Oxygen minimum zone of the open Arabian Sea: variability of oxygen and nitrite from daily to decadal timescales

K. Banse¹, S. W. A. Naqvi², P. V. Narvekar², J. R. Postel¹, and D. A. Jayakumar²,∗

¹University of Washington, School of Oceanography, Box 357940, Seattle, Washington 98195-7940, USA
²National Institute of Oceanography, Council of Scientific & Industrial Research, Dona Paula, Goa 403 004, India
∗now at: Princeton University, M45 Guyot Hall, Department of Geosciences, Princeton, New Jersey 08544, USA
†deceased

Correspondence to: K. Banse (banse@uw.edu)

Received: 15 August 2013 – Published in Biogeosciences Discuss.: 30 September 2013
Revised: 12 February 2014 – Accepted: 17 February 2014 – Published: 23 April 2014

Abstract. The oxygen minimum zone (OMZ) of the Arabian Sea is the thickest of the three oceanic OMZ. It is of global biogeochemical significance because of denitrification in the upper part leading to N₂ and N₂O production. The residence time of OMZ water is believed to be less than a decade. The upper few hundred meters of this zone are nearly anoxic but non-sulfidic and still support animal (metazoan) pelagic life, possibly as a result of episodic injections of O₂.

We report on discrete measurements of dissolved O₂ and NO₂⁻, temperature and salinity made between 1959 and 2004 well below the tops of the sharp pycnocline and oxycline near 150, 200, 300, 400, and 500 m depth. We assemble nearly all O₂ determinations (originally there were 849 values, 695 of which came from the OMZ) by the visual endpoint detection of the iodometric Winkler procedure, which in our data base yields about 0.04 mL L⁻¹ (≈2 µM) O₂ above the endpoint from modern automated titration methods. We acknowledge that much lower (nanomolar) O₂ values have been measured recently with the STOX (Switchable Trace amount OXygen) sensor in the eastern tropical South Pacific, and that similar conditions may also prevail in the Arabian Sea OMZ. In spite of the error in O₂ measurements at vanishingly low levels, we argue that the temporal trends of the historic data should still hold.

We find 632 values acceptable (480 from 150 stations in the OMZ). The data are grouped in zonally paired boxes of 1° lat. and 2° long. centered at 8, 10, 12, 15, 18, 20, and 21° N along 65 and 67° E. The latitudes of 8–12° N, outside the OMZ, are treated in passing. The principal results are as follows: (1) an O₂ climatology for the upper OMZ reveals a marked seasonality at 200 to 500 m depth with O₂ levels during the northeast monsoon and spring intermonsoon seasons elevated over those during the southwest monsoon season (median difference, 0.08 mL L⁻¹ ≈3.5 μM). The medians of the slopes of the seasonal regressions of O₂ on year for each of the NE and SW monsoon seasons are −0.0043 and −0.0019 mL L⁻¹ a⁻¹, respectively (−0.19 and −0.08 μM a⁻¹; n = 10 and 12, differing at p = 0.01); (2) four decades of statistically significant decreases of O₂ between 15 and 20° N but an opposing trend toward an increase near 21° N are observed. The mechanisms of the balance that more or less annually maintain the O₂ levels are still uncertain. At least between 300 and 500 m, the replenishment is inferred to be due to isopycnal re-supply of O₂, while at 200 (or 250?) m it is diapycnal, most likely by eddies. Similarly, recent models show large vertical advection of O₂ well below the pycnoclines and oxyclines.

The NO₂⁻ distribution, taken as an indicator of active NO₃⁻ reduction, does not show a trend in the redox environment for a quarter of a century at a GEOSECS station near 20° N. In the entire OMZ, the regression slopes on year within seasons for the rather variable NO₂⁻ do not present a clear pattern but by other measures tended to an increase of NO₂⁻.

Vertical net hauls collect resident animal (metazoan) pelagic life in the NO₂⁻ maximum of the OMZ at O₂ levels well below the lower limit of the Winkler titration; the extremely low O₂ content is inferred from the presence of NO₂⁻ believed to be produced through microbial NO₃⁻ reduction. Instead of the difficult measurement by the STOX...
sensor, the relation between the very low O$_2$ inferred from presence of NO$_2^-$ and mesozooplankton should be studied with 100 to 150 L bottles rather than nets.

The spatial (within drift stations) and temporal (daily) variability in hydrography and chemistry is large also below the principal pycnocline. The seasonal change of hydrography is considerable even at 500 m depth. Future O$_2$ or nutrient budgets for the OMZ must not be based on single cruises or sections obtained during one season only. Steady state cannot be assumed any longer for the intermediate layers of the central Arabian Sea.

1 Introduction

Our paper addresses variability and climatology of dissolved oxygen (O$_2$) and nitrite (NO$_2^-$) from discrete samples collected between 1959 and 2004 in the upper oxygen minimum zone (OMZ) of the central Arabian Sea, which includes the secondary nitrite maximum (SNM). The entire OMZ occupies approximately the 150–1000 m depth range and is the thickest of the three major OMZs of the open ocean. Between one-fourth and one-third of the total marine denitrification is estimated to occur in the water column, of which up to one-third to one-half may take place within the OMZ of the Arabian Sea (Codispoti et al., 2001; Bange et al., 2005). According to Naqvi et al. (2005: Table 9), the contribution by the Arabian Sea (Codispoti et al., 2001; Bange et al., 2005). It has been estimated to be between one-fourth and one-third of the total marine denitrification. Further, Warren (1994) has remarked on the basic weakness of simple box models such as these. Incidentally, note that residence time of water is not the same as the age of water estimated by, for example, freon (CFC-11 or 12). So, accepting a short residence time, temporal O$_2$ changes should be discernible in historical data from four decades as analyzed here. Because small O$_2$ shifts at the generally quite low concentrations in the OMZ may suddenly stop or start denitrification, the temporal variability of the intensity and geographical extent of this OMZ are of global biogeochemical significance.

After we had largely completed our analysis of the historical O$_2$ data, we learned of the introduction to the field of the STOX sensor (Switchable Trace amount OXygen; Revsbech et al., 2009). Its detection limit is almost two orders of magnitude lower than that of the automated Winkler titration and will necessitate a re-assessment of the intensity and geographical extent of this OMZ are of global biogeochemical significance.

Due to the many samples with high concentrations of NO$_2^-$, the OMZ of the Arabian Sea is expected to broadly functionally anoxic, because the observed low O$_2$ cannot sustain aerobic metabolism for any lengthy period. Uno et al. (2012) applied the term AMZ (Anoxic Marine Zone) to the region. The offshore OMZ of the ETSP, however, is non-sulfidic, because NO$_2^-$ is broadly present (Silva et al., 2009; Thamdrup et al., 2012). Since metazoans like copepods are obligatory aerobes, we consider AMZ to mean a water column without animal zooplankton on a 24 h basis and use the term accordingly.

Because of the many samples with high concentrations of NO$_2^-$, the OMZ of the Arabian Sea is expected to broadly present low oxygen conditions similar to those in the ETSP. We know of only one instance, though, when O$_2$ was measured using STOX in the region (September/October 2007, in Jensen et al., 2011: Supplement Fig. S.2). On three stations over depth intervals of several hundred meters, dissolved O$_2$...
was \(\leq 0.09 \mu\text{mol kg}^{-1} \) (\(\sim 0.002 \text{mL L}^{-1} \)), which was the detection limit of the sensor on the cruise. \(\text{NO}_3^- \) has always been found in fairly high concentrations in every sample analyzed within the OMZ during the last five decades, however, ruling out sulfidic anoxia in the water column. Also, metazoan plankton is present throughout, albeit in diminished numbers within the upper OMZ (Sect. 3.2.5).

The OMZ and the deep \(\text{NO}_3^- \) maximum it contains were first discovered in 1933/1934 by Gilson (1937). Numerous \(\text{NO}_3^- \) measurements during many subsequent expeditions in the Arabian Sea showed values > 0.5 \(\mu\text{M} \) and up to \(\sim 5 \mu\text{M} \), that commonly occur in our data as well. They imply that at least during the last 75 years, the lowest \(\text{O}_2 \) concentrations in this OMZ must have been at nanomolar levels (Thamdrup et al., 2012), in contrast to all historical \(\text{O}_2 \) data including those used herein (Supplement Table S.1.b). The appreciable nitrate deficit resulting from the partial denitrification and anammox, ranging at its vertical maximum between 2 and 15 \(\mu\text{M} \text{NO}_3^- \), has been discussed since the mid-1970s (e.g., Sen Gupta et al., 1976; see also Sect. 3.2.6). The OMZ has existed during much of the Holocene, as apparent from the sedimentary record spanning many thousands of years with uninterrupted series of annual varves at two sites located in the northeastern Arabian Sea (von Rad et al., 1999; Staubwasser et al., 2002; Thamban et al., 2007).

So, today, is the OMZ of the Arabian Sea, or at least its core, functionally anoxic as suggested by Thamdrup et al. (2012) and Ulloa et al. (2012) for the core of the OMZ of the eastern tropical South Pacific? The answer is No. The OMZ of the Arabian Sea as a whole is not a non-sulfidic anoxic marine zone (AMZ) as envisaged by Ulloa et al. (2012) and Thamdrup et al. (2012). Metazoan (animal) zooplankton reside in the OMZ even where the median \(\text{O}_2 \) content, as determined by the Winkler procedure, is lowest (Sect. 3.2.5). Further, we will show by the 40-year climatology in our wide longitudinal swath (Fig. 1) that the upper 200 (or 250?) m are seasonally being stirred, presumably by eddies. In contrast, at the 300 to 500 m horizons \(\text{O}_2 \) apparently is advected annually along isopycnals and replenishes the \(\text{O}_2 \) consumed during the SWM period (Sect. 4.2.1). Moreover, \(\text{NO}_3^- \) is largely observed only in the upper part of the OMZ, generally between 150 and 400 m depth, although the lower boundary of the SNM could sometimes be as deep as 600–700 m in the northeastern Arabian Sea (Naqvi, 1987; Morrison et al., 1999). Importantly, in our data sets between 200 and 500 m, 21 % of 707 samples of boxes D1–G2 (without 500 m in D1, D2, see Table 2) contained zero to \(\leq 0.02 \mu\text{M} \text{NO}_3^- \) (Sect. 3.2.5). Thus, there was enough \(\text{O}_2 \) present to prevent the onset of denitrification. In contrast, this percentage was 82 % of 255 samples outside the OMZ in boxes A1–C2 and the deepest horizon in the D-boxes. We also observed that about four-fifths of our 707 samples coming from the 200 to 500 m horizons, which have significant amounts of \(\text{NO}_3^- \), are unevenly distributed in space, as is the > one-fifth that contains too much \(\text{O}_2 \) to allow denitrifica-

Advection adds \(\text{O}_2 \) at least occasionally to OMZs and AMZs also off Peru, as noted by Thamdrup et al. (2012) and off northern Chile as illustrated by Ulloa et al. (2012) for June 2007.

As shown in Supplement Sect. 2, the detection limit of the titration endpoint in our data collation is \(\sim 0.04 \text{mL L}^{-1} \text{O}_2 \) (\(\sim 2 \mu\text{M} \)) above the endpoint of modern automated methods (\(\sim 0.01 \text{mL L}^{-1} \text{O}_2 \) \(\sim 0.4 \mu\text{M} \)). However, in spite of the uncertainties in the determination of \(\text{O}_2 \) at vanishingly small concentrations, we believe that the temporal trends reported herein remain valid. Were it not so, the ocean- and basinscale sections of low dissolved \(\text{O}_2 \) currently in the literature would not closely reflect the basin-wide distribution of nutrients.

Below, we describe first the methods and data selection for temperature, salinity, oxygen, and nitrite in subsamples drawn from the same water bottle. Then we review and update the setting of the OMZ to 500 m depth, including the small-scale spatial and temporal (days to weeks) variability in order to provide perspective on the observations. The core of the paper addresses seasonal and four-decadal changes of \(\text{O}_2 \) and \(\text{NO}_3^- \). We conclude with a section on the implications of the results.
2 Materials and methods

2.1 Data sources

The principal sources for our discrete observations of O$_2$ and NO$_2^-$ together with temperature and salinity were the Indian and US national oceanographic data centers (INODC and NODC, respectively). Collections on some additional cruises conducted by India’s National Institute of Oceanography but not yet incorporated in the INODC and NODC bases were also utilized. All data had been taken near 150, 200, 300, 400, and 500 m, within boxes of 1$^\circ$ lat. by 2$^\circ$ long. The boxes are centered at 8, 10, 12, 15, 18, 20, and 21$^\circ$ N along 65 and 67$^\circ$ E (from A1 to G1 and B2 to G2, respectively, in Fig. 1). While the text and the figures refer to rounded nominal depths, the great majority of our data were collected within 5% and in some cases within 10% of the nominal horizons. In addition, we include some O$_2$ observations at exact nominal depths and the very few values from data centers that were already interpolated to them. The measurements used are listed in Supplement Table S.1.b together with the temperature and salinity of the samples.

We identify the seasons following the US Joint Global Ocean Flux Study (JGOFS) classification (Morrison et al., 1998) but the starting dates lagged by a half a month to one month: northeast monsoon (NEM), December–March; spring intermonsoon (SI), April–May; southwest monsoon (SWM), June–September; and fall intermonsoon (FI), October–November. The lag is introduced because the biochemical response at depth depends also on the downward transmission of surface signals by sinking particles.

2.2 Temperature and salinity

All temperatures and salinities accompanying the O$_2$ and/or NO$_2^-$ data were taken at face value except that five hydrographic series (including the O$_2$ and NO$_2^-$ values) were eliminated as occurring in exceptionally deep eddies (two series) or as clearly due to pre-trips of the entire bottle strings. A very few salinity records were dropped as false by being obvious outliers in T–S diagrams. To fill in large temporal gaps, a few measurements without O$_2$ and/or NO$_2^-$ observations were taken from the data centers. Data from 329 and 332 stations with 1376 temperature and 1380 salinity values, respectively, were utilized (Supplement Table S.1.b). As in the case of O$_2$ and NO$_2^-$, the total includes some means of replicate casts at routine or drift stations. Supplement Tables S.2 and S.3 present the medians of temperature and salinity for all boxes and depths.

2.3 Oxygen

This section treats analytical bias, as well as describes our criteria for rejecting many reported values.

Our O$_2$ data were generated by the iodometric Winkler titration technique with visual end point detection (see Supplement Sect. S.2). This procedure was in general use until it was partially replaced by automated titration, by which also the CTD-attached O$_2$ probes were calibrated. For our boxes we strove to collect all observations based on manual Winkler titrations with visual endpoint detection, but had to remove quite a few because of obvious bias as detailed below. Measurements by other methods, i.e., those involving automated (e.g., colorimetric or photometric) endpoint detection of the iodometric titration, were not considered, unless noted, because of systematic differences in the analytical results discussed below. Excluded thus are cruises 118 and 159 of R/V Gaveshani, as well as the observations from cruises 99 and 104 of R/V Sugar Kanya and all those by R/V T. G. Thompson and other recent expeditions. To our knowledge, for avoiding interference by nitrite, sodium azide was not added on any expedition except those by R/V T. G. Thompson (Morrison et al., 1999).

Almost all of our O$_2$ data were recorded in mL L$^{-1}$, which we did not convert to µM or µmol kg$^{-1}$, except for means and medians, because reporting the exact multiplication would have added a decimal place implying a false precision, whereas rounding off might have introduced errors in means and medians of sets of often only five to ten values. Original observations expressed as µmol kg$^{-1}$ were retained but also stated as converted µµ/µ or molar units.

During the last two to three decades O$_2$ was analyzed with automated endpoint detection in the Winkler analysis (JGOFS manual; Anon., 1994). By comparing such measurements with visual endpoint detection in the same boxes during the same periods, we find an overestimate by 0.04 mL L$^{-1}$ O$_2$ (∼ 2 µM) (Supplement Sect. 2). Without further evidence we generalize the difference as applicable to our entire material in Supplement Table S.1.b. In view of the low O$_2$ concentrations in the OMZ (Sect. 3.1.2), the bias is far from negligible.

The accuracy in historical O$_2$ data may vary for a number of reasons. For quality control we used the accompanying NO$_2^-$ values, all accepted at face value, and eliminated O$_2$ values > 0.10 mL L$^{-1}$ when they were accompanied by NO$_2^-$ values > 0.2 µM. As stated above, high NO$_2^-$ is an indicator of denitrification, and if associated with substantial O$_2$ it implies overestimation of the latter (see Sect. 1; also Supplement Sect. 2). We corrected apparent O$_2$ measurements < 0.10 mL L$^{-1}$ accompanied by NO$_2^-$ ≥ 0.2 µM for nitrite interference (Wong, 2012) and signified these by italics in Supplement Table S.1.b. Our cutoff of 0.2 µM NO$_2^-$ for eliminating O$_2$ > 0.10 mL L$^{-1}$ was rather subjective but seemed justifiable given the variability in NO$_2^-$ blanks that may introduce errors up to ∼ 0.05 µM. Of course, in view of the recently recognized much lower O$_2$ threshold for the onset of denitrification (Sect. 1), the cutoff is indeed arbitrary and only serves to sort our data collation. The 1 µM contour in our Fig. 1 is close to the 0.2 µM contour in Naqvi (1991) demarcating the boundaries of the suboxic zone.
From all boxes between about 150 and 500 m, 849 \(O_2\) values based on visual endpoint detection from 205 stations were found (duplicate casts on the same station are averaged and not counted as such; also not included are rejected data from three cruises mentioned below). In the OMZ (boxes D1-G2), 695 observations or means were recorded. Of these, 215 values with \(O_2 > 0.10 \text{mL}\cdot\text{L}^{-1}\) accompanied by \(NO_2 > 0.2 \mu\text{M}\) were rejected. The remaining 480 data points came from 150 stations. Included are 31 stations with 56 values were < 0.10 mL L\(^{-1}\) accompanied by NO\(_2\) analyses because there was no reason to reject them (of these, 14 came from ~150 m where higher \(O_2\) values can be expected because of the proximity to the oxycline). The inclusion of the 56 points did not alter our conclusions except possibly the decadal slope at 400 m in F1 in 1963.

Rejected and not included in any of the enumerations were \(O_2\) records from two cruises that were in their entirety too high within the OMZ north of 15° N during the four decades under consideration (R/V Priliv, May 1967; R/V Akademik Kurchatov, May 1976), as well as those from the 22nd cruise of R/V Akademik Vernadsky of 1980. Here, all \(O_2\) values > 0.10 mL L\(^{-1}\) from the OMZ were accompanied by \(NO_2 > 0.2 \mu\text{M}\), suggesting similar overestimates for the remaining determinations. Also dropped at the outset were several single \(O_2\) values from other expeditions that appeared unreasonably high from the context (e.g., as compared to values from adjoining depths, or which came from transition layers with strong gradients).

The totals are 632 accepted measurements from 196 stations between 8 and 21° N (Supplement Table S.1.b). Table 1 presents the numbers and medians of these \(O_2\) values for all boxes and depths.

2.4 Nitrite

Because the \(O_2\) values within the OMZ are often very close to the lower limit of detection and hence perhaps not as precise as is desirable, we use \(NO_2\) as a surrogate of near-absence of \(O_2\). On all cruises nitrite was determined following Bendschneider and Robinson (1952) or variants thereof. In contrast to the \(O_2\) observations, the data from the US Joint Global Ocean Flux Study (JGOFS) and World Ocean Circulation Experiment (WOCE) programs were also included in our study. For the five horizons under consideration, 1191 data points from 292 stations (949 from 227 stations in the OMZ) were utilized, all analyses having been taken at face value (Supplement Table S.1.b). These totals comprise some averages of two or three replicate casts per station, as well as means of \(\geq 4\) (up to 28) replicated casts within the same day or consecutive days at fixed positions. Most of the high \(NO_2\) values were < 5 \(\mu\text{M}\) except a few that exceeded this concentration (maximum 6.2 \(\mu\text{M}\)). One outlier of 10.2 \(\mu\text{M}\) is found at 200 m in Box E2 in July 1970. Table 2 presents the numbers of samples and the medians for all boxes and depths.

2.5 Statistics

Seasonal and decadal changes were investigated by linear regression analysis with the independent variable (dates, i.e., year and month) known, and parametric statistics without testing for normality and homoscedasticity. Significance of differences between medians or groups of data was assessed by the non-parametric rank test (Wilcoxon \(T\) test = Mann–Whitney \(U\) test). Because the latter mostly addressed clear differences between two data sets, one-tailed tests were usually applied. In neither approach did the values weight the statistics that were based on means. Our statements about significance of “differences between medians” are shorthand for “tests for significance of differences between two sets of independent values.” The \(p\) values reflect the distribution of the variables tested, but also the often low number of samples. Because so many sets are small, reporting even \(p = 0.2\) seems appropriate, but is not intended to serve as proof.

3 Results and Discussion

3.1 Broad setting

The area of study lies, strictly speaking, between 7.5 and 21.5° N and 64 to 68° E (Fig. 1), but the southern boxes (A–C, 8–12° N), which are outside the suboxic OMZ, are treated only in passing. Sketching the general setting of the Arabian Sea, we note that previously the two monsoons were thought to force reversal of surface currents seasonally over the entire basin. Actually, much of the western half of the Arabian Sea is full of cyclonic and anticyclonic, quasi-geostrophic mesoscale eddies and fronts with their associated meandering currents (Flagg and Kim, 1998; Shankar et al., 2002; Artamanov, 2006; Resplandy et al., 2011). The new insight is illustrated by maps of sea level anomalies (SLAs; Kim et al., 2001), sea surface height (Fischer et al., 2002; Weller et al., 2002; Resplandy et al., 2011), and geopotential anomalies (Artamonov, 2006). The eddies and fronts may reach 500 m depth (e.g., Artamonov, 2006: Figs. 3.15C–F, 3.16B; Bobko and Rodionova, 2006: \(O_2\) at 300 m in Fig. 5.6, \(NO_2\) section in Fig. 5.8B). In addition, the salinity and temperature (CTD) profiles at stations in the northern boxes down to \(\sigma_t\) near 26 kg m\(^{-3}\) (roughly 200 m depth) show many salinity spikes in the pycnocline (see Figs. 2 and 8) from interweaving of relatively thin layers of varying salinity, presumably with varying biochemical histories. The cause probably is dense water from winter convection subducted and advected horizontally, then preserved in the pycnocline (e.g., Banse and Postel, 2009). Between \(\sigma_t\) of about 26–27 kg m\(^{-3}\), similar layering is due to the intrusion from the Persian Gulf (the Persian Gulf Water, PGW, see Supplement Sect. S.3). The overall result of, especially, the hydrographic processes is substantial variability even within stations replicated during one to three days (Sect. 3.2.4) and is superimposed over
Table 1. Median O$_2$ concentrations (mL L$^{-1}$) for all boxes near the indicated depths (number of values in parentheses; data in Table S.1.b). One-sided p for O$_2$ difference between adjoining medians: * ≤ 0.20; ** ≤ 0.10; *** ≤ 0.05; blank, non-significant.

<table>
<thead>
<tr>
<th>Box</th>
<th>150 m</th>
<th>200 m</th>
<th>300 m</th>
<th>400 m</th>
<th>500 m</th>
</tr>
</thead>
<tbody>
<tr>
<td>A1 + A2</td>
<td>0.77 (3)</td>
<td>0.99 (5)</td>
<td>1.21 (4)</td>
<td>0.92 (1)</td>
<td>0.96 (4)</td>
</tr>
<tr>
<td>B1</td>
<td>0.24 (8)</td>
<td>* 0.30 (13)</td>
<td>*** 0.72 (7)</td>
<td>0.68 (8)</td>
<td>** 0.48 (9)</td>
</tr>
<tr>
<td>C1</td>
<td>0.39 (2)</td>
<td>0.27 (6)</td>
<td>0.36 (3)</td>
<td>0.44 (3)</td>
<td>0.36 (6)</td>
</tr>
<tr>
<td>D1</td>
<td>0.07 (9)</td>
<td>0.10 (12)</td>
<td>0.04 (9)</td>
<td>** 0.09 (11)</td>
<td>* 0.13 (13)</td>
</tr>
<tr>
<td>E1</td>
<td>0.22 (10)</td>
<td>** 0.12 (9)</td>
<td>* 0.10 (7)</td>
<td>0.09 (8)</td>
<td>** 0.13 (9)</td>
</tr>
<tr>
<td>F1</td>
<td>0.27 (25)</td>
<td>*** 0.14 (23)</td>
<td>0.10 (17)</td>
<td>0.09 (19)</td>
<td>0.10 (16)</td>
</tr>
<tr>
<td>G1</td>
<td>0.30 (19)</td>
<td>*** 0.13 (15)</td>
<td>0.15 (12)</td>
<td>0.15 (12)</td>
<td>*** 0.10 (7)</td>
</tr>
<tr>
<td>B2</td>
<td>0.16 (10)</td>
<td>** 0.24 (13)</td>
<td>*** 0.67 (11)</td>
<td>* 0.59 (9)</td>
<td>* 0.54 (12)</td>
</tr>
<tr>
<td>C2</td>
<td>0.47 (3)</td>
<td>0.37 (5)</td>
<td>* 0.25 (2)</td>
<td>1.04 (2)</td>
<td>0.34 (4)</td>
</tr>
<tr>
<td>D2</td>
<td>0.07 (17)</td>
<td>0.06 (23)</td>
<td>0.07 (20)</td>
<td>0.11 (25)</td>
<td>0.12 (26)</td>
</tr>
<tr>
<td>E2</td>
<td>0.19 (10)</td>
<td>** 0.04 (5)</td>
<td>0.13 (4)</td>
<td>0.09 (5)</td>
<td>** 0.11 (9)</td>
</tr>
<tr>
<td>F2</td>
<td>0.13 (10)</td>
<td>** 0.09 (7)</td>
<td>0.07 (8)</td>
<td>0.06 (8)</td>
<td>0.10 (11)</td>
</tr>
<tr>
<td>G2</td>
<td>0.43 (9)</td>
<td>*** 0.08 (9)</td>
<td>*** 0.05 (4)</td>
<td>0.04 (5)</td>
<td>0.05 (4)</td>
</tr>
</tbody>
</table>

1 For example, for (A1 + A2), 150 m cannot be distinguished from 200 m; at 150 m, however, (A1 + A2) differs from B1 at $p \leq 0.05$.

marked seasonality even below the permanent thermocline (Sect. 4.1.2). Resplandy et al. (2011) in an eddy-resolving (1/12°) model showed the large role of vertical nutrient supply by eddies. However, as noted, for example, by Shankar et al. (2002), the regularity of the monsoons makes features like “monsoon currents”, which dominated the previous views of the circulation of the upper Arabian Sea, still stand out, including their relation to the depth of the principal thermocline. For further background information, Wiggert et al. (2005) reviewed biogeochemical pelagic processes. Ramaswamy and Gaye (2006; Sta. EAST near 15°N, 65°E) described ten years of biogenic vertical flux at approximately 3000 m depth.

The study region is largely outside the strong physical and biogeochemical activity offshore of the Arabian Peninsula and near the Murray Ridge. Similarly on its eastern side, our meridional band is largely beyond the influences of the sea level changes, currents, and Kelvin waves near the Indian Subcontinent. During the SWM period coastal upwelling reigns in the “meso-eastern-boundary-current regime” along the west coast of India, without the large eddies and offshore-drawn filaments as seen off the western side of the basin. Associated with the upwelling is the north-setting undercurrent, which advects O$_2$ poleward. Naqvi et al. (2006) reported low salinity and elevated O$_2$ near the continental slope off Goa (15°N) even in December in 1998 after the SWM had lasted unusually long and the surface flow was still directed toward the equator. In their eddy-resolving model, Resplandy et al. (2012) generate the undercurrent below about 150 m depth and stress the importance of poleward O$_2$ advection along the continental slope.

The general distribution of salinity and O$_2$ along 64°E as depicted by Olson et al. (1993: Fig. 2) for 1986 is probably valid also for 65°E. Between 200 and 500 m depth the median temperatures at each depth horizon increase with monotonous slopes by 2–3°C, with the medians along 67°E (boxes B2–G2; Supplement Table S.2) tending to be cooler by a few tenths of a degree than those along 65°E (boxes A1–G1). Little more will be said about temperature. Between about 7 and 10°N, the salinity below the bottom of the pycnocline at individual stations varies little with depth to at least 800 m but increases northward from ca. 35.2 to 35.3–35.4. To the north of 10 or 12°N up to 21°N and between 150 and 500 m depth, the median salinities at each horizon increase with monotonous slopes to 35.9–36.0 (35.8 at 500 m near 65°E; Supplement Table S.3). In the OMZ, the median
Table 2. Median NO$_2$ concentrations (µM) for all boxes near the indicated depths (number of values in parentheses; data in Table S.1.b). One-sided p for NO$_2$ difference between adjoining medians in boxes D–G: * \leq 0.20; ** \leq 0.10; *** \leq 0.05; blank, non-significant (see also footnote in Table 1).

<table>
<thead>
<tr>
<th>Box</th>
<th>150 m</th>
<th>200 m</th>
<th>300 m</th>
<th>400 m</th>
<th>500 m</th>
</tr>
</thead>
<tbody>
<tr>
<td>A1 + A2</td>
<td>0.01 (10)</td>
<td>0.01 (10)</td>
<td>0.01 (7)</td>
<td>0.01 (7)</td>
<td>0.01 (7)</td>
</tr>
<tr>
<td>B1</td>
<td>0.02 (14)</td>
<td>0.01 (18)</td>
<td>0.00 (15)</td>
<td>0.00 (14)</td>
<td>0.00 (14)</td>
</tr>
<tr>
<td>C1</td>
<td>0.03 (12)</td>
<td>0.04 (18)</td>
<td>0.00 (11)</td>
<td>0.00 (13)</td>
<td>0.00 (12)</td>
</tr>
<tr>
<td>D1</td>
<td>0.13 (30)***</td>
<td>0.81 (34) *</td>
<td>1.17 (32) ***</td>
<td>0.00 (29) ***</td>
<td>0.00 (29) ***</td>
</tr>
<tr>
<td>E1</td>
<td>0.02 (15) ***</td>
<td>0.40 (16) **</td>
<td>2.86 (15) ***</td>
<td>1.32 (16) ***</td>
<td>0.04 (11) ***</td>
</tr>
<tr>
<td>F1</td>
<td>0.04 (36) ***</td>
<td>0.14 (45) **</td>
<td>1.36 (41) **</td>
<td>1.37 (38) ***</td>
<td>0.43 (37) ***</td>
</tr>
<tr>
<td>G1</td>
<td>0.03 (30) ***</td>
<td>0.23 (34) **</td>
<td>0.53 (31) **</td>
<td>0.75 (32) **</td>
<td>0.54 (28) **</td>
</tr>
<tr>
<td>B2</td>
<td>0.02 (9)</td>
<td>0.00 (9)</td>
<td>0.00 (8)</td>
<td>0.00 (4)</td>
<td>0.00 (5)</td>
</tr>
<tr>
<td>C2</td>
<td>0.00 (4)</td>
<td>0.00 (6)</td>
<td>0.00 (5)</td>
<td>0.01 (4)</td>
<td>0.00 (6)</td>
</tr>
<tr>
<td>D2</td>
<td>2.00 (35) ***</td>
<td>2.83 (40) ***</td>
<td>1.22 (38) ***</td>
<td>0.01 (36) ***</td>
<td>0.00 (35) ***</td>
</tr>
<tr>
<td>E2</td>
<td>0.08 (16) ***</td>
<td>2.53 (18) **</td>
<td>2.74 (15) ***</td>
<td>1.28 (17) ***</td>
<td>0.06 (17) ***</td>
</tr>
<tr>
<td>F2</td>
<td>0.07 (6) ***</td>
<td>1.74 (9) *</td>
<td>2.82 (9) ***</td>
<td>1.44 (7) **</td>
<td>0.95 (5) *</td>
</tr>
<tr>
<td>G2</td>
<td>0.04 (12) ***</td>
<td>0.46 (14) ***</td>
<td>2.67 (14) ***</td>
<td>1.98 (14) ***</td>
<td>1.26 (13) ***</td>
</tr>
</tbody>
</table>

salinities tend to be slightly lower along 67°E than in the western (along 65°E) boxes.

Over the range of about 7 to 10°N, near and somewhat below 200 m, O$_2$ as measured prior to the advent of the STOX probe declines from about 2 to about 0.4 mL L$^{-1}$ (∼90 to 18 µM; cf. Wyrkki, 1971: Tables 441 and 502; see also the numerous significant differences among median O$_2$ values between the C and D boxes at 10 and 12°N, respectively, in Table 1). Naqvi et al. (1993) noted that the transitional zone is observed between these two latitudes, which during 1995 was only one degree wide. The position seems to be fairly stable in time, probably owing to the distribution of wind stress and the resulting quasi-zonal circulation (Warren, 1994; but see the section for the SWM in de Sousa et al., 1996, and Supplement Sect. S.1). The very steep horizontal O$_2$ gradients at the southern edge of the upper half of the OMZ in our meridional band, not described previously, are to be covered by Banse and Postel (2015).

3.2 Setting of the OMZ

3.2.1 General hydrography

We focus on the OMZ poleward of 12°N. Our 150 m, uppermost horizon is below the salinity maximum of the non-seasonal pycnocline near a σ_t of 24 kg m$^{-3}$ and below the sharp oxycline, which is the upper border of the OMZ. The depths of these discontinuities vary seasonally (Colborn, 1975; Molinari et al., 1986), being deeper in the SWM and, in the north, also during the NEM. The climatological depths of the bottom end of the steep vertical gradients of temperature, salinity, and oxygen occur somewhat above the 200 m horizon (see Fig. 2 as an example). Much of the OMZ has only weak vertical gradients of O$_2$, but zooplankton species may be layered, perhaps responding to these gradients, as found with copepods (Böttger-Schnack, 1996) and Wishner et al. (1998).

3.2.2 Oxygen

The intense (suboxic) OMZ extends from north of the C-boxes (12°N) poleward, although in September 1994 the depths at and slightly above 200 m in our Box C1 were part...
of this zone (R/V T. G. Thompson cruise TN039; see also the variable latitude of the denitrification zone in Naqvi, 1991). In the OMZ, the median visual Winkler O$_2$ levels are often below 0.1 or even 0.05 mL L$^{-1}$ (Table 1). The many significant differences in the table between the 150 and 200 m horizons suggest restricting our treatment of the OMZ to the 200 to 500 m levels but adding the 150 m level in the D-boxes (15° N). The medians for the four deeper horizons range only between 0.04 and 0.15 mL L$^{-1}$ O$_2$. Within the upper OMZ as studied here, the vertical gradients tend to be small; more often than not the differences between depth horizons are insignificant, as are the north–south differences with the exception of the G-boxes (Table 1). Regarding zonal differences, the means of the annual medians of the depths in the four western boxes are all higher than those of the eastern boxes, but the ranking of the medians in Table 1 shows significant differences only at 200 and 400 m ($p = 0.01$ and 0.2, respectively).

Resplandy et al. (2012), with their eddy-resolving model, studied the factors that control the O$_2$ balance in the OMZ. For a depth range of 250–300 m their computed median O$_2$ utilization rate was 2.8 mmol L$^{-1}$ a$^{-1}$ (range: 2.1–6.8 [0.06 mL L$^{-1}$ a$^{-1}$ (0.05–0.15)] L. Resplandy, 2013, in litt., cf. their Fig. 6a CAS). They also reported for the NEM and SWM that the amplitude of seasonal O$_2$ change from vertical eddy-driven advection was several times that from biological consumption. Similarly, McCreary et al. (2013) in a non-eddy resolving (0.5°) model determined the large role of lateral O$_2$ advection to the central Arabian Sea. Neither paper addressed shifts on the climatological scale as we do here.

3.2.3 Nitrite

Within the OMZ and in contrast to O$_2$, Table 2 shows many significant depth differences for NO$_3^-$ in spite of the great variability of concentrations. The values are large at and poleward of 15° N except near 150 m (Table 2). At 15° N (D-boxes), however, the high NO$_3^-$ values at the 150 m horizon indicate fairly intense denitrification in conjunction with low oxygen. In contrast, there is little denitrification at 400 and 500 m at 15° N and little in the E-boxes at 500 m depth, reflecting the trends to slightly higher O$_2$ (medians, 0.10–0.13 mL L$^{-1}$). For the same reason, the NO$_3^-$ medians at 300 and 400 m in Box G1 decline relative to the adjoining Box F1. The low medians at 150 m in boxes E1 and F2 and at 400 m in the D-boxes, though, hide the fact that several to many high values were present along with zero concentrations (see Supplement Table S.1.b). The map of high and low values of NO$_3^-$ at the 250 m horizon in Bobko and Rodionova (2006) from the central and northern Arabian Sea illustrates the role of downwelling from eddies to appreciable depths (cf. Artamonov, 2006).

3.2.4 Day-to-day and weekly variability

Using four examples, the section demonstrates that a number of relatively small water masses with apparently different biochemical history are frequently present and often on the same density surfaces. The highly dynamic nature of the hydrography creates temporal as well as spatial variability even in the central Arabian Sea at the same stations with repeated casts and is especially noticeable on week-long drift stations. For the area treated herein, previous papers emphasized temperature (isopleths), twice for four days in Box E2 (Ramesh Babu et al., 1981), as well as one and two weeks of mean isopleths of four stations centered in Box C1, both to 200 m (Rao, 1987), or temperature and salinity for 13 days (Prasanna Kumar et al., 2001; Naqvi et al., 2002).

In Table 3 the first two examples present among-days variability for temperature, salinity, O$_2$, and NO$_3^-$ on stations near Box D1 and in Box E1, each maintained within 1–2 km. The standard deviations (SD) for O$_2$ are absolutely small, but may be as high as the low means. On both stations the variability of NO$_3^-$ at 200–400 m is very large (the variance being larger than the mean), in part because of zero values but in part so even among the high concentrations, as will also be apparent in later sections. Measurements with fewer repeats on seven other locations in our data sets, including...
U.S. JGOFS cruises, other than the following ones show similar variability. The third set of data in Table 3 come from a drift station near 21° N, where temporal and spatial variability change cannot be separated, but the spatial range of almost half a degree is relevant to comparisons of stations on sections with one-degree spacing (see also Supplement Fig. S.3.1).

The fourth example (Fig. 2) illustrates within-station and within-day variability of hydrography south of Box D2 by 16 casts during a 28 h drift of about 41 km extent where spatial and temporal inhomogeneity came into play. The \(T \)–\(S \) diagram for the first 8 h (Fig. 2c) shows massive replacement of water between about 100 and 300 m, below the principal pycnocline.

Last, an inkling of large-scale distributions is provided by the \(\text{NO}_2^- \) at 250 m depth on a one-half to two-thirds degree grid during the spring intermonsoon of 1990, coupled with the associated \(\text{O}_2 \) at the horizon and vertical sections indicating deep-reaching eddies in Bobko and Rodionova (2006: Figs. 5.6 and 5.11B).

The geographical heterogeneity is also to be expected in regional surveys or in interannual studies at fixed locations. Therefore, data from a few stations must not be over-interpreted.

3.2.5 Oxygen and nitrite co-occur temporally

The observations about hydrographic variability support our assumption set forth toward the end of Sect. 1 that \(\text{O}_2 \) and \(\text{NO}_2^- \) may co-exist temporally in the OMZ. Of course, they exclude each other spatially below the \(\text{O}_2 \) threshold for the onset of denitrification of \(< 0.002 \text{mL L}^{-1} \) (< 0.09 \(\mu \text{M} \)). As stated, 21 % of 707 samples contained \(< 0.02 \mu \text{M} \text{NO}_2^- \); the majority showed zero or 0.01 \(\mu \text{M} \text{NO}_2^- \); the averages include \(\text{NO}_2^- \) data not accompanied by \(\text{O}_2 \) (Supplement Table S.1.b). In view of the aforementioned salinity spikes reflecting stratification (also Fig. 2), we visualize the dimensions of such patches horizontally to be much larger than vertically. On the average the patches must last many months, if not a year, such that planktonic animals (e.g., copepods) live and persist in an otherwise nearly anoxic milieu of a few tens of nanomoles of \(\text{O}_2 \) (see also the large “patches” found in 1960 as free of \(\text{NO}_2^- \) at the end of Sect. 3.2.4).

3.2.6 Animal life

This section and Supplement Sect. S.4 show that even the upper OMZ of the Arabian Sea with the \(\text{NO}_2^- \) maximum is biologically not functionally anoxic, in contrast to the suggestion by Thamdrup et al. (2012) for much of the upper OMZ in the eastern South Pacific. Metazoan zooplankton, which by its nature requires dissolved \(\text{O}_2 \), is found year round. As mentioned above, \(\text{NO}_2^- \leq 0.02 \mu \text{M} \) (i.e., zero within the precision of the analysis) was measured in one-fifth of our samples from the 200 to 400 m horizons of the upper OMZ with its SNM. Thus enough \(\text{O}_2 \) is present in such samples to prevent denitrification and is sufficient to maintain a reduced number of animal species and specimens.

Supplement Sect. S.4 reviews results of zooplankton collections for the plankton minimum in the upper OMZ of the Arabian Sea.
The Arabian Sea. Only nighttime data are considered, which exclude the diel migrants among plankton and nekton entering the top of the OMZ during daytime but which during the night in the mixed layer pay off the O_2 debt incurred at depth. The lowest specimen numbers of a few species of copepods were 10–20 m$^{-3}$ (Böttger-Schnack, 1996) and several tens per 1000 m3 of individual species of calanoid copepods (Wishner et al., 1998). Wet weights seem to range from 1 to 5 mg m$^{-3}$. The first author remarked on the large fraction of copepod carcasses and exoskeletons. Ignat’ev (2006) reported that on the average one-fifth to two-fifths of wet weight caught by mid-water trawls of 0.5 mm mesh size consisted of unidentifiable remains of gelatinous animals. These were in addition to the one-third of wet weight of colelenterates in anticyclonic eddies and three-fifths of tunicates alone in cyclonic eddies.

Below the minimum in slightly better oxygenated water, copepod numbers tended to increase tenfold, as did the biomass, before declining toward depth at > 1 km. Species occurrence in the secondary biomass maximum was layered, presumably in response to O_2 (Wishner et al., 1998).

The animal distribution in the upper OMZ of the Arabian Sea is not unique. Similar features, including the minima of biomass and number of species, are found in the OMZ of the Costa Rica Dome of the eastern tropical Pacific, including the secondary maximum of biomass and species occurrence in the lower part of the OMZ (Saltzman and Wishner, 1997). In the same region, Vinogradov et al. (1991), using plankton hauls and visual observations from a submersible, confirmed the similarity of vertical patterns between the Arabian Sea and the Costa Rica Dome but added the large contribution of biomass by gelatinous animals, which are a part of the OMZ fauna. Jelly-like animals accounted for 92% of wet mass and 16% of carbon to the meso- and macroplankton in the upper 500 m, omitting very large (> 15 cm) but rare medusae and ctenophores (see also Hammer et al., 1975, and Supplement Sect. S.4).

3.2.7 Nitrate deficit

The maximum of the NO$_3^-$ deficit resulting from denitrification is also observed in the core of the OMZ, although tending to be a few tens of meters deeper than the NO$_2^-$ maximum (Morrison et al., 1999: Fig. 8); the deficit was calculated by the NO approach, which below about 250 m depth might yield slight overestimates (Naqvi and Sen Gupta, 1985: Fig. 2). Other features are Mantoura et al. (1993) and Chang et al. (2012). The maximal values in a season or a cruise range between about 2 and 15 µM. As illustrated by Morrison et al. (1999) for 1995, the deficit declines toward depth and vanishes by 600–900 m, while NO$_2^-$ is not observed below 350 m depth (below 600 m at one of their four stations). However, note that the presence of an NO$_3^-$ deficit does not reflect ongoing anoxia. Rather, the deficit regularly observed in the OMZ well below the deficit maximum, not accompanied by NO$_2^-$, is apt to be due to mixing downward from the depth of maximum. In the northeastern Arabian Sea, Naqvi et al. (1990) observed lower NO$_3^-$ deficits during the SWM period of 1987 than during the NEM period of 1988 (2–3 µM versus 8–9 µM, respectively).

4 Seasonal and decadal variability in the OMZ

Besides a T–S diagram of seasonal medians for the boxes (Fig. 3), the principal method of study is linear regression of the variable of interest on year (decimal fractions according to the month of observation). Decadal changes of temperature are not considered because linear regressions of sampling depth on year unexpectedly showed positive or negative trends. We neglect this source of possible bias for salinity, oxygen, and nitrite because of the much smaller vertical gradients at the horizons of concern.

4.1 Temperature and salinity

4.1.1 Temperature

By the climatology of temperature of the upper 500 m, the 20°C isotherm in the middle of the thermocline in our region moves seasonally by about 50 m (Molinari et al., 1986). Ramesh and Krishnan (2005) studied the seasonal downward flux of heat to ≥ 200 m as zonal averages between 50 and 70°E, for 0–20°N. Presumably, O$_2$ is also transported (cf. Sect. 1). They calculated that downwelling from convergence and horizontal advection, and the deepening and cooling of the upper layer coupled with strong vertical diffusivity from wind-caused turbulence, warmed the thermocline near 150, 200, and 250 m depths south of 12–13°N by about 1.2, 0.9, and 0.4°C, respectively. Their Figs. 6, 8, and 9 also illustrate that the OMZ area of our study is largely outside the centers of the greatest hydrographic and associated changes in the western and southern Arabian Sea. Finally, the 2-year time series by an Argo float, launched at 12°N, 65°E and slowly drifting toward the southeast (Prakash et al., 2012), illustrates an apparently seasonal vertical shift of the top of the oxycline, the extremes ranging between 35–40 and 130 m depth (during the early NEM and the SI, respectively).

4.1.2 Temperature–salinity relations

Our T–S diagram (Fig. 3; cf. Fig. 1) is based on medians of discrete data and presents the climatology for the OMZ in our meridional swath. Obvious are the strikingly differing patterns at the 150 and 200 m horizons down to the isopycnals (σ_t) of 26.3–26.4 kg m$^{-3}$ versus those at the 300 to 500 m levels. The former are dominated by seasonal, seemingly diapycnal warming to ≥ 200 m depth (but < 300 m) in boxes B–G, extending well below the permanent pycnocline. In contrast, the three lower horizons exhibit clear isopycnal, seasonally periodic change at and poleward of the D-boxes.
(i.e., in the OMZ). Box C1 (12° N) at least at the 300 m horizon seems to follow this “deep” pattern. In the B-boxes (10° N) the seemingly diapycnal warming is observed even at 500 m, where the median temperatures ranges seasonally by 0.4–0.5 °C; the maximal and minimal values differ significantly in Box B2.

As expected from the climatology of Ramesh and Krishnan (2005: Fig. 4) for 150 and 200 m, the lowest median temperatures at these horizons tend to occur during the NEM, while the highest medians are found during the SI or SWM at 150 m up to 20° N (Boxes F1, F2) and at 200 m to 18° N (Box E1; at 200 m also in G1, 21° N, but not at 150 m). At the 300 m horizon in Box C1 and the D-boxes the weak temperature rise of the SWM is accompanied by a marked increase of salinity. Regrettably, no or insufficient (< 4 pairs) observations are available in all these boxes for the FI season for seeing whether the medians return to the vicinity of the NEM (winter) values, as they do (or tend to do) in Box G1 at all depths.

According to the eddy-resolving model of Resplandy et al. (2011), the diapycnal heat transport demonstrated in Fig. 3 between 12 and 21° N is principally due to vertical advection and mixing by eddies but less so to horizontal advection. The apparently efficient mechanism(s) transmitting heat and, presumably, O$_2$ to the 150 and 200 m horizons in the climatology during the SI is not obvious when the seasonal heating forms a thermocline in the upper 50 m or so.

At the 300 to 500 m horizons, temperature and salinity increase and decrease in a periodic, isopycnal manner (Fig. 3). Both properties tend to be highest during the SI and SWM periods, as is the case for temperature also at the upper horizons. Note the somewhat elevated salinities at 300 m, relative to the two deeper horizons at a density close to that of the Persian Gulf intrusion from Box C1 (12° N) poleward. At depth, most temperature differences between the warmest and coolest seasons in the E- to G-boxes are significant, in part highly so ($p = 0.01$ to 0.05). The increases suggest horizontal advection, with more northerly water tending to be present during the SI period. The salinity increases tend to be more pronounced in the western boxes.

For boxes D1, D2, and G1, zonal seasonal data means and medians of temperature and salinity were also drawn from the averages in the World Ocean Data Base 2001 (Levitus et al., 2002; http://iridl.ldeo.columbia.edu/SOURCES/.NOAA/.NODC/WOA01/). They indicate mild east–west gradients, with both variables tending to increase toward the west, which for temperature is in contrast to Fig. 3. The temperature maxima occur during the SI or SWM seasons. Further, in Box D2 between 250 and 500 m the FI period exhibits large salinity increases (0.05–0.1) accompanied by slight declines of temperature. Similar temperature decreases are observed in Box D1. In view of the critique by Bianchi et al. (2012) regarding artifacts arising from averaging and interpolating of O$_2$ data as used in the World Ocean Data Base, which in part applies to other variables, we lean toward giving more credence to our own medians, which are simply based on discrete samples.

Disregarding the small differences between our and Levitus’ data, the principal conclusion from Fig. 3 for the OMZ (Boxes D–G) is the evidence of significant seasonal, periodic advection along isopycnals at 300–500 m depth, most marked during the SI and/or the SWM periods. Because temperature and salinity together increase at that time, the transport direction must be from the northern to the southern quadrants.

4.1.3 Decadal change of salinity

The general distribution of salinity was described earlier. For the climatological change, Supplement Table S.4 provides the regression slopes for salinity on year for all boxes and depth ranges for 3–4 decades, while Table S.5 presents
seasonal regression on year for the OMZ when ≥ 15 contiguous years were available. For boxes A–C (8–12° N) all slopes except two in Supplement Table S.4 are positive, and the majority significantly so (p ≤ 0.2); over a period of 40 years the median salinity increase estimated from the slopes was 0.11. In contrast, in the OMZ in and poleward of the D-boxes (15° N) negative values also occurred, especially at 15° N; here the median salinity decrease from the regression slopes over 40 years was 0.06. The observations support our earlier conclusion that there is little if any continuity of the OMZ with the region adjoining to the south. At 20–21° N salinity tended to increase. In boxes F2, G1, and G2 at 200–500 m, the median increase from the slopes was 0.0034 a −1 (n = 5), which corresponds to 0.13 over four decades.

4.2 Oxygen

4.2.1 Seasonal variability of O2 concentrations

Previous studies suggested either slightly better aeration during the SWM than in the NEM seasons in the upper few hundred meters of the OMZ (Naqvi, 1987; Naqvi et al., 1990; de Sousa et al., 1996) or did not find seasonal changes of O2 (Morrison et al., 1999). Except for Naqvi (1987), the cited papers were based on only two cruises or (Morrison et al., 1999) several cruises during one year. They could not distinguish between seasonal and interannual changes of O2. In contrast, with often four decades of observations for many boxes in our longitudinal band in hand, which include the above cited measurements by Naqvi and de Sousa, we treat climatology. In view of the strong advective processes (cf. Fig. 3) and the significant seasonal O2 differences (Fig. 4), the apparently fairly steady secular maintenance of the annual balance between relatively rapid utilization and advection at the low prevailing O2 concentrations is truly remarkable.

The 150 m horizon is given short shrift because of the substantial interaction with surface waters (Fig. 3). A methodological problem in interpreting our O2 and NO3 data, besides the accuracy of the O2 analyses, is the possible compounding of seasonal with decadal changes, which we disregarded for temperature and salinity. So, for comparisons among seasons we juxtapose similar years and focus on the NEM and SI versus the SWM seasons (December–May and June–September, respectively) in boxes D2 and F1 of the core of the OMZ. These boxes each offer a pair of regressions for the 200–500 m horizons for similar years in both seasons (Fig. 4, open symbols; Table 4). All of the comparisons of medians in Table 4 are significant, at least at p = 0.2.

Table 5 contains the statistics for all seasonal data with ≥ 5 points (note some differences for periods between Fig. 4 and Table 5). As will be discussed in full in the next subsection, all slopes are negative (i.e., oxygen was decreasing with year) and significantly so (at p ≤ 0.2) in 7 out of 10 regression equations in Table 5 for Box D2.

The principal and surprising result about seasonality in the upper OMZ is that at all depths, the NEM and SI periods exhibit the higher O2 values and only in one is the SWM value the higher one of the pair. We are struck by the relative regularity of our data, although they are strongly biased upward as judged by the STOX observations. The similarity of the patterns (Fig. 4), especially the near-constant median O2 concentrations (cf. Table 1) in spite of the great differences of processes acting at the 200 m (diapycnal) and the 300 to 500 m levels (isopycnal; see Fig. 3), is truly noteworthy.

Regarding the causes of the seasonality, the high primary production of the SWM and the presumably enhanced vertical flux of particulate matter (see the sediment trap data at greater depths than our treatment near 15° N in Ramaswamy and Gaye, 2006) could be expected to lead to higher O2 consumption and lower O2 concentrations. Obviously, however, consumption cannot cause the seasonal increase of O2 during the NEM and SI periods, so the seasonal climatological progress of O2 concentrations must principally be governed by advection. As noted in Sect. 4.1.2, at the 300 to 500 m levels the T–S diagram (Fig. 3) indicates isopycnal advection, most conspicuously during the FI period, with the transport direction during that time apparently from north to south in view of the increase of salinity to the north. While there is a tendency to a mild increase of O2 in the far north (G-boxes, Table 1), the meridional gradients of the overall medians are smaller than would be expected from the seasonal ratios in Tables 4 and 5, so that O2 must also be supplied zonally.

According to the model for the CAS domain of the central Arabian Sea by Resplandy et al. (2011, 2012), the vertical advection is most intensive in the upper OMZ (200–400 m), where the model similar to those in our observations yields increases of the O2 values in the FI and NEM seasons and decreases in the late SI and SWM due to upward Ekman pumping. Further, Resplandy et al. (2012) stated for the NEM and SWM periods that the temporal O2 change from vertical eddy-driven processes was 3–5 times that from biological consumption. The authors, however, estimated an annual amplitude of 6 µM of seasonal change in the upper OMZ to be “of the order of 5 %” of the annual mean O2 concentrations of 40 µM. The range in the core and the lower OMZ was 1–3 µM of the concentrations of 20–40 µM (Resplandy et al., 2012: p. 5105). In contrast, we find median and mean differences of 0.08 and 0.10 mL L −1, respectively (~4.0 µM; range, 0.03–0.20 mL L −1), of the 14 pairs “> SWM” in Table 4. They amount to 76 and 91 %, respectively, of the 0.105 and 0.11 mL L −1 (~4.5 µM) as median and mean, respectively, of the 13 median O2 concentrations for these boxes and depths (Table 1). The seasonality is strong. Using a different model McCreary et al. (2013) likewise recognized the poleward horizontal advection and the role of the vertical advection of O2.

Finally, even when neglecting our newly evaluated historical data it is no longer advisable to base O2 budgets for the
central Arabian Sea on data from a single or even several cruises executed during only one season.

4.2.2 Four-decadal changes of O_2 in the upper OMZ

Neglecting the 150 m horizon in Table 5, the slopes of the 29 seasonal regressions – half being significant – are overwhelmingly negative, except in the northernmost boxes F2, G1, and G2. Thus, O_2 decreased. Three slopes at depth in F2 (20° N) are positive with very high significance, which proves that the decrease in the bulk of our meridional swath is real rather than an artifact from an accuracy of the Winkler analyses increasing with time.

Supplement Table S.6 shows the computed annual slopes for O_2 concentrations on year for all boxes and depth ranges with ≥5 values each for 3 to 4 decades. Two remarkable results are (1) the signs of the slopes for most depths in the southern boxes (A–C, 8–12° N) are positive, indicating an increasing trend in dissolved O_2 within the...
Table 4. Significant seasonal differences in median O$_2$ concentrations (mL L$^{-1}$) in the OMZ for boxes and depths with \geq 2 values during similar periods. One-sided p: *, \leq 0.20; **, \leq 0.10; ***, \leq 0.05. See Fig. 3 for names of seasons and months.

<table>
<thead>
<tr>
<th>Box</th>
<th>Depth (m)</th>
<th>Year</th>
<th>Season</th>
<th>p</th>
<th>n†</th>
</tr>
</thead>
<tbody>
<tr>
<td>D1</td>
<td>200</td>
<td>1963–1996</td>
<td>SWM > SI</td>
<td>0.20*</td>
<td>(0.12/0.00; 8/3)</td>
</tr>
<tr>
<td></td>
<td>400</td>
<td>1994–1996</td>
<td>SI > SWM</td>
<td>0.10**</td>
<td>(0.20/0.09; 2/3)</td>
</tr>
<tr>
<td></td>
<td>500</td>
<td>1994–1996</td>
<td>SI > SWM</td>
<td>0.10**</td>
<td>(0.240.13; 2/3)</td>
</tr>
<tr>
<td>F1</td>
<td>400</td>
<td>1987–2004</td>
<td>NEM > SWM</td>
<td>0.01***</td>
<td>(0.13/0.08; 9/5)</td>
</tr>
<tr>
<td></td>
<td>500</td>
<td>1987–2004</td>
<td>NEM > SWM</td>
<td>0.01***</td>
<td>(0.12/0.08; 8/4)</td>
</tr>
<tr>
<td></td>
<td>200</td>
<td>1990–1996</td>
<td>SI > SWM</td>
<td>0.10**</td>
<td>(0.20/0.01; 4/3)</td>
</tr>
<tr>
<td></td>
<td>300</td>
<td>1990–1996</td>
<td>SI > SWM</td>
<td>0.20*</td>
<td>(0.17/0.09; 3/3)</td>
</tr>
<tr>
<td>G1</td>
<td>300</td>
<td>1988–1994</td>
<td>NEM > SI</td>
<td>0.10**</td>
<td>(0.19/0.15; 4/4)</td>
</tr>
<tr>
<td></td>
<td>400</td>
<td>1987–1997</td>
<td>NEM > SWM</td>
<td>0.20*</td>
<td>(0.15/0.04; 4/2)</td>
</tr>
<tr>
<td></td>
<td>200</td>
<td>1988–1990</td>
<td>SI > NEM</td>
<td>0.05***</td>
<td>(0.29/0.13; 3/3)</td>
</tr>
<tr>
<td></td>
<td>400</td>
<td>1988–1990</td>
<td>SI > NEM</td>
<td>0.10**</td>
<td>(0.21/0.16; 2/3)</td>
</tr>
<tr>
<td></td>
<td>200</td>
<td>1987–1996</td>
<td>SI > SWM</td>
<td>0.05***</td>
<td>(0.27/0.07; 3/3)</td>
</tr>
<tr>
<td></td>
<td>400</td>
<td>1987–1996</td>
<td>SI > SWM</td>
<td>0.05***††</td>
<td>(0.21/0.04; 2/2)</td>
</tr>
<tr>
<td>D2</td>
<td>200</td>
<td>1987–1998</td>
<td>NEM > SWM</td>
<td>0.05***</td>
<td>(0.08/0.03; 10/5)</td>
</tr>
<tr>
<td></td>
<td>300</td>
<td>1987–1998</td>
<td>NEM > SWM</td>
<td>0.10**</td>
<td>(0.08/0.05; 8/4)</td>
</tr>
<tr>
<td></td>
<td>400</td>
<td>1983–1998</td>
<td>NEM > SWM</td>
<td>0.10**</td>
<td>(0.11/0.05; 9/6)</td>
</tr>
<tr>
<td></td>
<td>400</td>
<td>1980–1996</td>
<td>FI > SWM</td>
<td>0.10**</td>
<td>(0.20/0.05; 4/6)</td>
</tr>
<tr>
<td></td>
<td>500</td>
<td>1980–1996</td>
<td>FI > SWM</td>
<td>0.05***</td>
<td>(0.19/0.11; 3/7)</td>
</tr>
</tbody>
</table>

† Median concentrations and numbers of samples for the two seasons (e.g., D1, 200 m, SWM, median 0.12, 8 samples vs. SI, median 0.00, 3 samples).
†† Estimated p.
Table 5. Seasonal regressions of O_2 on year in OMZ with slopes and medians with $n \geq 5$ (p of slope: * ≤ 0.20; ** ≤ 0.10; *** ≤ 0.05; n number of values; SE: Standard Error of regression). See Fig. 3 for names and length of seasons.

<table>
<thead>
<tr>
<th>Box</th>
<th>Depth (m)</th>
<th>Season</th>
<th>Year</th>
<th>Median (O_2, mL L$^{-1}$)</th>
<th>Slope (O_2, mL L$^{-1}$ a$^{-1}$)</th>
<th>p</th>
<th>n</th>
<th>SE</th>
</tr>
</thead>
<tbody>
<tr>
<td>D1</td>
<td>150</td>
<td>SWM</td>
<td>1963–2004</td>
<td>0.15</td>
<td>-0.0017</td>
<td>0.70</td>
<td>5</td>
<td>0.140</td>
</tr>
<tr>
<td></td>
<td>200</td>
<td>SWM</td>
<td>1963–2004</td>
<td>0.12</td>
<td>-0.0019</td>
<td>0.19*</td>
<td>8</td>
<td>0.069</td>
</tr>
<tr>
<td></td>
<td>300</td>
<td>SWM</td>
<td>1963–2004</td>
<td>0.04</td>
<td>-0.0025</td>
<td>0.25</td>
<td>7</td>
<td>0.095</td>
</tr>
<tr>
<td></td>
<td>400</td>
<td>SWM</td>
<td>1963–2004</td>
<td>0.09</td>
<td>-0.0005</td>
<td>0.57</td>
<td>7</td>
<td>0.032</td>
</tr>
<tr>
<td></td>
<td>500</td>
<td>SWM</td>
<td>1963–2004</td>
<td>0.13</td>
<td>-0.0008</td>
<td>0.42</td>
<td>9</td>
<td>0.041</td>
</tr>
<tr>
<td>F1</td>
<td>150</td>
<td>NEM</td>
<td>1977–2002</td>
<td>0.32</td>
<td>-0.0033</td>
<td>0.89</td>
<td>14</td>
<td>0.458</td>
</tr>
<tr>
<td></td>
<td>200</td>
<td>NEM</td>
<td>1988–2002</td>
<td>0.15</td>
<td>-0.0091</td>
<td>0.19*</td>
<td>12</td>
<td>0.090</td>
</tr>
<tr>
<td></td>
<td>300</td>
<td>NEM</td>
<td>1988–2002</td>
<td>0.10</td>
<td>-0.0062</td>
<td>0.12*</td>
<td>9</td>
<td>0.045</td>
</tr>
<tr>
<td></td>
<td>400</td>
<td>NEM</td>
<td>1988–2002</td>
<td>0.13</td>
<td>-0.0056</td>
<td>0.22</td>
<td>9</td>
<td>0.054</td>
</tr>
<tr>
<td></td>
<td>500</td>
<td>NEM</td>
<td>1988–2002</td>
<td>0.12</td>
<td>-0.0047</td>
<td>0.17*</td>
<td>8</td>
<td>0.041</td>
</tr>
<tr>
<td></td>
<td>150</td>
<td>SI</td>
<td>1990–1994</td>
<td>0.34</td>
<td>-0.0338</td>
<td>0.40</td>
<td>5</td>
<td>0.198</td>
</tr>
<tr>
<td></td>
<td>150</td>
<td>SWM</td>
<td>1963–2004</td>
<td>0.10</td>
<td>-0.0001</td>
<td>0.99</td>
<td>5</td>
<td>0.108</td>
</tr>
<tr>
<td></td>
<td>200</td>
<td>SWM</td>
<td>1963–2004</td>
<td>0.04</td>
<td>-0.0009</td>
<td>0.69</td>
<td>5</td>
<td>0.068</td>
</tr>
<tr>
<td></td>
<td>400</td>
<td>SWM</td>
<td>1963–2004</td>
<td>0.09</td>
<td>-0.0020</td>
<td>0.05**</td>
<td>5</td>
<td>0.023</td>
</tr>
<tr>
<td></td>
<td>500</td>
<td>SWM</td>
<td>1963–2004</td>
<td>0.09</td>
<td>-0.0014</td>
<td>0.07**</td>
<td>6</td>
<td>0.021</td>
</tr>
<tr>
<td>G1</td>
<td>150</td>
<td>NEM</td>
<td>1965–1997</td>
<td>0.28</td>
<td>0.0086</td>
<td>0.29</td>
<td>10</td>
<td>0.190</td>
</tr>
<tr>
<td></td>
<td>200</td>
<td>NEM</td>
<td>1965–1997</td>
<td>0.08</td>
<td>0.0015</td>
<td>0.73</td>
<td>5</td>
<td>0.100</td>
</tr>
<tr>
<td></td>
<td>300</td>
<td>NEM</td>
<td>1965–1997</td>
<td>0.16</td>
<td>0.0044</td>
<td>0.43</td>
<td>6</td>
<td>0.125</td>
</tr>
<tr>
<td></td>
<td>400</td>
<td>NEM</td>
<td>1965–1997</td>
<td>0.15</td>
<td>0.0014</td>
<td>0.61</td>
<td>5</td>
<td>0.058</td>
</tr>
<tr>
<td></td>
<td>300</td>
<td>SI</td>
<td>1994–2002</td>
<td>0.15</td>
<td>-0.0056</td>
<td>0.59</td>
<td>5</td>
<td>0.095</td>
</tr>
<tr>
<td></td>
<td>150</td>
<td>FI</td>
<td>1963–1988</td>
<td>0.28</td>
<td>-0.0017</td>
<td>0.81</td>
<td>5</td>
<td>0.188</td>
</tr>
<tr>
<td>D2</td>
<td>150</td>
<td>NEM</td>
<td>1988–1998</td>
<td>0.06</td>
<td>-0.0037</td>
<td>0.02***</td>
<td>7</td>
<td>0.012</td>
</tr>
<tr>
<td></td>
<td>200</td>
<td>NEM</td>
<td>1988–1998</td>
<td>0.08</td>
<td>-0.0015</td>
<td>0.59</td>
<td>10</td>
<td>0.037</td>
</tr>
<tr>
<td></td>
<td>300</td>
<td>NEM</td>
<td>1988–1998</td>
<td>0.08</td>
<td>-0.0041</td>
<td>0.13*</td>
<td>8</td>
<td>0.027</td>
</tr>
<tr>
<td></td>
<td>400</td>
<td>NEM</td>
<td>1977–1998</td>
<td>0.11</td>
<td>-0.0036</td>
<td>0.07**</td>
<td>10</td>
<td>0.036</td>
</tr>
<tr>
<td></td>
<td>500</td>
<td>NEM</td>
<td>1977–1998</td>
<td>0.15</td>
<td>-0.0008</td>
<td>0.72</td>
<td>9</td>
<td>0.043</td>
</tr>
<tr>
<td></td>
<td>150</td>
<td>SWM</td>
<td>1963–2004</td>
<td>0.07</td>
<td>-0.0056</td>
<td>0.58</td>
<td>7</td>
<td>0.325</td>
</tr>
<tr>
<td></td>
<td>200</td>
<td>SWM</td>
<td>1963–2004</td>
<td>0.04</td>
<td>-0.0016</td>
<td>0.09**</td>
<td>9</td>
<td>0.035</td>
</tr>
<tr>
<td></td>
<td>300</td>
<td>SWM</td>
<td>1963–2004</td>
<td>0.04</td>
<td>-0.0025</td>
<td>0.01***</td>
<td>7</td>
<td>0.014</td>
</tr>
<tr>
<td></td>
<td>400</td>
<td>SWM</td>
<td>1963–2004</td>
<td>0.06</td>
<td>-0.0037</td>
<td>0.10**</td>
<td>8</td>
<td>0.063</td>
</tr>
<tr>
<td></td>
<td>500</td>
<td>SWM</td>
<td>1963–2004</td>
<td>0.09</td>
<td>-0.0022</td>
<td>0.16*</td>
<td>11</td>
<td>0.065</td>
</tr>
<tr>
<td>E2</td>
<td>150</td>
<td>NEM</td>
<td>1963–1992</td>
<td>0.36</td>
<td>0.0090</td>
<td>0.34</td>
<td>5</td>
<td>0.063</td>
</tr>
<tr>
<td></td>
<td>500</td>
<td>NEM</td>
<td>1963–1992</td>
<td>0.11</td>
<td>0.0020</td>
<td>0.59</td>
<td>5</td>
<td>0.079</td>
</tr>
<tr>
<td>F2</td>
<td>150</td>
<td>NEM</td>
<td>1965–1988</td>
<td>0.15</td>
<td>0.0003</td>
<td>0.96</td>
<td>7</td>
<td>0.209</td>
</tr>
<tr>
<td></td>
<td>200</td>
<td>NEM</td>
<td>1965–1988</td>
<td>0.08</td>
<td>0.0014</td>
<td>0.26</td>
<td>6</td>
<td>0.029</td>
</tr>
<tr>
<td></td>
<td>300</td>
<td>NEM</td>
<td>1965–1988</td>
<td>0.06</td>
<td>0.0048</td>
<td>0.02***</td>
<td>5</td>
<td>0.022</td>
</tr>
<tr>
<td></td>
<td>400</td>
<td>NEM</td>
<td>1965–1988</td>
<td>0.06</td>
<td>0.0046</td>
<td>0.05***</td>
<td>6</td>
<td>0.045</td>
</tr>
<tr>
<td></td>
<td>500</td>
<td>NEM</td>
<td>1965–1988</td>
<td>0.11</td>
<td>0.0038</td>
<td>0.01***</td>
<td>8</td>
<td>0.029</td>
</tr>
<tr>
<td>G2</td>
<td>150</td>
<td>NEM</td>
<td>1965–1992</td>
<td>0.43</td>
<td>-0.0200</td>
<td>0.21</td>
<td>5</td>
<td>0.280</td>
</tr>
<tr>
<td></td>
<td>200</td>
<td>NEM</td>
<td>1965–1977</td>
<td>0.08</td>
<td>0.0090</td>
<td>0.12*</td>
<td>5</td>
<td>0.055</td>
</tr>
</tbody>
</table>

for the Arabian Sea see Nicholls et al., 2007, and Jensen et al., 2011).

In the Arabian Sea, denitrification to N_2 rather than the anammox route was found by Ward et al. (2009, with earlier references; also Bulow et al., 2010) to be dominant. Lam et al. (2011), in contrast, stressed the anammox pathway leading to N_2 losses in OMZs. In this OMZ the highest NO_3^- deficit as well as the excess N_2 tend to coincide with the NO_2^- maximum, so the association of NO_2^- with active denitrification seems hard to argue against. While anammox is an autotrophic process, both NO_3^- and NH_4^+ are largely derived from the heterotrophic decomposition of organic matter.
Table 6. Medians with slopes and intercepts of seasonal regressions of O$_2$ on year in the OMZ without 1960s with ≥ 4 values during similar periods. p: * ≤ 0.20; ** ≤ 0.10; *** ≤ 0.05; n number of values; SE Standard Error of regression. See Fig. 3 for names of seasons and months.

<table>
<thead>
<tr>
<th>Box</th>
<th>Depth (m)</th>
<th>Season</th>
<th>Year</th>
<th>Median (mL L$^{-1}$)</th>
<th>Slope (mL L$^{-1}$ a$^{-1}$)</th>
<th>p</th>
<th>n</th>
<th>Interc. (mL L$^{-1}$)</th>
<th>SE</th>
</tr>
</thead>
<tbody>
<tr>
<td>D2</td>
<td>200</td>
<td>NEM</td>
<td>1988–1998</td>
<td>0.08</td>
<td>-0.0015</td>
<td>0.58</td>
<td>10</td>
<td>3.1</td>
<td>0.037</td>
</tr>
<tr>
<td></td>
<td>200</td>
<td>SWM</td>
<td>1987–2004</td>
<td>0.03</td>
<td>-0.0039</td>
<td>0.19*</td>
<td>7</td>
<td>7.8</td>
<td>0.037</td>
</tr>
<tr>
<td></td>
<td>300</td>
<td>NEM</td>
<td>1988–1998</td>
<td>0.08</td>
<td>-0.0041</td>
<td>0.13*</td>
<td>8</td>
<td>8.2</td>
<td>0.027</td>
</tr>
<tr>
<td></td>
<td>300</td>
<td>SWM</td>
<td>1987–2004</td>
<td>0.04</td>
<td>-0.0026</td>
<td>0.07***</td>
<td>6</td>
<td>5.2</td>
<td>0.015</td>
</tr>
<tr>
<td></td>
<td>400</td>
<td>NEM</td>
<td>1988–1998</td>
<td>0.11</td>
<td>-0.0071</td>
<td>0.03***</td>
<td>9</td>
<td>14.3</td>
<td>0.033</td>
</tr>
<tr>
<td></td>
<td>400</td>
<td>SWM</td>
<td>1986–2004</td>
<td>0.05</td>
<td>-0.0087</td>
<td>0.05***</td>
<td>6</td>
<td>17.4</td>
<td>0.055</td>
</tr>
<tr>
<td></td>
<td>400</td>
<td>Fi</td>
<td>1980–1996</td>
<td>0.20</td>
<td>-0.0134</td>
<td>0.12*</td>
<td>4</td>
<td>26.9</td>
<td>0.069</td>
</tr>
<tr>
<td></td>
<td>500</td>
<td>NEM</td>
<td>1988–1998</td>
<td>0.15</td>
<td>-0.0065</td>
<td>0.05***</td>
<td>8</td>
<td>13.1</td>
<td>0.032</td>
</tr>
<tr>
<td></td>
<td>500</td>
<td>SWM</td>
<td>1986–2004</td>
<td>0.09</td>
<td>-0.0052</td>
<td>0.05***</td>
<td>8</td>
<td>10.5</td>
<td>0.037</td>
</tr>
<tr>
<td>F1</td>
<td>200</td>
<td>NEM</td>
<td>1988–2002</td>
<td>0.15</td>
<td>-0.0091</td>
<td>0.19*</td>
<td>12</td>
<td>18.3</td>
<td>0.090</td>
</tr>
<tr>
<td></td>
<td>200</td>
<td>SI</td>
<td>1990–1996</td>
<td>0.20</td>
<td>-0.0131</td>
<td>0.23</td>
<td>4</td>
<td>26.4</td>
<td>0.040</td>
</tr>
<tr>
<td></td>
<td>200</td>
<td>SWM</td>
<td>1995–2004</td>
<td>0.03</td>
<td>-0.0025</td>
<td>0.84</td>
<td>5</td>
<td>5.0</td>
<td>0.083</td>
</tr>
<tr>
<td></td>
<td>300</td>
<td>NEM</td>
<td>1988–2002</td>
<td>0.10</td>
<td>-0.0062</td>
<td>0.12*</td>
<td>9</td>
<td>12.4</td>
<td>0.045</td>
</tr>
<tr>
<td></td>
<td>300</td>
<td>SWM</td>
<td>1995–2004</td>
<td>0.07</td>
<td>-0.0140</td>
<td>0.37</td>
<td>4</td>
<td>28.1</td>
<td>0.092</td>
</tr>
<tr>
<td></td>
<td>400</td>
<td>NEM</td>
<td>1988–2002</td>
<td>0.13</td>
<td>-0.0056</td>
<td>0.22</td>
<td>9</td>
<td>11.2</td>
<td>0.054</td>
</tr>
<tr>
<td></td>
<td>400</td>
<td>SWM</td>
<td>1987–2004</td>
<td>0.08</td>
<td>-0.0043</td>
<td>0.08**</td>
<td>5</td>
<td>8.6</td>
<td>0.020</td>
</tr>
<tr>
<td></td>
<td>500</td>
<td>NEM</td>
<td>1988–2002</td>
<td>0.12</td>
<td>-0.0047</td>
<td>0.17*</td>
<td>8</td>
<td>9.5</td>
<td>0.041</td>
</tr>
<tr>
<td></td>
<td>500</td>
<td>SWM</td>
<td>1987–2004</td>
<td>0.08</td>
<td>-0.0019</td>
<td>0.45</td>
<td>4</td>
<td>3.8</td>
<td>0.024</td>
</tr>
<tr>
<td>G1</td>
<td>300</td>
<td>SI</td>
<td>1990–1994</td>
<td>0.15</td>
<td>-0.0292</td>
<td>0.41</td>
<td>4</td>
<td>58.3</td>
<td>0.098</td>
</tr>
</tbody>
</table>

and are therefore dependent on the supply of the latter. Ward (2013) reviewed new laboratory work showing the importance of the C:N ratio of the substrate, so we believe that the debate about which is the dominant path toward N$_2$ in the Arabian Sea may be close to solution.

4.3.1 Seasonality of nitrite concentrations

Previous research in the open Arabian Sea had suggested slightly higher NO$_2^−$ values during the NEM than during the SWM periods (Naqvi et al., 1990; de Sousa et al., 1996). Assuming the NO$_2^−$ concentration roughly reflects the strength of overall suboxic conditions, a more intense denitrification was inferred for the NEM. In contrast, Morrison et al. (1999) did not find consistent seasonal trends. The occurrences of higher NO$_2^−$ levels during the NEM suggested here are in line with the cited earlier work.

To avoid possible decadal bias, we compare seasons of similar intervals of years in Fig. 5 as we did with O$_2$. For the observations indicating active denitrification (> 0.5 µM), Table 7 lists the significant differences between seasons in median NO$_2^−$ levels within depth ranges and boxes. As for O$_2$, the results may be taken as climatological medians at least for the horizons with more than four or five samples, in contrast to the work by those earlier authors who considered only one or two cruises. Note that we mainly deal with small differences between large numbers. As with O$_2$, the pattern is obscured when viewing the significant (Table 7) and non-significant pairs (not shown) together.

4.3.2 Interannual variability of NO$_2^−$

In order to investigate the longer term (interannual to decadal) changes in the intensity of suboxic conditions, we examined NO$_2^−$ profiles at the location of GESECS sta. 416 (19°45'N, 64°37'E, occupied in December 1977), visited by us nine times between 1992 and 2004. The site, placed in the southwestern corner of Box F1 (see Fig. 1), is close to the periphery of the suboxic zone, which makes it sensitive to changes in the volume and intensity of the reducing zone. Also it is well away from the continental margins and provides high-quality NO$_2^−$ data going back to the 1970s. A consistent secular change in NO$_2^−$ with time is not readily discernible.

The NO$_2^−$ data exhibit large variability of the thickness of the SNM, ranging from ~150 to ~500 m, and of the peak concentrations, varying between 0 and 4.6 µM (Fig. 6). However, since the observations were made in different seasons it is difficult to distinguish interannual from seasonal changes, or from those caused by smaller scale spatio-temporal variability, which is fairly large in this region as demonstrated by the aforementioned results of the quasi-Lagrangian time-series study conducted around 21° N, 64° E (Sect. 3.1.d; Table 3: SK 121; Supplement Fig. S.3.1) in February 1997.
Fig. 5. Examples of regressions of ≥ 0.5 µM nitrite on year with data for the NEM (open circles, bold line, and text in upper part of panels) and SWM (open squares, dashed line, and text in lower part of panels) for Boxes D2 (two depths), F1 (two depths), and G2 (one depth), with medians, \(p \) for slopes, and number of values (all in Supplement Table S.8, except for D2, 200 m, NEM). The < 0.5 µM values (filled symbols) are not part of the regressions.

Nevertheless, it would be reasonable to conclude that interannual changes may be quite substantial as well.

Most of the variability at this site seems to result from advection of PGW, which appears in Supplement Fig. S.3.1 and is a small but significant source of \(O_2 \) to the OMZ in the northwestern Arabian Sea (Codispoti et al., 2001). In the majority of our data from this location, the PGW salinity maximum was associated with a minimum in \(NO_2^- \), whereas \(NO_2^- \) maxima often coincided with the salinity minimum overlying the PGW or just below the latter feature (Fig. 6). Moreover, despite the long period covered, the \(NO_2^- \) and salinity values within the approximate \(\sigma_t \) range showed a significant inverse correlation \((r^2 = 0.36, p = 0.001 \) for the slope, \(n = 26 \); Fig. 7). As is to be expected, the variability of salinity is matched with that of temperature (Fig. 8). For example, the most saline PGW core occurring in July 1995 was also the warmest, when the water column did not contain measurable \(NO_2^- \), indicating the absence of denitrification (Fig. 6).

Thus, while the observations demonstrate remarkable variations in the hydrographic structure and consequently in the redox environment, the changes – probably comprising both seasonal and interannual oscillations – are irregular and do not suggest a secular change in the redox environment over the past quarter-century. That is, the GEOSECS profile (showing some of the most intense reducing conditions recorded in the open Arabian Sea) is quite comparable with the most recent data (sta. AAS42, R/V A. A. Siderenko) collected during the same season (NEM of 2002).

At another site (15° N, 68° E, located on the eastern limit of Box D2), where reliable \(NO_2^- \) data go back to 1979 (to 1965 if we also include an R/V Atlantis II station at 14.03° N, 61.14° E) and which falls close to the zone of the most vigorous denitrification, the amplitude of variability (both seasonal and interannual) in \(NO_2^- \) is still quite large. Maximal concentrations observed during 18 visits ranged from 1.16 to 5.31 µM, while the thickness of the secondary \(NO_2^- \)
maximum varied from < 100 m to > 300 m. Again, a consistent secular change in NO\textsubscript{2} with time is not discernible.

4.3.3 Rates of decadal changes of nitrite

We show below that more increases than decreases of NO\textsubscript{2} were found on the decadal scale among the regressions for each year in spite of the great variability of the parameter, i.e., denitrification tended to increase, in contrast to the observations from the GEOSECS site (Sect. 4.3.2).

The slopes of NO\textsubscript{2} concentrations of \(\geq 0.5\) and \(\geq 1.5\) µM on year for boxes and depths in the OMZ vary greatly and without an obvious pattern by either sign or value (Supplement Table S.7; representative plots in Fig. 5). In the two groupings of NO\textsubscript{2} levels, positive slopes contribute 21 to a total of 29 in the first and 12 of 24 in the second group, respectively. Thus trends of increases in NO\textsubscript{2} were more common than decreases. The distribution between seven positive and five negative significant slopes in Supplement Table S.7 is without any pattern. The ranges (medians) for the positive and negative slopes are 0.0253 to 0.8363 (0.0498) and \(-0.0168\) to \(-0.1035\) (\(-0.0404\)) µM a\(^{-1}\), respectively. The median increases and decreases correspond to 2.0 and 1.6 µM over four decades.

Few trends are obvious among the seasonal regressions on years (Supplement Table S.8). The positive slopes (increases of NO\textsubscript{2}) are twice as frequent as the negative ones during the NÉM and the SWM periods. Considering Supplement Tables S.7 and S.8 together, there is a suggestion for denitrification having undergone intensification during the four decades.

To investigate decadal changes of NO\textsubscript{2} in the OMZ in another way, the number of “zero values” (i.e., \(\leq 0.2\) µM), of \(\geq 0.5\) µM, and of \(\geq 1.5\) µM, each relative to the total number of NO\textsubscript{2} values for a depth and box for 1985 and earlier, are compared with the data acquired since then (see Supplement Sect. 7). The result is that denitrification increased after 1985 also when estimated in this manner.

5 Implications of the results

5.1 Overview

The introduction into oceanography of the STOX sensor has opened a new era of re-assessing all previous measurements of dissolved O\textsubscript{2} in marine and freshwater bodies experiencing water-column O\textsubscript{2} depletion. We face the possible overthrow of long-standing results, unless a reasonably accurate conversion ratio for the historic data can be found. The invention of the STOX probe is another example from aquatic sciences of a new technology, rather than concepts, changing the field. Among new concepts in oceanography, however, is the large investment of the last two or three decades into long-term time-series observations without a specific hypothesis, which is so different from the canon of proper scientific conduct of hypothesis-driven original research (cf. Church et al., 2013).
We have collated historic O$_2$ measurements – that may no longer be considered accurate enough – and NO$_3^-$ data toward time series, because we do not know of a reason why the temporal trends of O$_2$ would not hold in spite of the large bias shown by the STOX probe. In effect, we assume a bias with small enough variability that will not obliterate trends in O$_2$. Only time will tell whether our assumption was right, but two to three decades are required for a new, STOX-based time series. The regional and temporal coherence and consistencies of the O$_2$ distributions presented here, however, argue for the validity of using these seemingly outdated O$_2$ measurements.

Our NO$_3^-$ values are not affected by the new nanomolar procedure for nitrite (Garside, 1982), because four-fifths of our samples are far above the lower limit of the traditional analytical method. In contrast, if the one-fifth of the near-zero records in our collation turn out to be too high by comparison with the new method, it would strengthen our point of the patchy occurrence of O$_2$ in the OMZ as preventing denitrification and supporting metazoan life.

The NO$_3^-$ levels observed since 1933–1934 by every expedition looking for this species suggest that O$_2$ concentrations in the OMZ have been broadly nanomolar at least since that time. The presence of metazoans, however, which was noted at least that long, shows that the OMZ of the Arabian Sea not only was not sulfidic but was not functionally anoxic as stated for the tropical Pacific off South America by Thamdrup et al. (2012). Also, high NO$_3^-$ concentrations in the water column, proving the absence of free H$_2$S, were observed since the beginning of measurement in the late 1950s. Finally, the disconnect of concentrations and temporal trends between salinity and O$_2$ in our meridional swath between the OMZ and the area adjoining to the south (Boxes A–C; Table 1; Sects. 4.1.3 and 4.2.2; Supplement Sect. S.1) shows that O$_2$ is advected into the OMZ from the southwest rather than directly from the south (cf. McCreary et al., 2013; Resplandy et al., 2012).

In addition, we describe strong seasonality of O$_2$ between 200 and 500 m depth with the SWM season showing significantly lower levels than found during the NEM. At 200 m and possibly at 250 m, the seasonal consumption is principally restored by eddies, while between 300 and 500 m new O$_2$ is advected horizontally. The O$_2$ loss is probably restored on an annual basis. Also, we observe statistically significant fast declines of O$_2$ between 15 and 20$^\circ$N and increases at 20 and 21$^\circ$N. The mean NO$_3^-$ content in the OMZ probably increased especially after 1985.
5.2 Specific points for future work

5.2.1 Oxygen, nitrite, nitrate, and metazoan plankton

We noted that significant titration-based O_2 values and NO$_2^-$ co-occur temporally. Also, 21% of 707 discrete OMZ samples analyzed for O_2 were without NO$_2^-$. Following Thamdrup et al. (2012), these would have contained ≥ 0.002 mL L$^{-1}$ (~ 0.1 µM) O_2, which is well below the detection limit of the conventional O_2 methods (the value marks onset of NO$_2$ reduction; see also Sect. 1). In Sect. 3.2.6 and Supplement Sect. S.3, we review that the OMZ of the Arabian Sea with its pronounced secondary NO$_2^-$ maximum harbors resident metazoan plankton throughout, but the observations all come from net hauls of ≥ 50 m vertical intervals. Nitrite was usually observed at standard depths, which are vertically widely spaced in the OMZ. It is unknown any-where in the open sea whether metazooplankton actually co-occurs with NO$_2^-$ as residents living day and night at ≤ 0.002 mL L$^{-1}$. It would be physiologically extraordinary (cf. Childress and Seibel, 1998).

For tying NO$_2^-$, O_2, and metazoan occurrence together, we suggest in future to collect the animals with large water bottles (e.g., the Russian 100 to 140 L samplers, Vinogradov et al., 1987), from which samples for NO$_2^-$ are also drawn. While the STOX sensor could measure the actual O_2 levels, routine determination of NO$_2^-$ as a simple indicator of extremely low O_2 concentration would provide a limit to the O_2 capacity of metazooplankton. Using such bottles, R/V _Dmitriy Mendeleev_ in a section off Peru at $\sim 15^\circ$ S in mid-March 1978 reported 1–100 mg (a few samples with 100–250) mg m$^{-3}$ wet weight of mesozooplankton (calculated from the species counts) at 10 m vertical intervals to 150 m depth and at 175 and 200 m, with 3–8 µM NO$_2^-$ and ≥ 12 µMNO$_3^-$ at seven deep stations (Bordovskiy et al., 1980: Figs. 14a, b; Semenova et al., 1980: Fig. 10). Because sampling during daylight hours dominated, however, inclusion of biomass of daily migrants is possible. We suggest new nighttime collections, which presumably will catch only resident animals.

5.2.2 Local time change and O_2 consumption rate

Any time series of O_2 in the sea determines the local time change, which is the sum of the x,y,z components of advection and eddy diffusion plus the biological consumption (utilization). For direct measurement of the latter, enclosing of water and following the concentration changes during incubation are necessary, which is quite difficult because of the small rates of change in OMZ water and bottle effects on the enclosed organisms (for OMZ work, cf. Jayakumar et al., 2009; Stewart et al., 2012). However, knowing and understanding the regional distribution of seasonal change of biologi-cal consumption of O_2 and its variability is considered by many the Holy Grail of biogeochemistry of the sea.

We know of four computed estimates of O$_2$ consumption rate for OMZs, all made prior to the appearance of STOX and hence using too high O$_2$ concentrations, as we use for assessing local time changes. The two earlier ones by Warren (1994) and Sarma (2002) determined the difference between the annual northward transport and the southward export of O_2 across 12 and 10° N, respectively, into the OMZ of the Arabian Sea and did not consider vertical or horizontal features. We cite only Warren (1994), who elaborated on a similar model by Olson et al. (1993) and estimated a consumption of 0.10 mL L$^{-1}$ a$^{-1}$ for the depth interval of 200–1000 m. He estimated a possible error by about a factor of two. Both Warren and Sarma incorporated the coastal regions with their higher rates and the more intensive north–south water exchange than is to be expected in our meridional, central band. They also included the 500–1000 m depth interval (lower mesopelagic) where the O_2 consumption rate is reduced because of the oxidation of organic carbon that sinks through the upper mesopelagic. Thus it would be difficult to guess a value parallel to the 250–300 m interval calculated by Resplandy et al. (2012) for the central Arabian Sea, but both Warren’s (1994) and Sarma’s (2002) ranges might have been of the order of a few times of 0.01 mL L$^{-1}$ a$^{-1}$ (a few 10 µL a$^{-1}$).

Stramma et al. (2010) drew up O$_2$ budgets from the supply routes of water in a part of the OMZ of the eastern Pa-cific (3° N to 3° S, in the west to the date line; 200–700 m depth). They found a decrease in O$_2$ (total time change) of roughly 0.5 µmol kg$^{-1}$ a$^{-1}$ and calculated an O$_2$ utilization (consumption) rate of about 4 µmol kg$^{-1}$ a$^{-1}$ (roughly 0.01 and 0.09 µL L$^{-1}$ a$^{-1}$, respectively). As stated in Sect. 3.2.1, Resplandy et al. (2012), in their eddy-resolving model, computed a median O$_2$ utilization rate of 2.8 µmol L$^{-1}$ a$^{-1}$ (0.06 mL L$^{-1}$ a$^{-1}$) for 250–300 m depth for the central Arabian Sea. The rate declined with depth such that the median at 400 m was 0.85 mol L$^{-1}$ a$^{-1}$ (0.04 mL L$^{-1}$ a$^{-1}$). Thus the estimates of O$_2$ consumption by Stramma et al. (2010) and Resplandy et al. (2012) differ, which may not entirely be due to regional differences in primary production and food webs. Our secular median O$_2$ decline in the central OMZ (200–500 m depth) is only 0.00129 mL L$^{-1}$ a$^{-1}$ (0.058 µM; Sect. 4.2.2). Importantly, Resplandy et al. (2012) reported for the NEM and SWM that the amplitude of seasonal O$_2$ change from vertical eddy-driven advection was several times that from biological consumption (cf. their Fig. 6, CAS region), which is opposite to the result of Stramma et al. We cannot judge whether this gross divergence is due to the hydrographic settings of the two regions or the authors’ approaches to the problem but note again that the O$_2$ utilization rate is a key parameter to know.

5.3 Decadal change of oxygen

The origin of this paper during the late 1990s was a question about decadal variability in the OMZ, especially of O_2, and
secular change, if any. The coherent south–north differences in the signs of significant slopes of the regressions of O$_2$ on year (Sect. 4.2.2; Supplement Table S.6) suggest an underlying reality, but do the decreases between 15 and 20°N (Fig. 4) signify a one-way street toward complete removal of O$_2$? A few STOX measurements, especially in Box D2 off Goa, appear as the most promising avenue to the answer, since it is well studied and prone to low O$_2$. Because of the lack of O$_2$ measurements prior to the 1960s, we cannot rule out the possibility that the decline of O$_2$ in the OMZ inferred from our data could be a part of a natural cycle.

5.4 Would global warming expand this OMZ?

Global change has reached the Arabian Sea. Since about 1960, the North Indian Ocean between about 200 and 500 m depth has warmed by up to 0.1 °C, most probably due to advection (Barnett et al., 2005). Based on an updated NODC data set (cf. Levitus, 2002), Harrison and Carson (2007: Fig. 6), using essentially the same database as Barnett et al. (2005) for the central open Arabian Sea, found an increase of approximately 0.5 °C for the period 1950–2000 at 100, 300, and 500 m depth.

In our view the answer to the question posed by the head-line may depend on the one hand on how the extent and intensity of the OMZ, which is presently controlled dominantly by physical processes (i.e., stratification and circulation and associated re-oxygenation by waters at depth advecting across the equator), will be affected by global warming. On the other hand, it is not clear whether the overall O$_2$ distribution in a changed climate would depend more on the rate of O$_2$ consumption (utilization) by particulate and dissolved organic matter (POC, DOC), which is supplied from the euphotic zone by the top-down actions in the food web. Since according to the model of Resplandy et al. (2012) for the OMZ, advection within the basin is several times larger than consumption (see Sect. 4.2.1), should we worry about small biological changes and consumption?

Adverted from outside of the model domain is the O$_2$-rich subtantarctic mode water of the South Indian Ocean (Sen Gupta and Naqvi, 1984). In a revisited cross section along 32°S, Bindoff and McDougall (2000) observed an O$_2$ decrease of up to 0.2 mL L$^{-1}$ near σ_t of 27.2 kg m$^{-3}$ (see our Fig. 3) between median dates of 1962 and 1987. The authors suggested a slowdown of circulation in the subtropical gyre as the cause, which allowed more time for O$_2$ consumption. Another repeat of the cross section at 32°S in 2002 (Bryden et al., 2003), however, showed a reversal of the processes found for the period between the 1960s and 1987, suggesting a speeding up of the circulation of the subtropical gyre. Thus there are signs pointing to variability rather than unidirectional global change, as stated by Bryden et al. (2003) for the region near 32°S, north of the formation region of the mode water and the O$_2$ source for the upper OMZ in the Arabian Sea (see also Álvarez et al., 2011).

If in contrast in the future consumption is to outrank advection in parts of the Arabian Sea (as presently in the eastern equatorial Pacific, Stramma et al., 2010), then the top-down effects of changes in zooplankton on the fraction of primary production that reaches the OMZ from above will become paramount (see Banse, 2013: p. 15). This major problem is not merely figuratively set on the top of the dependence on possible climate-related changes of circulation of regional, seasonal, and annual primary production.

Global warming will affect the seasons and alter the hydrography, as well as the community compositions, and hence the POC and DOC fluxes into the OMZ. The regime shift near Hawaii, a profound alteration in food web dynamics presumed to be due to quite small physical climate changes (Karl et al., 2001), is the warning by the proverbial writing on the wall: even when the physiological impact on phyto- or zooplankton species of as large an increase of 1 °C may be negligible, the community changes and ensuing biological impacts resulting from small shifts in the balances between growth and mortality of the major phyto- and zooplankton species can at present not be foreseen from environmental information, let alone numerically predicted (for the demands on modeling see, e.g., Prowe et al., 2012). We do not even know the effect(s) on the biochemical processes determining the O$_2$ distribution after an adaptation to the STOX-era O$_2$ concentrations in the extant models.

In conclusion, for judging the impact of global change on the O$_2$ balance in the OMZ and on its vertical and horizontal extent, predictions of hydrographic changes and of O$_2$ consumption (utilization) must be of a useful accuracy. This may at present be out of reach.

6 Summary and conclusions

We looked for changes in the upper OMZ of the central Arabian Sea (150–500 m depth) within 12–21°N latitudes and 64–68°E longitudes using all available discrete and acceptable historical O$_2$ data that were collected by the Winkler method with visual endpoint detection between 1959 and 2004. Similarly, we studied the concomitant NO$_2$ determinations, which come from the secondary nitrite maximum (SNM). We discussed additional observations from latitudes 8–10°N that were treated in passing. For O$_2$ and NO$_2$, as well as salinity, we present climatologies.

Within the OMZ, the medians of O$_2$ for four horizons (200, 300, 400 and 500 m) range between 0.04 and 0.15 mL L$^{-1}$ (mean, 0.11 mL L$^{-1}$, \sim 5 µmol kg$^{-1}$). During the four decades O$_2$ shows significant declines with time between 12 and 20°N, but an opposite, increasing trend near 21°N. There is significant seasonality, with higher values occurring during the NE monsoon and spring inter-monsoon as compared to the SW monsoon season. Close to the upper boundary of the OMZ near 150–200 (or 250°) m depth, diapycnal re-supply of O$_2$ appears to be important but at
300–500 m most of the presumably annual re-oxygenation is through isopycnal inputs from the northern quadrant.

An unknown but probably substantial uncertainty in our analysis comes from the error associated with titrimetric O\textsubscript{2} measurements on which almost all of the historical data are based, as evident from the two orders-of-magnitude lower concentrations determined by the recently developed STOX sensor within oceanic OMZs.

Our data on NO\textsubscript{2}\textsuperscript−, which only appears within OMZs when the dissolved O\textsubscript{2} is \(\leq 0.05 \mu\text{mol kg}^{-1} \sim 0.001 \text{mL L}^{-1} \), do not show clear seasonal or secular patterns. We cannot state unequivocally whether or not the OMZ of the Arabian Sea has intensified in recent decades.

The spatial and temporal variability at drift stations is high and seasonal change of hydrography is marked even at 500 m. Therefore, assumption of a steady state for the upper OMZ will not be valid, and any estimates of elemental budgets or rates of biogeochemical transformations must not be based on a single cruise or data for only one season.

We make three recommendations for future work. First, an observation system to monitor key hydrographic and biogeochemical variables at high temporal and spatial resolutions must be put in place in this biogeochemically and ecologically important oceanic region. For detecting secular change, parts of the systems have to be laid out for the long term (many decades).

Also, greater application of the STOX sensor is certain to change our views about all oceanic OMZs, including the Arabian Sea. But as NO\textsubscript{2}\textsuperscript− can be analyzed far more easily and with great precision, it should be used as a proxy for identification and mapping of functionally anoxic waters.

Thirdly, in 79% of our 707 OMZ samples with > 0.02 \mu\text{M} NO\textsubscript{2}\textsuperscript−, O\textsubscript{2} must have been \(\leq 0.05 \mu\text{mol kg}^{-1} \sim 0.001 \text{mL L}^{-1} \), rather than our OMZ mean O\textsubscript{2} of \(\sim 0.01 \text{mL L}^{-1} \). These samples largely represent the SNM. Live copepods, however, are collected with fine nets towed in the SNM. Do animals actually co-occur with elevated NO\textsubscript{2}\textsuperscript−, or have the nets fished in water of the 21% samples without NO\textsubscript{2}\textsuperscript−, which are interspersed in the SNM? To clarify whether there is resident metazoan life at such extraordinarily low O\textsubscript{2} levels, we suggest sampling of meso-zooplankton with 100-liter bottles, from which NO\textsubscript{2} can routinely be drawn as substitutes for elaborate STOX measurements.

Acknowledgements. First of all we are indebted to the many anonymous colleagues who collected the samples, analyzed them in their laboratories, and largely deposited the results in data centers. For additional observations we thank D. B. Olson and the late F. A. Schott, as well as J. Hermann. S. R. Emerson and A. Körtzinger and two anonymous reviewers made useful suggestions to the text. J. Pierson and H. Hadaway helped with the designs of some figures. S. Tipple arranged all the tables. And there was the empathy by Copernicus’ staff. K. Banse and J. R. Postel also wish to acknowledge the partial support by the US Office of Naval Research, grants no. N00014-97-1-0120 and N00014-04-1-0142. The service charge was financed by K. Banse’s TIAA/CREF account.

Edited by: R. Hood

References

Bianchi, D., Dunne, J. P., Sarmiento, J. L., and Galbraith, E. D.: Data-based estimates of suboxia, denitrification, and N\textsubscript{2}O production in the ocean and their sensitivities

K. Banse et al.: Oxygen minimum zone of the open Arabian Sea

Resplandy, L., Lévy, M., Madec, G., Pous, S., Aumont, O., and Kumar, D.: Contribution of mesoscale processes to nutrient