson and Kallemeyn (1990), 2McSween and Richardson
(1977), and other chondrite values were taken from Wasson
and Kallemeyn (1988).

on the temperature, duration and the oxygen
fugacity (Toppani et al. in 2001; Toppani and
Libourel 2003). According to Greshake et al. (1997),
magnetite crystals are formed between the tem-
peratures 600◦ and 1200◦C depending on parame-
ters named above, and their presence is seen as an
indicator of the changes due to heating and oxi-
dation experienced by the incoming particle. As in

Table 3. Chondrule diameter in different chondrites (Scott
and Krot 2003).

Avg. diameter

Chondrite Group of chondrule (mm)

Carbonaceous CI

Carbonaceous CM 0.3

Carbonaceous CO 0.15

Carbonaceous CV 1

Carbonaceous CR 0.7

Carbonaceous CH 0.02–0.09

Carbonaceous CBa ∼5

Carbonaceous CBb ∼0.5

Carbonaceous CK 0.8

Ordinary H 0.3

Ordinary L 0.5

Ordinary LL 0.6

Enstatite EH 0.2

Enstatite EL 0.6

Other K 0.6

Other R 0.4
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Figure 5. Element to Si ratio normalized to CI (Wasson and
Kallemeyn 1988) for clasts (coloured lines) compared with
the matrix of different carbonaceous chondrites (Zolensky
et al. 1993). The composition of clasts show a close sim-
ilarity except for the elements Fe, Ni, Na, K, P and S,
which are depleted in the clasts compared to composition of
carbonaceous chondrite matrix.

all other findings, the present discovery of a single
chondrule in one spherule constitutes an extremely
small percentage (0.2%) of the bulk sample (n =
518) collected from a large area. This could how-
ever be misleading; there could be a larger per-
centage of such meteoritic materials entering the
atmosphere. The reason for the less abundance of
meteoritic material among the cosmic spherules
could be due to a large percentage of microme-
teorites had undergone sufficient heating to have
changed their original texture resulting in textures
such as a barred, cryptocrystalline, glass and CAT
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(Taylor and Brownlee 1991; Engrand and Maurette
1998; Taylor et al. 2000, 2011; Yada et al. 2005;
Genge et al. 2008; Rochette et al. 2008; Parashar
et al. 2010). For example, in unbiased collec-
tions, barred, cryptocrystalline, glassy and CAT
spherules constitute nearly 80% and the remain-
ing 20% covers the least melted micrometeorites
such as scoriaceous, relict-grain-bearing and por-
phyritic (Taylor and Brownlee 1991; Taylor et al.
2000). The present finding suggests that microm-
eteorites may be from either source – ablation
products of larger meteorites or individual parti-
cles released from the asteroid belt that enter the
earth’s atmosphere.

4. Conclusion

Six hundred and seventy two spherules were sep-
arated from material sieved from 164 kg of sur-
face sediment sample. The spherule enclosing
chondrule-like object is a part of the above sample.
The chemical composition and petrographic fea-
tures of the chondrule-like object agree with the
chondrules of CH chondrite. This cosmic spherule
must have landed on the earth’s surface under
the conditions of low entry velocity and low zenith
angle without much atmospheric heating as the
chondrule boundary and the chemical composition
of the chondrule-like object are well preserved. The
spherule has a pyroxene normative chemical com-
position. X-ray images show a clear cut boundary
between the Mg-rich Fe-poor chondrule-like object
and the Fe-rich Mg-poor clasts surrounding it. The
chondrule-like object is Ca-poor in composition
and shows a best match with the Mg-rich chon-
drules collected from CH chondrites. The deple-
tion of Fe-Ni, moderately volatile elements and
refractory elements compared to CI meteorite in
the chondrule-like body may be due to the frac-
tional condensation in the solar nebula. The pyrox-
ene normative clasts surrounding the chondrule
have compositions similar to carbonaceous chon-
drite matrix. Compared to carbonaceous chondrite
matrix, the clasts are depleted in Fe-Ni and mod-
erately volatile elements; this could be due to
the removal of these elements during atmospheric
deceleration. The samples in the present inves-
tigation represent a large quantum of time and
space: they have a terrestrial age of 0–50,000 years
and are spread over an area of 1.25 m2. The
present spherule could be a fragment of a mete-
orite. Although such findings are rare (≤1%) in
major unbiased collections, the present finding rep-
resents only a small fraction of the bulk sample.
More importantly, it leads us to suggest that the
micrometeorites may enter the earth as small dust-
sized particles from the interplanetary medium

or as meteorite ablation spherules/fragments of a
larger body.
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