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This paper describes an estimation of endmember compositions followed by the assessment of those
results by log-ratio variance analysis. As an appraisal, it deals only with the first objective of an endmem-
ber analysis namely, to identify endmembers if they exist by estimating their compositions. Following
the creation of the endmember estimates, the computation of an array of log-ratio variances was a key
innovation in this type of study. Log-ratio variances revealed intrinsic linear associations between the
dominant elements on each of the estimated endmember compositions, largely confirming the endmember
analysis. The dataset under study contained the concentrations of 16 elements in 93 samples of deep-sea
manganese nodules from the Central Indian Ocean Basin. Many previous analyses of these nodules were
undertaken to assess the economic potential of the deposits. This study by contrast, quantified the inter-
element associations that account for the nodule compositions. Four endmembers were identified. The
elements loaded on each were: (1) Mn, Zn, Ni, Cu, Mn-rich, (2) Fe, Ti, P, Co, Fe-rich, (3) Si, Al, Na, K,
clay minerals, (3) Mg, ultramafic material, possibly including Mn, Cr, V, Ca, Na. These latter elements
were also detected by their log-ratio variances to be associated with Mg on the 4th endmember.

1. Introduction

In this paper, a sample will be a single geologi-
cal specimen, not a statistical sample. An element
will either be an element or its oxide. A composi-
tion will be a collection of measurements that sum
to 100%, although in general the sum may have
any constant value. Accordingly, a compositional
dataset will be an n×p array in which the total
concentrations of a fixed collection of p elements,
in strict order, in each of n samples, sum to 100%,
and are laid out in that strict order in n rows of

the array, thus defining the columns. The number
of endmembers will be denoted by k. A component
of a composition will be a specific element, and an
element will be dominant in an endmember if its
concentration in that endmember is greater than
its concentrations in the remaining endmembers.
The term correlation will always mean the Pearson
correlation.

The purpose of this paper is to describe a long-
established geometrical construction procedure for
estimating both the number of endmembers and
their compositions from a compositional dataset,
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together with a numerical procedure for assessing
those estimates. Both of these procedures com-
pletely avoid the possibility of the type of spurious
results that may be produced by procedures based
on the correlation coefficient.

1.1 Subcompositional coherence

It has been well-documented for over a century
(Pearson 1897) that there are difficulties associ-
ated with the statistical analysis of compositional
data, such as percentages or ppm. Three of these
difficulties are: (1) Such data do not follow mul-
tivariate normal distributions thus rendering stan-
dard parametric statistical tests and estimation
procedures inappropriate and possibly misleading.
(2) The negative bias property. That is, at least
one covariance and hence at least one correlation,
must be negative, therefore the correlations are
prevented from ranging freely between −1 and +1.
(3) Regression, covariance, and correlation coeffi-
cients between specific pairs of components vary
unpredictably according to the presence or absence
of other components in the compositions. Quanti-
ties, like regression and correlation coefficients that
exhibit this unpredictable variability are said to
lack subcompositional coherence. It follows from
this property, that correlation coefficients in par-
ticular, that are formed from compositional data
are not only not absolute, but also frequently spu-
rious. Standard multivariate procedures based on
them such as Principal Components Analysis and
Factor Analysis are unreliable and worse, intrinsic
or natural associations between elements inferred
from strong positive correlations, have been shown
to be potentially false (Renner 2012).

Since endmember analysis is fundamentally con-
cerned with the intrinsic associations within suites
of elements, two quite different approaches that
are described in this paper to detect such associa-
tions are: (a) the estimation of endmember compo-
sitions, which avoids the issue of subcompositional
incoherence altogether (Renner 1989) and, (b)
the derivation of a statistic, the logratio variance
(Aitchison 1986) that possesses subcompositional
coherence and that does measure, the extent or
otherwise of the intrinsic relationship between pairs
of components (Appendix).

1.2 The development of endmember analysis

Many attempts to solve the endmember com-
position problem have relied on interpretations
of the loadings on various factors computed by
R-mode factor analysis, a statistical procedure
based on the matrix of correlation coefficients.
Two intractable difficulties with this approach are

that factor analysis is simply not a mathema-
tical model for a geophysical mixing process and
equally fundamentally, correlations formed from
compositional data are not subcompositionally
coherent.

The difficulties with analyzing compositional
data were made known in Geosciences by the early
works of Chayes (1960, 1962, 1983). A recogni-
tion by geoscientists of the problems described
by Chayes, led to the development of endmem-
ber analysis. This was for the particular case that
a compositional dataset could be the realization
of a geophysical mixing process involving a small
number k of fixed compositions. The problem was
to estimate k and the compositions of the end-
members, with the strict condition that all the
abundances (mixture coefficients) of the estimated
endmembers in all the samples must be positive
for a solution to be feasible. The early numeri-
cal algorithms for a solution to this problem that
evolved over time were proposed by Imbrie and
Van Andel (1964), Miesch (1976), Full et al. (1981),
and Leinen and Pisias (1984). These proposals
attempted to utilize Q-mode factor analysis which
does indeed reveal the similarity of compositions
as proximate points on a unit hypersphere, but is
simply not a mathematical model for a geophys-
ical mixture process, and cannot progress to fea-
sible solutions. Chen and Owen (1989) advocated
using linear programming methods. The appeal of
this procedure is that it cannot construct nega-
tive endmember abundances but it will produce
feasible solutions for any arbitrary, non-extreme
endmember estimates.

The endmember analysis adopted for this study
is a conservative technique, based on the proce-
dures originally developed by Renner (1988, 1989,
1993, 1995, 1996). Geometrically, the samples of a
compositional dataset are represented by a set of
data-points whose coordinates are the concentra-
tions of the individual elements in each of the sam-
ples. Endmembers, if they exist, must be extreme
points whose compositions define the vertices of a
simplex that completely encloses the data-points.
Examples of a simplex are, a line interval for k = 2
endmembers with one vertex at each end, a trian-
gle, a tetrahedron, or a pentatope, for k = 3, 4 or 5
endmembers, respectively. All the data-points must
be interior to the simplex. When that is the case,
the composition of each data-point is a simple mix-
ture of the endmember compositions, the extreme
points. The mixture coefficients will be all positive
(or zero) that sum to 100%.

When the number of endmembers, k, is assumed
known, the construction procedure executed in
this study involves first identifying k, the most
remote data-points in the dataset. That is, those
with suites of elements with approximately the
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largest and least concentrations of individual
elements. The algorithm computes the mixture
coefficients for all the samples as if these initial
extremes were endmembers. When any of the mix-
ture coefficients are negative, the algorithm moves
incrementally outwards from the initial extremes
to neighbouring points, in directions uniquely
determined by the negative mixture coefficients.
Hence it creates new extremes and computes
a new set of mixture coefficients. This process
is repeated until the mixture coefficients are all
positive, ensuring a feasible solution. Then the con-
structed extremes are the vertices of the closest
fitting simplex that completely encloses all the
data-points and are therefore, the estimated end-
members. The construction procedure is iterative.
It tends to retain the initial groupings of extreme
concentrations, provided they lead to feasible solu-
tion. It also remains as close as possible to the
data-points, thus ensuring viable, if not necessarily,
the most extreme feasible solutions possible. Con-
vex combinations (mixture coefficients summing to
100%) of those extremes, are required to account well
for the compositions of all the samples in the dataset.

Weltje (1997) also developed an iterative proce-
dure that was designed to converge to an ‘optimal’
solution for the endmember compositions. It relies
on the provision of ‘sensible’ initial endmember
compositions.

1.3 The log-ratio variance (LRV)

In a distinctly different procedure, the log-ratio
variance (LRV) due to Aitchison (1986) measures
the magnitudes of the departures from strictly
proportional intrinsic (or natural) associations
between pairs of elements. In the unlikely case that
the relationship between two elements was strictly
proportional (linear), that is a fixed constant for
all the samples, the LRV between them would be
zero (Appendix). However, given the variability of
geochemical data, it is how close the LRV is to
zero, that implies an intrinsic linear association.
Like the correlation coefficient, the LRV is inde-
pendent of the scales of measurement of the indi-
vidual components. Its most fundamental differ-
ence is that unlike the correlation coefficient, it is
subcompositionally coherent (Appendix). That is,
the LRV between a pair of elements is invariant to
the removal of the concentrations of one or more
of the other elements from all the samples to form
subcompositions. In this context, a subcomposition
is the resultant sample data after the restoration
of the 100% sum. Clearly, an intrinsic associa-
tion between two elements is absolutely unrelated
to the presence or absence of the concentrations
of other elements in a composition. By way of a

simple example, if two elements exist in all the
samples bonded together in a chemical compound,
that chemical compound is a physical property of
the samples. It is not an artefact of the total con-
centrations of the elements in the compositions or
subcompositions, whatever else the two elements
in prticular may be bonded with. (A subcomposi-
tional transform is equivalent to a change of scale
in a row of the dataset; see Appendix.)

If a suite of elements belongs to a single end-
member, then the pair-wise departures from lin-
ear associations of these elements as determined by
the data should be relatively small. This is because
the formation of mixtures does not alter the intrin-
sic or natural associations between the elements,
and a mixture is itself after all, a linear combina-
tion. Thus, the LRV provides an independent set of
measurements for assessing the validity of the ini-
tial endmember analysis. It can also reveal intrin-
sic associations between elements that may not be
so evident in the resulting endmember estimates.
This property is noted further on concerning the
makeup of an endmember with ultramafic proper-
ties, and also the identity of a sample with ultramafic
content which had been excluded from the analysis.

1.4 Deep sea manganese nodules

In 1987, India was allocated a mine site in the
Central Indian Ocean Basin (CIOB). Since then, a
substantial amount of data has been collected on
nodules from the CIOB. Initially, the results of
studies on the data were classified, but have now
been released into the public domain. Deep-sea
manganese nodules from the CIOB have been
described in detail by Jauhari and Pattan (2000),
Valsangkar (2001), Jauhari and Iyer (2008),
Mukhopadhyay et al. (2008), Sarkar et al. (2008),
and Vineesh et al. (2009). Jauhari and Pattan
(2000) carried out an R-mode factor analysis of the
composition of nodules from the CIOB and identi-
fied three factors representing hydrogenous, diage-
netic, and aluminosilicate phases in the nodules.

Much of the work on CIOB nodules was under-
taken principally to assess the economic potential
of these deposits. In this paper results are repro-
duced of endmember and log-ratio variance anal-
yses, each undertaken on a database comprising
the concentrations of 16 elements in 92 of the 93
samples taken from the CIOB (one sample was
excluded because it appeared to be a serious out-
lier). The analyses were conducted to indepen-
dently identify the principal intrinsic combinations
of minerals controlling nodule compositions in the
region. The inclusion of Loss on Ignition (LOI) and
Residue made a total of 18 concentrations for each
sample.
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2. Numerical methods

2.1 Bilinear unmixing

Let p be the number of element concentrations in
each of n sample compositions of an n × p geo-
chemical dataset. Then an endmember analysis is a
procedure by which each sample composition may,
within tolerable errors, be expressed as a mixture.
That is, a linear combination summing to 100%,
of a small number k (k << p) , of fixed extreme
compositions, the endmember estimates. If these
estimates are merged with the dataset making a
total of n+k compositions, then they will, between
them, contain the largest and least concentrations
of each element in the dataset. It is this property
that identifies the element and/or mineral associ-
ations. Bilinear unmixing is used to describe the
situation when all the parameters have to be esti-
mated from the data (Menke 1984; Weltje 1997).
These parameters include the number k of end-
members, the compositions of the endmembers,
and the proportions (abundances or mixture coeffi-
cients) of the endmember estimates in each sample.
This study describes only the estimates for k and
the compositions of the endmembers, although the
mixture coefficients are, indeed, also computed by
the iterative endmember construction procedure.
Accordingly, endmember estimates were obtained
as the components of k = 4 extreme points (ver-
tices) of a tetrahedron in p = 18-dimensional space
that most closely enclosed the compositional data-
points. Since all the estimates of the observed
data-points were interior points of this tetrahe-
dron, each of them could be expressed as a sim-
ple mixture (a convex combination) of the extreme
points. Applications of this particular construc-
tion are described in detail by Renner et al. (1997,
1998).

2.2 A note on statistical methods

The construction procedure used here is not a
statistical analysis. No underlying probability
distributions are assumed for the element concen-
trations. Hence, no estimates for the extreme com-
positions are contained in confidence intervals, and
there can be no tests of significance. Moreover,
in this study a statistical analysis of the residu-
als (errors in estimation, Renner 1991, 1993) is not
provided. Assumptions about the probability dis-
tributions of geochemical data are difficult to jus-
tify. In a special case, Aitchison and Bacon-Shone
(1999) have described the pattern of variability of
particular target compositions assuming the dis-
tributions were approximated by logistic normal
and logistic skew normal probability distributions,
and that certain information about the sources was

given. More recent Bayesian statistical approaches
to the identification and distributions of endmem-
bers have been described by Palmer and Douglas
(2008). In particular, Dobigeon et al. (2009) and
Zare and Gader (2011) describe studies into the
application of Bayesian statistical methods of end-
member analysis in the field of hyperspectral image
processing, which is an area of research into pattern
recognition.

Nonetheless, a basic property of the iterative
construction method adopted for this study is that
it makes no assumptions about the variability of
the data. It is based entirely on the geometry of the
data-points. Consequently, it completely bypasses
the shortcomings of all multivariate procedures
based on the correlation coefficient (e.g., Principal
Components and Factor Analysis).

2.3 The log-ratio variance and proportional
relationships

The LRV between two elements, X1 and X2,
denoted by LRV (X1/X2) , was introduced by
Aitchison (1986). It is defined to be the sample
variance of log (X1/X2) for corresponding pairs of
elements, X1 and X2, in the dataset. It is shown in
the Appendix that LRV (X1/X2) = LRV (X2/X1) ,
so that like the correlation matrix, the complete
set of LRVs forms a symmetric array. This array
differs from the correlation matrix in two essen-
tial respects. All the entries in the main diagonal
are zeros rather than ones, and there is no limit
on the magnitudes of all other entries except they
must be ≥ 0. If the relationship between two ele-
ments were strictly proportional, that is X1/X2 =
m (> 0) , a constant for all pairs of (X1, X2) ,
then LRV (X1/X2) and LRV (X2/X1) would be
zero (Appendix). However, given that geochemi-
cal data is notoriously noisy, the observation of
such a strict proportionality would be extremely
unlikely. So it is the proximity of a particular LRV
to zero, in comparison with the LRVs of other
pairs, that implies the level of proportionality, or
systematic variation. Moreover, if a number of ele-
ments have mutually pair-wise small LRVs, then
they should be associated together as a suite on
an endmember since they would be jointly linearly
related.

3. Results

An endmember analysis as described by Renner
et al. (1997, 1998) was undertaken on the CIOB
data, except that as an appraisal, it dealt only
with the first objective of an endmember analy-
sis namely, to identify endmembers if they exist
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by estimating their compositions. It was followed
by the computation of the Compositional Vari-
ation Array of LRVs (Appendix). Both proce-
dures were based on the 92 compositions formed
by merging two collections of deep-sea manganese
nodules. These collections consisted of 34 and 58
samples respectively which, were sampled in the
CIOB, between 9◦–18◦S and 72◦–83◦E, and ana-
lyzed for the same 16 elements. The 5th sample
in the combined dataset, labeled SS2/92A, was
excluded from the analyses. Its concentrations of
Cr2O3 (0.038%), CaO (3.75%), and MgO (5.58%),
were so high compared to all other samples, that its
data-point was quite remote from the main body
of the data. Such an apparent outlier may have
been a perfectly valid though somewhat excep-
tional case. However, if it had been due to con-
tamination or to measurement errors, its inclu-
sion could have erroneously distorted the end-
member construction process. Together with the
16 elements, LOI and Residue made a total of
18 components in each composition, all summing
to 100%.

3.1 Endmember estimates

In order to provide equal weights to all elements,
the concentrations of each one were divided
throughout by its maximum concentration, form-
ing a unit-range from zero to one for each element.
The minor elements, usually measured in ppm,
would otherwise appear as noise relative to the per-
centage data, the latter being on a scale 10,000
times larger in magnitude. Geometrically, without
this transformation, the approximate dimensional-
ity of the raw data points would in any case, tend
to be biased towards the number of most abun-
dant major elements. (It is an important property
of the LRV that, like the correlation coefficient, it is
invariant to any transformation such as this, which
is equivalent to a change of scale for each element;
see Appendix.)

A numerical procedure known as a Singular
Value Decomposition (SVD), which orthogonally
rotates the reference axes, was executed on the
dataset of unit-ranges. It revealed that 99.13% of
the total of the sum of squared coordinates (SSQ)
on the rotated 18-dimensional reference axis sys-
tem was accounted for by just 3 of its axes, whilst
a fraction more, SSQ = 99.37%, was accounted for
by 4 axes. For each of these 3-axes and 4-axes sys-
tems, the SVD computed data-points correspond-
ing to, and closest to each of the of raw unit range
data-points, converted back to compositional data
points by the inverse of the unit-range transforma-
tion. In this way, two datasets of approximations
to the dataset of raw compositions were created.

The quality of the approximations of the elements
in these three and four dimensional datasets was
assessed by the coefficient of determination, r2.
This is a measure of the proportion of the varia-
tion accounted for by the least squares line fitted to
the points of pairs of observed and corresponding
approximated concentrations of each element in a
reduced axes system. Ideally, these points lie on a
straight line through the origin with slope 1. When
that is the case, r2 = 1 (100%). Hence, a value of
r2 < 0.50 (50%) is clearly a poor fit since less than
50% of the variation is predicted by the line.

For just two components in the 3-axes system,
r2 < 0.50 (50%) namely, for Cr2O3, r2 = 0.05 (5%),
and for MgO, r2 = 0.29 (29%). However, in the
case of the 4-axes system, r2 = 0.08 (8%) for
Cr2O3, while for MgO, r2 = 0.82 (82%), a substan-
tial rise from 29% (table 1), and a good fit. A five
axes system did not raise r2 above 0.50 (50%) for
Cr2O3. Accordingly, since the SVD evidence indi-
cated a single endmember to account for MgO,
extreme compositions with the required proper-
ties of endmembers were to be sought in the 4-
dimensional reference system. A second algorithm
was then executed to iteratively construct the four
endmember estimates from the four dimensional
dataset. Given the very slight increase in the SSQ
from 99.13% to 99.37%, there remained a geomet-
rical limitation associated with the choice of the
fourth dimension. All the data-points had to be
very close to the plane of the triangle whose ver-
tices were the other three extreme points, implying
that the simplex would be a flattened tetrahe-
dron. This made the convergence of the iter-
ative procedure to a fourth extreme somewhat
arbitrary.

The four required endmember estimates that
were iteratively constructed are displayed in
table 1. In that table, LOI and Residue are the
13th and 18th components respectively. In each
sample composition, Residue is defined as 100%
minus the total of the concentrations of all other
components. It is necessary in this type of end-
member analysis that all elements are measured on
the same scale (% in this case) and all composi-
tions sum to a fixed constant (again, 100% in this
case).

(1) In table 1, the elements that are dominant
on Endmember I are Mn, Zn, Ni, and Cu.
This endmember is characterized by its large
concentration of Mn, that is consistent with
a Manganese phase (Jauhari and Pattan
2000).

(2) Elements that are dominant on Endmember II
(table 1) are Fe, V, Ti, Ca, P, and Co. This
endmember features a large concentration of Fe
which is consistent with an Iron phase (Jauhari
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Table 1. Endmember analysis of the compositions in percentages of 92 manganese nodule samples for 16 elements plus LOI
and Residue, together with the coefficients of determination (r2). The largest values of each element are marked in bold.

Element

no. Element/oxide Endmember I Endmember II Endmember III Endmember IV r2

1 Fe2O3 3.5564 24.2572 8.3008 10.6612 0.90

2 MnO 51.6043 24.4968 0.3764 34.2201 0.96

3 Cr2O3 0.0183 0.0224 0.0224 0.0210 0.08

4 V2O5 0.0645 0.0879 0.0139 0.0589 0.81

5 TiO2 0.0000 1.1203 0.3865 0.5387 0.92

6 CaO 2.0863 2.8003 1.3156 2.1809 0.55

7 K2O 0.1260 0.8254 3.4580 1.4669 0.90

8 P2O5 0.0609 0.6976 0.1267 0.4872 0.92

9 SiO2 3.6409 14.9516 59.1805 14.3578 0.96

10 Al2O3 0.4655 4.7889 14.1171 7.6720 0.93

11 MgO 3.1603 2.0517 1.7431 5.1913 0.82

12 Na2O 2.2275 2.0295 3.9781 1.7750 0.62

13 LOI 18.7858 16.4203 6.2276 16.1614 0.90

14 Zn 0.2158 0.0156 0.0183 0.1868 0.87

15 Ni 2.2744 0.6459 0.1468 0.6498 0.85

16 Co 0.0245 0.2514 0.0000 0.2266 0.85

17 Cu 2.3034 0.0020 0.0000 0.7421 0.94

18 Residue 9.3851 4.5354 0.5880 3.4023 0.69

and Pattan 2000). The presence of Ca and V is
discussed further on.

(3) The elements that are dominant on Endmem-
ber III (table 1) are K, Si, Al, and Na.
This endmember is therefore consistent with
an Alumino-silicate phase (Jauhari and Pattan
2000).

(4) Only one element is dominant on Endmember
IV (table 1) and that is Mg. It is associated
with ultramafic material. This endmember also
has the second largest concentration of Mn.

3.2 Log-ratio variances

The grouping of elements revealed by collections
of pair-wise mutually small LRVs between the ele-
ments can be compared to the grouping of domi-
nant elements in the endmembers obtained by an
endmember analysis. LRVs that are all pair-wise
close to zero within a group imply mutually lin-
ear intrinsic associations between the elements of
such a group. This should be detected by an LRV
analysis if the group is part of every mixture.
Accordingly, a two-way compositional variation
array setting out the LRVs as described in the
Appendix was created by the compositional data
software package, CoDaPack (Comas and Thió-
Henestrosa 2011). Since the complete array of LRV
values is symmetric (like a correlation matrix), only
LRV values above the diagonal of that array are
displayed in table 2 (as is the case with CoDaPack).

In the absence of a known probability distri-
bution for the LRVs, CoDaPack determines the

5th, 25th, 75th and 95th percentiles to be the
critical points of the values in the LRV array. It is
to be noted that since they are sample statistics,
the precision of the observed percentiles is depen-
dent on the randomness of the sampling methods
and the size of the statistical sample in this case is
n = 92. It is assumed for this study that both these
requirements are satisfied. The LRVs that are less
than the 25th percentile are the closest to zero of
all the values in the array, indicating the strongest
associations between pairs of elements in the data.
Values between the 25th and 75th percentiles imply
weak associations, while those greater than the
75th percentile are measures of the weakest associa-
tions, being farthest from zero. These ranges of val-
ues are highlighted in the output from CoDaPack,
and are correspondingly identified in tables 2 and
3(a–d). That is, since the 25th and 75th percentiles
are 0.0580 and 0.1840 respectively; the LRV
values in tables 2 and 3(a–d) are in italics for values
< 0.0580, bold face for values > 0.1840. The values
in between 0.0580 and 0.1840 are in plain type.

(1) Table 3(a) sets out the LRVs between Mn and
mutually related elements. Manganese is dom-
inant on Endmember I (table 1). It is evident
from table 3(a) that pair-wise LRVs between
each of Mn, Ni, Zn were ≤ 0.045, and between
each of Cu, Ni were ≤ 0.052. However, the
LRV(Mn/Cu) = 0.084, exceeding the 25th per-
centile. Nevertheless, this value is the smallest
LRV between Cu and all elements other than
Ni and Zn. Indeed, all other LRVs involving Cu
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are greater than the 75th percentile (table 2)
except for Mg, where LRV(Mn/Mg) = 0.133
(tables 2 and 3a). That is, Cu is weakly associ-
ated with Mg, but very weakly associated with
all remaining elements other than Mn, Ni and
Zn. Hence the LVR values for Mn, Ni, Zn, and
Cu, evidently do identify these four elements
as a suite, confirming their status in the end-
member analysis as all dominant on Endmem-
ber I (table 1). These results are similar to the
element associations reported by Jauhari and
Pattan (2000).

The elements Mg, V, Ca are included in table 3(a)
because of their relationship to Mn. However, the
nine LRVs, between Mg, V, Ca and each of Ni,
Zn, Cu all exceed the 25th percentile (table 3a)
indicating weak pair-wise associations between the
elements of these two suites. In table 3(d), the LRV
evidence implies that Mn is a major component not
only of Endmember I but also of Endmember IV
which accounts for the relationships between Mn,
Mg, V and Ca.

Residue is dominant on Endmember I (table 1),
and so its low LRV values with Mn, Ni and

weakly with Zn, are consistent with that result
(table 3a). Nevertheless, its association with Mg, V
and weakly with Ca are properties the LRVs also
associated with Endmember IV (table 3d).

(2) Table 3(b) sets out the LRVs between Fe and
mutually related elements. Fe is dominant on
Endmember II (table 1). Evidence for an asso-
ciation between Fe, Ti and P was reported
by Jauhari and Pattan (2000). Pair-wise LRVs
between Fe, Ti, P, and also between P and Co,
were 0.032 or less, indicating close associations.
But LRV(Fe/Co) = 0.064 and LRV(Co/Ti) =
0.074 (table 3b) both of which are greater than
0.0580, the 25th percentile. However, the LRVs
between Co and all other elements except V are
greater than 0.074 (table 2). The four elements,
Fe, Ti, P, Co, are dominant on Endmember II
(table 1).

It is also the case that Ca and V are dominant on
Endmember II (table 1). The LRV(Ca/V) = 0.018
(tables 3a and 3d), indicating a close association
between Ca and V. However, the LRVs between
these two elements and, Fe, Ti, P, Co were all

Table 2. The log-ratio variance array. Variances < 0.0580 are in italics. Variances > 0.1840 are in bold.

MnO Cr2O3 V2O5 TiO2 CaO K2O P2O5 SiO2 Al2O3

Fe2O3 0.2000 0.0909 0.0701 0.0172 0.0807 0.1728 0.0291 0.1623 0.1323

MnO 0 0.0659 0.0435 0.2588 0.0519 0.2105 0.1767 0.2274 0.1874

Cr2O3 0 0.0320 0.1271 0.0229 0.0797 0.0958 0.0795 0.0602

V2O5 0 0.1065 0.0181 0.1486 0.0646 0.1540 0.1217

TiO2 0 0.1092 0.1881 0.0265 0.1799 0.1439

CaO 0 0.1166 0.0660 0.1139 0.0853

K2O 0 0.1875 0.0176 0.0167

P2O5 0 0.1939 0.1355

SiO2 0 0.0205

MgO Na2O LOI Zn Ni Co Cu Residue

Fe2O2 0.1546 0.1365 0.1097 0.3554 0.2646 0.0642 0.4703 0.2045

MnO 0.0359 0.0854 0.0189 0.0452 0.0302 0.1733 0.0841 0.0228

Cr2O3 0.0401 0.0268 0.0226 0.1329 0.0973 0.1184 0.2190 0.0748

V2O5 0.0502 0.0619 0.0137 0.1408 0.0924 0.0715 0.2219 0.0551

TiO2 0.2024 0.1735 0.1525 0.4299 0.3436 0.0742 0.5703 0.2692

CaO 0.0482 0.0372 0.0142 0.1290 0.0914 0.0801 0.2176 0.0616

K2O 0.1313 0.0545 0.1308 0.2633 0.2427 0.2225 0.3807 0.2143

P2O5 0.1388 0.1431 0.0973 0.3246 0.2623 0.0319 0.4600 0.1878

SiO2 0.1562 0.0459 0.1385 0.2942 0.2490 0.2357 0.3937 0.2266

Al2O3 0.1027 0.0449 0.1047 0.2531 0.2255 0.1735 0.3645 0.1900

MgO 0 0.0625 0.0240 0.0729 0.0628 0.1456 0.1332 0.0562

Na2O 0 0.0402 0.1419 0.1054 0.1655 0.2172 0.0911

LOI 0 0.0874 0.0547 0.1080 0.1521 0.0334

Zn 0 0.0369 0.2989 0.0472 0.0705

Ni 0 0.2484 0.0521 0.0360

Co 0 0.4456 0.1876

Cu 0 0.1087

Residue 0
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Table 3 (a–d). Log-ratio variances between the dominant
elements Mn, Fe, Al, Mg, and their mutually related ele-
ments. Variances < 0.058 are in italics. Variances > 0.184
are in bold.
Table 3(a). Log-ratio variances between Mn and mutually
related elements.

Mn Ni Mg V Zn Ca Cu Residue

Mn 0 0.030 0.036 0.044 0.045 0.052 0.084 0.023

Ni 0 0.063 0.092 0.037 0.091 0.052 0.036

Mg 0 0.050 0.073 0.048 0.133 0.056

V 0 0.141 0.018 0.222 0.055

Zn 0 0.129 0.047 0.071

Ca 0 0.218 0.062

Cu 0 0.109

Table 3(b). Log-ratio variances between Fe and mutually
related elements.

Fe Ti P Co

Fe 0 0.017 0.029 0.064

Ti 0 0.027 0.074

P 0 0.032

Table 3(c). Log-ratio variances between Al and mutually
related elements.

Al K Si Na Cr

Al 0 0.017 0.021 0.045 0.060

K 0 0.018 0.055 0.080

Si 0 0.046 0.080

Na 0 0.027

Table 3(d). Log-ratio variances between Mg and mutually
related elements.

Mg Mn Cr V Ca Na Residue

Mg 0 0.036 0.040 0.050 0.048 0.063 0.056

Mn 0 0.066 0.044 0.052 0.085 0.023

Cr 0 0.032 0.023 0.027 0.075

V 0 0.018 0.062 0.055

Ca 0 0.037 0.062

Na 0 0.091

greater than 0.065. Moreover, the LRV evidence
implies that Ca and V belong to Endmember IV
(table 3d).

(3) Table 3(c) sets out the LRV between Al
and mutually related elements. Pair-wise LRVs
between Al, K, Si, and Na were at most 0.055.
These four are the dominant elements on End-
member III (table 1). Jauhari and Pattan
(2000) found evidence of an association
between Al, K, and P (partially), and sepa-
rately between Al and Si.

Although unaccounted by the endmember analy-
sis, Cr appears in both table 3(c) and table 3(d).
In the former, it has an association with Na,
LRV(Na/Cr) = 0.027.

(4) Table 3(d) sets out the LRVs between Mg and
mutually related elements. Magnesium is domi-
nant on Endmember IV (table 1) which is asso-
ciated with ultramafic material. Manganese is
high on this endmember which may account not
only for its low LRVs with Mg in particular,
LRV(Mn/Mg=0.036), but also with V and Ca
(table 3d). Pair-wise LRVs between Mg, Mn,
Cr, V, Ca are < 0.058, the 25th percentile, but
LRV(Mg/Na) = 0.063. LRV(Mn/Na) = 0.085
and LRV(Mn/Cr) = 0.066. Although Cr was
not accounted by the iterative four-endmember
analysis (r2 = 0.08, table 1), it appears here
to be associated with Mg, V, Ca and Na.
Its LRVs between these four elements are all
≤ 0.040.

These results show that LRVs, table 3(a–c), largely
confirmed the constituents of the suites of domi-
nant elements that were identified on the Endmem-
bers I, II and III. In the case of Endmember IV,
the LRVs not only isolated Mg from the other three
endmembers (viz., it was not associated with Ni,
Zn, Cu in Endmember I ), but also grouped it with
Mn, Cr, V, Ca, and Na. Thus, the LRV evidence
confirmed that Endmember IV is an ultramafic
phase in the nodules studied here. In addition, the
high concentrations of Mg, Ca and Cr in the 5th
sample, SS2/92A, that led to its being omitted
from both analyses, are probably not anomalies.
In view of their mutually near zero LRV values
in table 3(d), the high concentrations of Mg, Ca,
and Cr in sample SS2/92A imply that the sample
may be an extrapolation of the estimate for the
ultramafic Endmember IV.

4. Conclusions

4.1 Summary

Four endmembers were identified by the endmem-
ber analysis. The elements found to be dominat on
each were assessed by log-ratio variance analysis,
and a summary of those findings follow:

• Endmember I : Dominant elements are Mn, Zn,
Ni, and Cu. With an Mn content of more than
50%, it is clearly an Mn-rich endmember. The
LRV analysis confirmed the grouping of these
four elements. Although the association of Cu
with Mn was somewhat weak, it was still stronger
than all elements other than Mn, Zn and Ni.
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The endmember analysis revealed that Mn is also
high on Endmember IV, which would account for
the LRVs that associated it with Mg, V and Ca
on that endmember.

• Endmember II : Dominant elements are Fe, Ti,
P and Co. Its high Fe content identifies it as
an Fe-rich endmember. The LRVs between Co
and each of Fe and Ti were rather weak, but
stronger than with any other element except P.
Accordingly, the LRVs confirmed the grouping
of these four elements. Endmember analysis also
estimated dominant concentrations for Ca and V
on this endmember. However, although the LRV
analysis did confirm that these two elements were
indeed closely associated, it found that any asso-
ciations between them and each of Fe, Ti, P, and
Co were weak.

• Endmember III : Dominant elements are Si, Al,
Na, and K. The collective dominant status of
these elements was confirmed by the log-ratio
(LRV) analysis. It is an endmember of alumino-
silicate minerals.

• Endmember IV : Mg is the only dominant ele-
ment that was estimated by the endmember anal-
ysis, although both Mn and Fe do have their
second highest concentrations on this endmem-
ber. It represents ultramafic material derived
from the mantle. The LRV analysis associated
Mg with Mn, Cr, V and Ca, but the value of
LRV(Mg/Fe) = 0.1546 is weak.

4.2 Discussion

The computation of an array of LRVs from a com-
positional dataset sets out distinct and essentially
fundamental data on the relationships between
pairs of elements. In particular, individual items of
the array are a measure of the deviations from lin-
earity in those relationships. The smaller the values
of those deviations, the greater are the non-random
or systematic associations between the elements.
The existence of an intrinsic, geophysical relation-
ship between two elements, such as a chemical bond
or flow from a common source, is not conditional
on the measurements of the concentrations of other
elements that may or may not have been included
in a compositional dataset. Unlike the correlation
coefficient, the LRV is absolutely invariant to the
inclusion or exclusion from a compositional dataset
of the concentrations of other elements. Further-
more, it is also invariant to changes to the scales of
measurement to either the individual components
or the individual samples. It is an absolute constant
between two elements for the particular dataset.
Consequently, the mutual proximity to zero of the
pair-wise LRVs of a group of elements, relative to
their values for all other elements in the dataset,

jointly imply that for the given data, the group
exists as a naturally occurring combination. This
feature was utilized in this paper to assess the
results of the numerical endmember analysis.

Accordingly, the value of the LRV analysis in an
appraisal of this kind, is not only that it provides
a robust means to assess the findings of the end-
member analysis, but it also raises the possibility
that it will bring fresh information to that analy-
sis. In this study, it confirmed that Mn is a major
component not only of Endmember I but also of
Endmember IV. Furthermore, it showed that Ca
and V were not dominant on Endmember II. They
were indeed closely associated together, but with
the components Mn, Mg, Cr and Na that it asso-
ciated with Endmember IV. Given the immutable
nature of the LRV, this implies that the inconsis-
tency with the result of the endmember analysis is
irrefutable, and that the result is an anomaly. The
LRV analysis associated Na with alumino-silicates
on Endmember III, as did the endmember analysis,
it also associated Na with Ca and Cr on Endmem-
ber IV. Finally, the concentrations of MgO (5.58%),
Cr2O3 (0.038%), and CaO (3.75%) in the excluded
sample SS2/92A, are all greater than their corre-
sponding concentrations on any of the estimated
endmembers. As already noted, the LRV analysis
associated these elements as a group with others
on the ultramafic Endmember IV. It would appear
then that sample SS2/92A is a denser form of this
material, and possibly not the anomalous outlier
that led to its exclusion.

There remains the issue of the reliability of
procedures based on the correlation coefficient.
Jauhari and Pattan (2000) reported that R-mode
factor analysis was carried out on ferromanganese
nodule data from the CIOB comprising major,
trace and rare earth elements. Their analysis cre-
ated three factors. Factor 1 had strong negative
factor loadings of Fe, Ti, P (and, Y, Sr, and all the
REEs). Factor 2 had strong factor loadings of Mn,
Mg, Zn, Ni, Cu, Ca (and Mo, Ba). While Factor 3
had factor loadings of Al, K and P (partially). In
addition, the crude correlation between Al and Si
was 0.71. Although the database of that study was
not the same as that analysed in this paper, there
are evident correspondences between the results
of the two studies. There is a reason for that. It
can be shown that under quite mild restrictions,
if two components are naturally associated (as in
a chemical bond), then the correlation coefficient
between them will be positive. That association is
a sufficient condition for a positive correlation but
crucially, it is not a necessary condition. That is,
the converse is not true. A high positive correla-
tion between two components is not proof of the
presence of any natural association. This limita-
tion and the errors it may entail directly affect an
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R-mode factor analysis. When the correlation
matrix (less the approximations to the reduced
variances in the diagonal) is ‘factored’, a unique
solution for the array of factor loadings is not
immediately obtained. There are indefinitely many
such solutions. The particular solution that is com-
monly computed is that obtained by a ‘Varimax’
rotation of the factor vectors (Kaiser 1958, 1959).
This rotational method maximizes the sum of the
variances of the factor loadings by maximizing the
spread between the largest and least loadings on
each factor. For any rotated solution the factor
loadings on the unobservable factors are the cor-
relations between those factors and the observable
components. Consequently in the case of a Vari-
max solution, the loadings of the most highly corre-
lated components on a factor tend to be clustered,
as do those of the least correlated components.
In any event, whatever the rotational method, the
crude correlation matrix between components com-
plete with all its unknown spurious entries, directly
determines the chosen loadings on the factors. So
despite the similarity to the results of this paper,
the classifications of the elements by Jauhari and
Pattan (2000) are unsubstantiated.

In a final assessment, factor analysis is an
extremely sophisticated mathematical/statistical
model which bears no resemblance to the simple
linear geophysical mixing model. In its most fre-
quently employed form, the components are stan-
dardized random variables. The common factors
are latent random variables which are also stan-
dardized and vary from sample to sample. The
standard score of each element in a sample is the
sum of the products of the fixed factor loadings and
the variable associated factors, plus another vari-
able factor that is unique to the component. Conse-
quently the factors cannot possibly represent end-
member compositions. The factor loadings which
are themselves usually mislabeled ‘factors’ are the
constant correlations between the components and
the factor vectors as noted earlier. Neither the fac-
tor loadings nor their ‘variances’ usually expressed
as percentages could in any way be related to end-
member abundances. The factor analysis model is
the complete opposite of an endmember model. In
the latter, an element concentration in a sample
is the variable mixture (endmember abundance)
of the fixed concentrations of that element in the
various endmembers.

If practitioners seek to detect endmembers from
compositional data by merely identifying suites of
mutually associated elements, then an inspection
of the LRV array such as that output by CoDaPack
is, for the time being, the most reliable method.
In the future, more comprehensible transforms of
the LRV array that mimic the correlation matrix
should become available together with software for

quickly identifying suites, and that will allocate an
element to more than one suite when that possibil-
ity arises. The LRV analysis neither provides end-
member compositions nor their abundances in each
of the samples. That information requires an anal-
ysis of the geometry of the data-points such as that
described in the earlier part of this paper.
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Appendix

A given geochemical dataset, denoted by {xij} ,
consists of the measurements on the concentrations
of p elements in each of n samples (e.g., rock, sed-
iment). That is, i = 1, 2, . . . , n, and j = 1, 2, . . ., p,
so that xij is the concentration of the j th element
in the ith sample. Accordingly, {xij} represents an
n × p rectangular array, with the observation vec-
tors of the samples laid out along the rows, and the
elements down the columns.

When the concentrations are all measured on the
same scale, and, xi1+xi2+· · ·+xip = C (a fixed con-
stant) for all i, then each row of the array {xij} is
a composition. Suppose C = 100% and the pth (or
any other) component is excluded from every sam-
ple; the remaining components are then rescaled
to sum to 100%, each row of the n × (p − 1) array
{yij} , so formed, is a subcomposition. In the case
that it is xip that is excluded for all i, the sub-
compositional component corresponding to xij is
yij = aixij, where ai = 100/(100 − xip) for each
i. So the ratio of any two components of a sub-
composition, yij/yik, is aixij/aixik = xij/xik, the
same ratio as that of the corresponding compo-
nents in the full composition. (Indeed, this result
would be true for any other value of ai.)

Abundance data is typically compositional,
being expressed as percentages, ppm, etc. In order
to overcome the well-documented difficulties asso-
ciated with the statistical analysis of such data,
Aitchison (1986) showed that transforming the
data to log-ratios by forming typically, vij =
log(xij/xip), j = 1, 2, . . . , p − 1, it was possible in
some cases to apply traditional multivariate statis-
tical methodology to the n × (p − 1) array {vij}.
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In addition, Aitchison (1986) showed that given
certain assumptions on the evolution of the data,
vij = log(xij/xip) is a component of a multivariate
normal distribution.

A.1 Aitchison compositional variation array

If xik and xil are the kth and lth concentrations in
the ith sample, and wikl = log(xik/xil) , then the
log-ratio mean wkl, and log-ratio variance (LRV)
s2

kl, of the wikl, over all n samples, are given by:

wkl =
1

n

n∑

i=1

wikl (1)

s2
kl =

1

n − 1

n∑

i=1

(wikl − wkl)
2 (2)

for k, l = 1, 2, . . . , p, in equations (1) and (2). The
square p × p array {wkl} is anti-symmetric since
wikl = −log(xil/xik) = −wilk for all i, and so
wkl = −wlk. The diagonal entries of {wkl} are all
zero. Then, l = k, xik/xik = 1, and log(1) = 0.
Similarly, the diagonal entries of p × p array {s2

kl}
are also zero. There is no limit on the magni-
tudes of the non-diagonal entries of {s2

kl} except
they must be ≥ 0. Hence {s2

kl} is clearly sym-
metric. Aitchison (1986) defined the Compositional
Variation Array to be that p × p array which
contains the values of {s2

kl} above its diagonal,
and the values of {wkl} below. (The diagonal
entries are left blank.) This array is computed by
the free, compositional data processing software
package, CoDaPack (Comas and Thió-Henestrosa
2011).

It is evident that the mean and variance of the
log-ratios of two elements in any subcomposition
are equal to those for the same elements in the
full composition since the corresponding ratios are
equal. This is a consequence of scaling all the
elements of the ith row of {yij} by an ith con-
stant ai. There is a similar result obtained by scal-
ing the columns of {xij} (or {yij}) that applies
to just the LRV, s2

kl. Suppose all the concentra-
tions of {xij} are percentages, then provided bk =
10, 000, the term bkxik is in ppm for all i. That
is, the kth column of {xij} is now scaled by the
constant bk.

Let uikl = log(bkxik/xil) . Then uikl = log(bk) +
log(xik/xil), that is, uikl = log(bk) + wikl. So the
mean ukl of the uikl is given by:

ukl =
1

n

n∑

i=1

(log(bk) + wikl) = log(bk) + wkl. (3)

Hence, in the expression for the LRV, t2kl of the
uikl, the deviation from the mean is (uikl − ukl) =

(wikl − wkl), since log(bk) cancels, so that t2kl

becomes:

t2kl =
1

n − 1

n∑

i=1

(uikl − ukl)
2

=
1

n − 1

n∑

i=1

(wikl − wkj)
2 =s2

kl (4)

which is the variance of the wikl. Summing up,
the LRV between two elements is invariant for
a composition and its subcompositions (i.e., two
row transformations). This property is called sub-
compositional coherence. It follows that the LRV
remains invariant even in the special case where
two-part subcompositions are created of the form
X 1+ X 2 = 100%, by the reduction of all samples
to just the two elements, X 1, X 2. By contrast, the
correlation coefficient in that case between X 1 and
X 2, would necessarily be −1 (or possibly unde-
fined), irrespective of the relationship between X 1

and X 2. The LRV is also invariant to differences
in the scales of the measurements of the elements
(column transformations). In particular, they need
not be on the same scale. That also happens to
be a property of the (Pearson) correlation coeffi-
cient. The fundamental difference being, the LRV
is immutable to both row and column transforma-
tions. Such results would seem to imply that it
measures a basic underlying relationship between
any two elements of a given dataset.

A.2 Intrinsic linear associations

The identification of intrinsic associations between
the elements of geochemical datasets is vital to
understanding the makeup of minerals, sediments,
and other geological substances. A strong intrin-
sic association between Al and Si, for example,
would indicate the presence of alumino-silicates.
Traditionally, the Pearson correlation coefficient
has been widely misused in the geosciences as a
measure of linear association. Although it has been
well-documented for over a century that the cor-
relation coefficients between elements of a compo-
sitional dataset are spurious, and therefore, may
or may not have any geochemical relevance (see
Pearson 1897; Aitchison 1986; Pawlowsky-Glahn
and Egozcue 2006). Moreover, unlike the LRV, the
correlation coefficient lacks subcompositional cohe-
rence. In fact, the correlation between a corres-
ponding pair of elements of a composition and its
subcompositions are not only not necessarily equal,
but may actually contradict each other, one being
a large positive, the other an equally large negative
(Renner 2012).

The potentially useful property of the LRV, s2
kl, is

that if there were a perfect linear relation between
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two elements that is, xik/xil = m (> 0) , a fixed
constant of proportionality for all i, then s2

kl = 0.
In this elementary situation, wikl = log(xik/xil) =

log(m). Hence wkl = log(m), so (wikl − wkl)
2

= 0
for all i, and hence s2

kl = 0. Geochemical data is
of course, notoriously noisy. Even if two elements
were bound up in all the samples in such a way
as Al and Si are in an alumino-silicate, their ratios
(e.g., xiAl/xiSi), would not be precisely constant.
Moreover, the presence of these elements from more
than one source mineral increases the variability
in the log-ratio. Nonetheless, in the expression for
s2

kl, all the terms (wikl − wkl)
2 ≥ 0, so a value of

s2
kl close to zero would imply all such terms are

close to zero, and hence the kth and lth elements
of the dataset would have an approximately lin-
ear, intrinsic association. When a subset of the ele-
ments of the dataset all have mutually pairwise
LRVs close to zero, then their joint intrinsic asso-
ciations would indicate that the elements of that
subset form a suite such as the group of dominant
elements in an endmember. The software pack-
age CoDaPack (Comas and Thió-Henestrosa 2011)
outputs the Compositional Variation Array, with
the lowest values of the LRVs highlighted (in blue),
thereby expediting the identification of related
elements.

A.3 An alternative correlation matrix

The array of log-ratio variances can be transformed
into an array with the same symmetric layout as
the correlation matrix except all entries would be
non-negative but still ≤ 1. For example, exp(−LRV)

and exp(−
√

LRV) are equal to one for LRV = 0,
and they both tend to zero with increasing LRV.
In either case, a value of one signifies a perfect lin-
ear association, accounting for ones in the diago-
nal of the array, while a value of zero would signify
an absence of linear association. An unresolved
problem is to determine the statistical proper-
ties of any such transformation. In the case of
the Pearson correlation coefficient, the statisti-
cal properties are known when a bivariate pair is
assumed to be bivariate normal. Ironically, this
is never the case for compositional data, despite
the widespread citations of p-values obtained from
the correlation matrices output by computer pack-
ages. It is clear that the properties of the LRV
described here apply to all multivariate data,
and not just compositional data. Hence empirical
studies involving specified statistical distributions
could compile for comparison, the results of Prin-
cipal Components, and other multivariate analy-
ses based on both correlation and LRV matrices.
So, until the theoretical issues are resolved, such
empirical studies could provide information on the

variable behaviour of the LRV under differing
initial conditions.
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