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Abstract: Nonlinear phenomena in animal vocalizations fundamentally includes known features, 

namely, frequency jump, subharmonics, biphonation and chaos. In the present study, the multifractal 

detrended fluctuation analysis (MFDFA) has been employed to characterize the phase couplings 

revealed in the feeding clicks of Hippocampus kuda yellow seahorse. The fluctuation function )(sFq , 

generalized Hurst exponent )(qh , multifractal scaling exponent )(qτ  and the multifractal spectrum 

)(αf  calculated in the procedure followed were analyzed to comprehend the underlying nonlinearities 

in the seahorse clicks. The analyses carried out reveal long-range power-law correlation properties in the 

data, substantiating the multifractal behavior. The resulting )(qh  spectrum exhibits a distinct 

characteristic pattern in relation to the seahorse sex and size, and reveals a spectral blind spot in the data 

that was not possible to detect by conventional spectral analyses. The corresponding multifractal 

spectrum related shape parameter )(qhΔ  is well clustered, defining the individual seahorse clicks. The 

highest degree of multifractality is evident in the 18 cm male seahorse, signifying greater heterogeneity. 

A further comparison between the seahorse body size and weight (wet) with respect to the shape 

parameter )(qhΔ  and the second-order Hurst exponent )2( =qh  underscores the versatility of MFDFA 

as a robust statistical tool to analyze bioacoustic observations.   
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I. INTRODUCTION 

The framework of nonlinear phenomena (NLP) from the physics discipline is now being used to 

explain bioacoustic observations (Wilden et al., 1998) including species characterization. The NLP is 

rooted in the intrinsic nonlinear oscillations of the acoustic signal generated during the sound 

production. Four major types of NLP have been documented, as can be gleaned from different seminal 

scientific literature (Wilden et al., 1998; Fitch et al., 2002). (i) Frequency jump: a signal spectrum 

comprises of a fundamental frequency 0f , and the frequency jump represents a break in the 0f  with 

abrupt and discontinuous increase or decrease in the vibration rate. (ii) Subharmonics: the additional 

intermediate spectral components that appear in the harmonic stack, typically at integer fractions of the 

fundamental frequency 0f  (i.e., 2/0f , 3/0f ). (iii) Biphonation: the simultaneous occurrence of two 

independent fundamental frequencies. (iv) Chaos: a broadband frequency segment with no particular 

harmonics in a signal spectrum (Schneider and Anderson, 2011).  

NLP are common in human (Mende et al., 1990; Herzel et al., 1995; Wilden et al., 1998; Tokuda et 

al., 2007) and in animal vocalizations, particularly among: (i) Mammalians [common chimpanzee 

(Riede et al., 2004, 2007), rhesus macaque (Fitch et al., 2002), meerkat (Townsend and Manser, 2011), 

corsican red deer (Facchini et al., 2003), dog (Riede et al., 2000; Tokuda et al., 2002; Volodina et al., 

2006), red wolf (Schneider and Anderson, 2011), whale (Tyson et al., 2007) and manatee (Mann et al., 

2006)]. (ii) Aves [cockatoo (Fletcher, 2000), magpie (Suthers et al., 2011), zebra finch (Fee et al., 1998) 

and northern mockingbird (Zollinger et al., 2008)].    (iii) Reptiles [crocodile (Benko and Perc, 2009)], 

Pisces [fish (Rice et al., 2011)], Amphibians [frog (Feng et al., 2009)] and Insects [cicada (Hughes et 

al., 2009)]. 

In the present study, nonetheless, the feeding clicks of seahorse Hippocampus kuda (H. kuda) 

belonging to the family Syngnathidae are recorded in a captive environment. Seahorses typically 

generate stridulatory sounds, akin to the sound of snapping fingers, in a variety of circumstances, e.g., 

during feeding, courtship and copulation, induction of the seahorse to a new environment and inter-male 

competition (Colson et al., 1998; Anderson, 2009; Chakraborty et al., 2014b). The recorded feeding 

clicks of H. kuda are analyzed to characterize the phase couplings [depicted in Fig. 1(b)] across temporal 

scales that generate the intermittency in the data. The phase couplings generated by a nonlinear 

processes can be fundamentally differentiated by estimating Lyapunov exponents (as in Fletcher, 2000; 
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Facchini et al., 2003; Mann et al., 2006; Tyson et al., 2007; Benko and Perc, 2009) or fractal exponents 

(Loutridis, 2009). Accordingly, considering the latter aspect, the present work carryout multifractal 

detrended fluctuation analysis (MFDFA) (Kantelhardt et al., 2002; Ihlen, 2012) to characterize the phase 

couplings revealed in the feeding clicks of H. kuda yellow seahorse. The multifractal analyses followed 

herein is a robust technique to identify the scaling behavior and uncover the spectral blind spot 

(Mandelbrot, 1997) in the seahorse feeding clicks that was not viable by conventional spectral analyses. 

This is an innovative application used in several other fields including: sound-field diffuseness 

(Loutridis, 2009), music sequences (Su and Wu, 2006; Telesca and Lovallo, 2011) and human heart beat 

dynamics (Ivanov et al., 1999; Goldberger et al., 2002; Gierałtowski et al., 2012). 

The remaining part of this presentation is organized as follows. Section II describes recording of 

seahorse feeding clicks in a controlled laboratory environment, followed by the signal processing 

methodology. A brief theoretical overview of MFDFA is also recapped in this section. Section III 

interprets the multifractal spectrum related shape parameter in terms of seahorse sex and size, followed 

by concluding remarks in Sec. IV.      

II. MATERIALS AND METHODS 

A. Seahorse feeding click recording 

Hydrophone (C55 M/s Cetacean Research Technology, Seattle, USA) having 20 dB pre-amplifier 

gain and receiving sensitivity of –185 dB re 1 V µPa–1 was used for sound recordings. The hydrophone 

was connected to an analog-to-digital (A/D) converter installed in a personal computer (PC). The digital 

data were transferred to the PC via a parallel port interface at a sampling frequency of 10 kHz 

(Chakraborty et al., 2014b). The passive acoustic recordings were carried out in the aquaculture 

laboratory complex of CSIR-National Institute of Oceanography, India, where the techniques for 

standardization of captive breeding, rearing and culture of seahorse species are being established (Pawar 

et al., 2011). Various seahorse husbandry practices as described in Pawar et al. (2011) were followed 

prior to the experiment.  

The hydrophone was kept immersed in a glass tank containing aerated fresh seawater, up to a depth 

of 30 cm from the surface. The hydrophone was placed around 60 cm away from the seahorse. The tank 

was kept over 40 mm thick flexible foam to reduce mechanical, electrical and background noise. This 

setup was retained during the course of the experiment. The seahorses were generally fed thrice a day 
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with different live prey organisms namely, copepodites, Artemia nauplii and mysids (Mesopodopsis 

orientalis). The seahorse feed (mysids) were placed in the tank, and the clicks were recorded 

commencing at 14:00 hr. A total of twenty seahorse feeding clicks corresponding to 12 cm female, 12 

cm male, 16 cm male, and 18 cm male were recorded and analyzed in the study. The oscillogram and 

spectrogram of 12 cm female seahorse click are shown as typical examples [Figs. 1(a), 1(b)] to illustrate 

the complexities and phase couplings in the signal. 

B. Noise removal and signal extraction 

The extraction of noise-free clicks is imperative prior to carrying out the MFDFA. The presence of 

background noise in the analyses generates spurious and erroneous multifractality (Ludescher et al., 

2011; Gulich and Zunino, 2012). Accordingly, the time duration (precise start- and end-points) of the 

clicks were identified employing a three step procedure as illustrated in the Fig. 2. The low frequency 

periodic artifact (mainly due to electrical noise) is inevitable in the laboratory-based observational 

passive acoustic records. Therefore, it was necessary to select a cut-off frequency (high pass filter) to 

discard the low frequency artifacts in the raw data stream. At the initial step, the low frequency 

background noise in the raw data was eliminated by defining a cut-off frequency of 1 kHz. The seahorse 

clicks analyzed in the study were evidently of high frequency (>1 kHz) signals (Chakraborty et al., 

2014b) [Fig. 1(b)] and the filtering procedure adopted here can eliminate the periodic low frequency 

trends in the data to improve the MFDFA. A representative data stream after filtering is shown in Figs. 

1a, 2a. 

The start-point of the click (after filtering) is conspicuous as seen in Fig. 2b, whereas the end-point 

identification is convoluted because the subtle difference in amplitude levels of damping signal and the 

noise renders it visually undetectable. Consequently, in the second step, a noise level reduction method 

was performed by multiplying the time series kx  with ratios of its corresponding absolutes kx  to the 

maximum absolute value [ kkk xxx max ]. This procedure can enhance the contrast between the signal 

and background noise in the data stream. The first-difference of the resulting time series was 

subsequently computed [Fig. 2(c)] to facilitate the envelope detection procedure. In the final step Hilbert 

transform-based envelope detection procedure (Zimmer, 2011) was utilized to identify the time duration 

of the detected signal. After identifying the time window [Fig. 2(d), dash line], the corresponding 
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amplitude values of each click were extracted from the data stream [depicted in Fig. 2(a)]. The extracted 

clicks of individual seahorse representing different sex and size were subject to the MFDFA.    

C. MFDFA-theoretical overview 

A brief theoretical overview of the MFDFA is summarized in this section (Kantelhardt et al., 2002; 

Ihlen, 2012). The general MFDFA is comprised of five major steps. The first step involves the 

subtraction of the mean x  from the seahorse click time series kx  of length N  to determine the 

cumulated data series )(iY  as: 

][)(
1
∑
=

−≡
i

k
k xxiY ,  Ni ,...,1=           (1) 

where Nxx
i

k
k /)(

1
∑
=

= . In the second step the resulting profile )(iY  was divided into non-overlapping 

segments [ )/int( sNNs ≡ ] of equal length s . 

The local trend for each of the segment was calculated in the third step by a least-square fit of the 

series to determine the variance 

 2

1

2 )}(])1[({1),( iyisvY
s

vsF
s

i
v∑

=

−+−≡        (2) 

for each segment sNv ,...,1= . Here )(iyv  is the fitting polynomial in segment v . Linear, quadratic, 

cubic or higher order polynomials can also be used in the fitting procedure. 

In the fourth step the average over all segments was computed to obtain the thq order fluctuation 

function 

 
qN

v

q

s
q

s

vsF
N

sF
1

1

22 )],([1)(
⎭
⎬
⎫

⎩
⎨
⎧

≡ ∑
=

,       (3)  

where the index variable q  can take any real value except zero. 

The generalized q  dependent fluctuation functions )(sFq  depend on the time scale s  for different 

values of q  [–5 to 5]. The scaling behavior of the fluctuation function was determined in the fifth step 
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by estimating the slopes of the plot )]([log2 sFq  versus s  for each value of q  [Fig. 3(a)]. If the series kx  

has long-range power-law correlations, )(sFq  scales with s  as: 

 )(~)( qh
q ssF .          (4) 

The function )(qh  is termed as generalized Hurst exponent. Ideally, in the case of a monofractal time 

series, )(qh  is independent of q  as the scaling behavior of the variances ),(2 vsF  is identical in all the 

segments v . The averaging procedure in Eq. (3) for a monofractal time series results in identical scaling 

behavior with different values of q . The function )(qh  for positive and negative values of q  describes 

the scaling behavior of the segments with large and small fluctuations respectively. 

The )(qh  defined in Eq. (4) is directly related to the classical multifractal scaling exponents )(qτ  

defined by the standard partition function-based multifractal formalism. The analytical relation between 

these two sets of multifractal scaling exponents can be represented as: 

 1)()( −= qqhqτ .         (5) 

Another way to characterize a multifractal series is the singularity spectrum )(αf  that is related to )(qτ  

via a Legendre transform (Kantelhardt et al., 2002), 

 )(qτα ′= and )()( qqf ταα −= .        (6) 

Here, α  is the singularity strength or Hölder exponent, while )(αf  denotes the dimension of the subset 

of the series characterized by α . Using Eq. (5), it is also possible to directly relate α  and )(αf  to )(qh  

as: 

)()( qhqqh ′+=α  and 1)]([)( +−= qhqf αα  .     (7) 

1. Description of the multifractal spectrum 

In this work we focus on the particulars of the generalized Hurst exponent )(qh  spectrum to 

quantify the multifractal properties of the seahorse feeding click time series. The )(qh  and )(αf  are 

mathematically related by the Legendre transformation [Eq. (6)]. Hence, only the results of )(qh  curves 

are considered. The feeding clicks can also be realized as multifractal when the graph of α  versus 

)(αf  (multifractal spectrum) exist and has the shape of an inverted parabola (as in Chakraborty et al., 
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2014a). If the )(αf  curve converges to a single point, it can be termed as monofractal wherein the 

generalized Hurst exponent )(qh  is constant for all values of q  [Figs. 1(c), 1(d)]. The width of the )(qh  

curve [ minmax )()()( qhqhqh −=Δ ] is a measure of multifractality, and indicates the deviation from 

monofractal behavior. The illustrations of the shape parameters that can be used to describe the 

multifractality are shown in Figs. 3b, 3d. 

In order to distinguish the multifractal spectrum )(αf  quantitatively, it is also convenient to 

compute the width of the spectrum W [ minmax αα − ] so as to evaluate the overall variability [Fig. 3(d)]. A 

wider )(αf  spectrum is indicative of larger W , signifying multifractality. The width W  would be small 

and tending to zero in the case of a monofractal series. Moreover, the monofractal time series has 

exponents )(qτ  with a linear q -dependency [Fig. 3(c)], resulting in a stable )(qh [Fig. 1(c)]. The 

unvarying )(qh  reduces the )(αf  spectrum to a narrow arc in the monofractal series [Fig. 1(d)]. 

Conversely, the multifractal time series has )(qτ  with a curved q -dependency [Fig. 3(c)] and a 

decreasing )(qh (Ihlen, 2012). The multifractal spectrum in such an instance is a wide arc indicating 

higher multifractality in the data.   

III. RESULTS AND DISCUSSION 

The MFDFA followed herein has several advantages over the standard power spectral density (PSD) 

analyses, because it reveals scaling behavior and long-range power-law correlation properties in the 

data. Previous analyses by Chakraborty et al. (2014b) have focused on the quantification of single 

power-law exponent β  (i.e., monofractal feature) to characterize the seahorse clicks. On the other hand, 

results of the present study affirm that the clicks are intrinsically complex and require multiple 

exponents for its characterization. Moreover, the β  exponent derived from the PSD is implausible as 

the Fourier analyses require the stationarity of the data (Goldberger et al., 2002). Normally the 

stationarity requirement is seldom met in the analyzed data. The following section describe the 

particulars of )(qh  spectrum to validate the apparent multifractal properties in the seahorse feeding 

clicks. The resulting shape parameters [illustrated in Fig. 3(b)] have been statistically analyzed and 

compared with respect to the seahorse body size and weight (wet). 
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A. Validation of nonlinearities in feeding clicks 

MFDFA can provide satisfactorily good results when the input signals (seahorse click) are noise like 

time series. The time series can be realized as noise like if the Hurst exponent H varies between 0.2–0.8. 

The MFDFA can be employed directly in such instances without transforming the signal (Ihlen, 2012). 

However, the H values of seahorse clicks analyzed in the present study were evidently restricted to 

H<0.2 [see the inset in Fig. 1(a)]. As suggested by Ihlen (2012), the time series should be integrated 

before performing MFDFA, and a constant –1 should be added to the resulting parameters )(qh , )(qτ  

and α .  

As mentioned in Section II, the computed )(qhΔ [Fig. 3(b)] values can be interpreted as a measure of 

multifractality and nonlinearity in the data. It is important to validate that the resulting )(qhΔ  values are 

actually generated due to nonlinearities in the data and not from the mere presence of βf/1  power law 

and a non-Gaussian probability density function. This validation is possible by performing MFDFA on 

surrogate series corresponding to each of the feeding clicks (as in Ihlen and Vereijken, 2010). The 

surrogate series of the feeding clicks were generated employing iterated amplitude adjusted Fourier 

transformation (IAAFT) (Schreiber and Schmitz, 1996) within a maximum limit of 500 iterations. The 

IAAFT surrogates replicate the power spectral density and the probability distribution (i.e., statistical 

properties) of the feeding clicks, but eliminate the phase couplings between the temporal scales (i.e., 

frequencies). The significant influence of nonlinearities (i.e., phase couplings across temporal scales) in 

the data can be realized if )(qhΔ  of surrogates have smaller values as compared to the original time 

series.  

The ensemble average of the )(qh  values (18 cm male) corresponding to the feeding clicks and 

associated surrogates reveal significant dominance of nonlinearities in the data [Fig. 4(a)]. Similarly, the 

distinctly observed differences in )(qhΔ  vales (Fig. 5), corresponding to the data and surrogates further 

substantiate the observed nonlinearities. Therefore, the juxtaposition of MFDFA and the surrogate test is 

advantageous to uncover the substantial influence of phase couplings across temporal scales that 

generate the intermittency (i.e., burstiness) in the seahorse feeding clicks. Moreover, the generalized 

Hurst exponent spectrum width )(qhΔ  reproduced by the IAAFT surrogates is predominantly influenced 
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by the attributes of power spectral density and the non-Gaussian probability distribution of the feeding 

clicks, and not by intrinsic nonlinearities evident in the data.          

B. Frequency range characteristic of seahorse feeding clicks 

The seahorse clicks were studied for several objectives namely: to understand the effect of induction 

of the seahorse to a new environment, courtship and copulation (Fish and Mowbray, 1970), behavior and 

physiology in captive environment (Anderson, 2009) and during feeding (Colson et al., 1998; Anderson, 

2009; Chakraborty et al., 2014b). Emphasizing on the feeding behavior, Colson et al. (1998) had 

conducted a detailed study to substantiate the stridulation hypothesis of sound production, using a novel 

combination of kinematic, surgical, acoustic and morphological analyses. The stridulation mechanism 

(i.e., an act of producing sound by rubbing certain body parts together) involves the articulation of two 

bones in the head (namely, the supraoccipital and the coronet).  

The frequency range characteristic of seahorse clicks differ considerably as can be gleaned from 

different scientific literature. Fish (1953) documented broadband signals (0–4.8 kHz) in H. hudsonius, 

with maximum energy between 300–600 Hz and 400–800 Hz. Colson et al. (1998) reported the 

frequency range of H. zosterae and H. erectus between 2.65–3.43 kHz and 1.96–2.35 kHz respectively. 

Anderson (2009) however considered the bandwidth of 0–1 kHz as the prospective range to examine the 

clicks of H. erectus. The frequency range of H. kuda analyzed in the present study is consistent with the 

observations reported by Colson et al. (1998). The spectrogram analyses appropriately reveal high 

frequency (>1 kHz) feeding clicks in H. kuda (Chakraborty et al., 2014b) [Fig. 1(b)]. The intrinsic 

complexity of the clicks essentially necessitates the application of the MFDFA to characterize the phase 

couplings across temporal scales in the data.      

C. Particulars of generalized Hurst exponent )(qh  spectrum 

Twenty seahorse feeding clicks corresponding to 12 cm female, 12 cm male, 16 cm male and 18 cm 

male were analyzed in the study. The curves of the generalized Hurst exponent )(qh  can be realized as a 

distinct characteristic of a fractal time series. The variations in )(qh  spectrum principally account for 

the underlying fractal organization in a complex signal. The heterogeneity in the click is visually evident 

[in Fig. 2(b)] and the )(qh  spectrum analyzed herein quantitatively determines the scaling properties of 
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the data. The ensemble average of the )(qh  values ( q  ranging between –5 to 5) corresponding to the 

individual seahorse further reveals the apparent multifractal behavior of the feeding clicks [Fig. 4(b)].  

The markedly observed multifractality in the clicks also indicate dissimilarities in scaling behavior 

of the segments v  with small and large fluctuations. There will be significant dependence of )(qh  on q  

if small and large fluctuations in the segments are different (Kantelhardt et al., 2002). Indeed, for 

positive q  values, the segments v  with large variance ),(2 vsF [in Eq. (2)] will dominate the average 

)(sFq [in Eq. (3)]. The resulting )(qh  values describe the scaling of segments with large fluctuations. 

The large fluctuations in the clicks are usually characterized by the smaller scaling exponent )(qh [Fig. 

4(b)]. Conversely, for negative q  values, the segments with small variance ),(2 vsF  will dominate the 

average )(sFq . The corresponding )(qh  values emphasize the scaling behavior of segments with small 

fluctuations. Usually small fluctuations are characterized by larger scaling exponent )(qh . 

Correspondingly, the )(qh  spectrum related analyses of the individual seahorse reveal different scaling 

behavior associated with small fluctuations. Whereas, the differences in the scaling behavior of large 

fluctuations correspond to individual seahorse clicks, are meager [Fig. 4(b)]. Therefore, the differences 

in long-range correlation properties present in the clicks can be mainly attributed to the scaling behavior 

due to small fluctuations.  

 In a multifractal seahorse click, the intermittent periods with large and small fluctuations generate a 

decreasing )(qh  [Fig. 4(b)]. The decreasing )(qh  indicate that the segments with small fluctuations 

have a random walk like structure, whereas segments with large fluctuations resemble a noise structure 

(Ihlen, 2012). The unvarying )(qh  on the contrary signifies a homogeneous structure with 

monofractality. With a relatively small )(qhΔ  value of 0.073, the )(qh  spectrum analyzed in the present 

study reveals a non-multifractality in the background noise [Fig. 1(c)]. As mentioned earlier, the degree 

of multifractality can be easily related to the width of the generalized Hurst exponent spectrum )(qhΔ  

[Fig. 3(b)]. The )(qhΔ  values calculated for the individual seahorse clicks are shown in Fig. 5. The 

range of )(qhΔ  values varies between: 0.319–0.439, 0.592–0.613, 0.704–0.752, and 0.896–1.101, 

respectively for the 16 cm male, 12 cm male, 12 cm female, and 18 cm male. The detailed )(qhΔ  values 

are summarized in Table I. In order to compare the )(qh  spectrum quantitatively, it is convenient to 
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calculate the ensemble average of the )(qh  values that correspond to the individual seahorse. The 

resulting width values )(qhΔ  get successively reduced from maximum to minimum: 0.983, 0.734, 

0.603, and 0.380, associated with 18 cm male, 12 cm female, 12 cm male, and  16 cm male respectively 

[Fig. 4(b)]. Such reduction in )(qhΔ  values indicate decrease in the degree of multifractality. The 

highest degree of multifractality is evident in the 18 cm male seahorse, signifying greater heterogeneity. 

The low )(qhΔ  value of 16 cm male indicates relatively reduced multifractality and heterogeneity as 

compared to the values of the remaining seahorses. All the seahorses possess a characteristic different 

)(qh  curve and a )(qhΔ  value in relation to its sex and size, permitting individual identification.  

The )(qh  spectrum related analyses further suggest that the variability of the feeding clicks in the 

individual seahorse is distributed according to the power-law (Chakraborty et al., 2014b). The computed 

exponents characterizing the power-law behavior differentiate the irregular sound signals among the 

individual in terms of its sex and size [Fig. 4(b)]. The quantitative characterization of the feeding clicks 

based on the MFDFA is a novel approach to analyze the nonlinearities (i.e., phase couplings across 

temporal scales) in the data. However, it is important to note that the performance of the MFDFA based 

on the signal time series is significantly affected by the presence of background noise in the data 

(Ludescher et al., 2011; Gulich and Zunino, 2012). Therefore, it is imperative to eliminate the 

background noise and periodic artifacts in the data, before the analyses is performed.  

D. Comparison of )(qhΔ  with respect to seahorse body size and weight   

The variability of the multifractal spectrum related shape parameter )(qhΔ  in the seahorse feeding 

clicks can be related to the interpretation of complexities in: sound-field diffuseness (Loutridis, 2009), 

music sequences (Su and Wu, 2006; Telesca and Lovallo, 2011) and human heart beat dynamics (Ivanov 

et al., 1999; Goldberger et al., 2002; Gierałtowski et al., 2012). The above referred multifractality 

aspects support the fact that wider the spectrum width, higher would be the irregularity. The wider )(qh  

spectrum in the 18 cm male seahorse reflects a broader variation in the amplitude values, implying 

greater heterogeneity and nonlinearity. Comparison between the seahorse body size and weight (wet) 

with respect to the computed shape parameter further evidences the individual characteristics. The 

scatter diagram reveals four major clustering patterns designating individual seahorse clicks [Fig. 6(a)].  
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The animal vocalizations are frequently characterized by two basic parameters, namely the dominant 

and peak frequency. Colson et al. (1998) and Chakraborty et al. (2014b) had compared the peak 

frequency derived from the seahorse feeding clicks with respect to its body size, weight and sex. The 

corresponding correlation coefficients of the peak frequency versus body size and weight of the seahorse 

were found to be meager and subtle (see Fig. 8 in Chakraborty et al., 2014b). The reason for such a 

subtle correlation may be ascribable to the observed phase couplings across temporal scales in the 

feeding clicks [Fig. 1(b)]. The phase coupling behavior substantially convolutes the detection of the 

peak frequencies in the data. Each of the clicks has a broad power spectrum with many subsidiary peaks. 

This can be corroborated by the spectrogram analyses provided in the Fig. 1b. The power spectrum also 

encompass several dominant frequencies, which presumably represent major oscillation modes in the 

feeding clicks, but the amplitudes of these modes vary in a complex manner (Wilden et al., 1998; 

Fletcher, 2000). The phase couplings generated by a nonlinear processes can be comprehended by 

examining the underlying differential equations in a physical system. In the biological system (with 

seahorse) such an approach is not viable. Alternatively, the nature of the underlying equations can be 

examined by analyzing the sound output (Fletcher, 2000), because the seahorse click retains an irregular 

structure with a definite and repetitive pattern. Accordingly, emphasizing on the self-similarity of the 

feeding clicks, it is convenient to analyze the signal by estimating the associated multifractal exponents. 

The resulting multifractal spectrum of seahorses, possess characteristically different )(qhΔ  values in 

relation to its weight and size [Fig. 6(a)]. 

E. Limitation of traditional techniques and MFDFA 

The power spectrum that account for the relative frequency content of a signal has been widely 

applied to characterize correlations in a time series. The power spectral density analyses require data in 

stationary form, and its application to nonstationary time series can lead to spurious results. As 

mentioned in Ihlen and Vereijken (2010), the time series can be decomposed into a sum of oscillations 

with wavelength βft /1=Δ to characterize the presence of βf/1 power law. This decomposition is 

typically performed by Fourier transformation. The Fourier transformation basically assumes that the 

amplitude tAΔ of each oscillation is independent to each other (see Fig.1a in Ihlen and Vereijken, 2010). 

This fundamental assumption is violated due to the presence of intermittency generated by the small and 

large fluctuations in the seahorse feeding clicks. These intermittent fluctuations in the feeding clicks 
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further imply an inhomogeneous distribution, and therefore leads to a time dependency in both the 

probability density function and spectral exponent β . 

The conventional analyses tools of both  βf/1  power law and the non-Gaussian probability density 

function used to characterize seahorse feeding clicks assume that the spectral exponent β  is 

homogeneous in time. As a consequence, these analyses tools are blind to the presence of intermittency 

in the feeding clicks. The intermittency in seahorse feeding clicks can be viewed as an inherent property 

that is implausible to be quantified by a single exponent β , and lies within the blind spots (Mandelbrot, 

1997) of the Fourier lens (Ihlen and Vereijken, 2010). 

To illustrate the spectral blind spot, the ensemble average of the )(qh  values corresponding to the 

individual seahorse is exemplified in Fig. 4b. Normally, the exponent )(qh will depend on q . For q =2, 

the Hurst exponent H  in standard detrended fluctuation analyses (DFA) is retrieved. The computed H  

value account for the overall root-mean-square (RMS) fluctuations in the data and also represents the 

spectral exponent β . Apparently, the intercept point of the )(qh  curves corresponding to individual 

seahorse is close to q =2 [Fig. 4(b)]. This intercept pattern demonstrates a spectral blind spot detected by 

MFDFA, and resulting in identical and subtle variations in the spectral exponent β  [Fig. 6(b)]. 

Therefore, the MFDFA adopted in the present study can quantitatively distinguish the intermittent 

fluctuations in the individual seahorse clicks that is not possible by conventional spectral analyses.  

F. Biological implications 

The concept of NLP in bioacoustics was first introduced by Wilden et al.  (1998) to quantify the 

complexities in animal vocalizations. The NLP has been hypothesized to take on an important role in 

individual identification, animal size description and health status of a given animal (Fitch et al., 2002). 

Riede et al. (2004) documented three hypothesized NLP functions that were applicable to chimpanzee 

pant hoots; (i) NLP can be used to determine the individual’s vocal distinctiveness (Wilden et al., 1998; 

Volodina et al., 2006; Feng et al., 2009); that could help in identifying the signaling effectiveness of a 

seahorse, (ii) NLP can also function to distinguish the auditory impact of animal calls (Riede et al., 

2007); which in the case of seahorses could be purposeful for attracting mates as well as for signaling 

their status or physical condition. If that be the case, Riede et al. (2004) suggested that the individuals 
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can enhance the number of NLP in order to maximize the impact of their signals, (iii) the existence of 

NLP could function as a cue of an individual’s health and physical condition. 

As mentioned in the introduction, seahorses typically generate stridulatory sounds in a variety of 

circumstances (e.g., during feeding, courtship and copulation, induction of the seahorse to a new 

environment and inter-male competition). A seahorse may evaluate clicks produced by nearby seahorses 

to differentiate between mates and non-mates (Vincent and Sadler, 1995). Likewise, the clicks 

associated with feeding strikes could be an indication of a food source to a monogamous mate as a 

strategy for increasing a mate’s reproductive fitness (Anderson, 2009). Anderson et al. (2011) had used 

the lined seahorse (H. erectus) to assess the effect of chronic aquarium noise exposure to fish health and 

stress. The stress is connected to various physiological and behavioral functions, and can effect 

suppression of immune function, growth rate and reproduction. A complete assessment of behavioral 

functions (Popper and Carlson, 1998) is beyond the scope of present investigation, and further studies 

are required to relate the role of observed NLP with the behavior and biomechanical aspects of a feeding 

seahorse. In the present study, we posit that much complexity is evident in seahorse feeding clicks 

resulting from nonlinearities in the production system, signifying that a rather simple neural command to 

the supraoccipital and the coronet bones in the seahorse head (Colson et al., 1998) can contribute to a 

highly complex and individually variable acoustic signal. A more definitive evidence can be sought by 

advancing this work, by increasing the number of samples from individuals including behavioral 

observations. 

 The occurrence and characteristics of NLP must be documented prior to examining the role of 

suggested functions in a given animal. The NLP has been overlooked in traditional analyses due to the 

lack of adequate conceptual framework and appropriate tools for analyses. The tools typically used by 

bioacousticians, such as power spectral and spectrogram analyses are not suitable to characterize signals 

generated by a nonlinear system (implying that the equations that govern the nonlinearity in sound 

production might include squared, cubed or higher-order moments). This approach is less meaningful in 

bioacoustics, necessitating the development of robust mathematical tools for analyzing nonlinear 

systems. Significantly, MFDFA can distinguish the intermittency (and phase couplings) in seahorse 

feeding clicks, and can be used to analyze similar patterns observed in other species as well. 
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IV. CONCLUDING REMARKS 

The multifractal properties of the seahorse feeding clicks have been investigated by applying 

multifractal detrended fluctuation analysis (MFDFA). The fluctuation function )(sFq , generalized Hurst 

exponent )(qh , multifractal scaling exponent )(qτ  and the multifractal spectrum )(αf  associated with 

individual seahorse clicks have been calculated in the procedure followed. The preliminary results 

obtained by applying the MFDFA in the field of bioacoustics provide experimental evidence of 

multifractality. The multifractal behavior can be attributed to the fluctuations in the scaling properties of 

the feeding clicks and can be also explained by the following findings: 

• The seahorse clicks are intrinsically complex and display non-equilibrium fluctuations that 

cannot be analyzed accurately with standard methods, including power spectral density (PSD) 

analyses. The observed nonlinearities (i.e., phase couplings across temporal scales) in such data 

calls for the application of MFDFA (adapted from modern statistical physics) to characterize the 

underlying self-similarity evident in the feeding clicks.   

• The MFDFA has the potential to analyze nonstationary feeding click time series revealing the 

presence of long-range power-law correlation properties in the data. The long-range power-law 

correlations indicate that broad ranges of scaling exponents are required to describe the 

complexity. 

• The outcome of MFDFA, the )(qh  spectrum and related shape parameter )(qhΔ  reveals 

multifractal character in the individual seahorse clicks. The high )(qhΔ  value in the 18 cm male 

seahorse reflects a broader variation in the amplitude values, signifying greater heterogeneity 

and multifractality. The low )(qhΔ  value of 16 cm male, on the flip side, indicates relatively 

reduced multifractality and heterogeneity as compared to the properties of the remaining 

seahorses. 

• Further comparison between the seahorse body size and weight (wet) with respect to the 

computed shape parameter depicts a distinct characteristic )(qhΔ  values in relation to its sex 

and size, suggesting individual signature. 

Considering the diverse applications of multifractal techniques in natural scientific disciplines, this work 

underscores the versatility of the MFDFA to investigate bioacoustic observations. The MFDFA utilized 
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in our work is a first-time endeavor to analyze the nonlinearities (i.e., phase couplings across temporal 

scales) in the seahorse feeding clicks. The present investigation ascertains an important finding, however 

further studies are required to examine the results with the behavior and biomechanical aspects of a 

feeding seahorse. 
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TABLE I. Summary of multifractal spectrum related shape parameter )(qhΔ . Normally, the exponent 
)(qh  will depend on q . For q =2, the Hurst exponent H  in standard detrended fluctuation 

analyses (DFA) could be retrieved. The subtle difference in )2(h  values apparently shows 
the similarity with the second-order Hurst exponent or power-law exponent associated with 
the clicks [The second-order Hurst exponent account for the overall root-mean-square 
(RMS) fluctuation in the data]. 

 

Seahorse Clicks )2(h  Click 
)(qhΔ

Surrogate 
)(qhΔ  

 
 
12 cm female

1 –0.816 0.752 0.366 
2 –0.698 0.746 0.220 
3 –0.645 0.724 0.231 
4 –0.653 0.740 0.209 
5 –0.800 0.704 0.226 

12 cm male 
1 –0.711 0.592 0.111 
2 –0.722 0.613 0.180 

 
 
 
 
16 cm male 

1 –0.862 0.385 0.179 
2 –0.629 0.420 0.144 
3 –0.843 0.319 0.183 
4 –0.829 0.349 0.175 
5 –0.771 0.363 0.171 
6 –0.624 0.439 0.165 
7 –0.675 0.338 0.117 
8 –0.609 0.424 0.176 

 
 
18 cm male 

1 –0.774 1.101 0.169 
2 –0.686 1.022 0.214 
3 –0.695 0.979 0.298 
4 –0.781 0.896 0.321 
5 –0.746 0.918 0.304 
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FIGURE CAPTIONS 

FIG. 1. (Color online) An example of the oscillogram and the corresponding spectrogram of 12 cm 
female seahorse clicks after filtering are depicted in panel (a) and (b). The passive acoustic 
signals are recorded using a hydrophone. The inset in panel (a) shows the temporal variation of 
the local Hurst exponent Ht  in the first click. The computation of Ht  is advantageous to 
identify the time instant of structural changes within the time series (Ihlen, 2012). The 
spectrogram analyses reveal phase couplings in the feeding clicks with several dominant 
frequencies (ranging between 1 kHz–5 kHz). The phase coupling behavior essentially 
necessitates the application of MFDFA to characterize the multifractality of the click, as 
illustrated in panel (c) and (d). In panel (c) the generalized Hurst exponent )(qh  corresponding 
to the third click and the background noise is compared. The )(qh  values are calculated using 
Eq. (4). Similarly, the multifractal spectrum )(αf  [computed using Eq. (6)] is displayed in the 
panel (d). The comparison of )(qh  and )(αf  spectrum reveal the multifractal behavior of the 
feeding click, but the background noise indicates a non-multifractality. 

FIG. 2. (Color online) Graphical representation of signal extraction methodology. The oscillogram of 12 
cm female seahorse clicks after filtering is depicted in panel (a). Panel (b) shows a zoom in on 
the small scale, indicating the intermittent amplitude variation along with the background noise. 
The background noise in the analyses will generate spurious multifractality. Accordingly, the 
precise duration of the clicks is identified employing a noise level reduction method [panel (c)] 
and envelope detection procedure [panel (d)]. After identifying the time window [panel (d), 
dashed line], the corresponding amplitude values of each click is extracted from the data stream 
illustrated in panel (a). The extracted noise-free clicks are subjected to MFDFA to verify the 
existence of long-range power-law correlation in the data.  

FIG. 3. (a) Log-log plot of the fluctuation function )(sFq  in the feeding click of 12 cm female, with 

respect to the segment sample size s  for selected q  values. Panel (b) shows the schematic 
representation of the generalized Hurst exponent )(qh  used to compute the width value )(qhΔ . 
In panel (c) the multifractal scaling exponents )(qτ  corresponding to the click is compared with 
a typical monofractal signal. The monofractal signal displays )(qτ  with a linear q -dependency. 
The multifractal seahorse click indicates a curved q -dependency. Panel (d) depicts the resulting 
multifractal spectrum )(αf  that can also be used to evaluate multifractality. The )(qh  and 

)(αf  are mathematically related by the Legendre transformation. Hence, only the )(qhΔ  values 
are assessed to determine the individual characteristics. The )(sFq , )(qh , )(qτ  and )(αf  have 

been calculated using Eqs. (3), (4), (5) and (6) respectively.  
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FIG. 4. (Color online) Multifractality in seahorse feeding clicks. The ensemble average of the )(qh  
values (18 cm male) corresponding to the feeding clicks and associated surrogates have been 
compared to validate nonlinearities in the data [panel (a)]. The surrogate series for the feeding 
clicks were generated by employing iterated amplitude adjusted Fourier transformation (IAAFT). 
The )(qhΔ  of surrogate has smaller value as compared to the original time series, indicating 
significant influence of phase couplings across temporal scales in the data. In panel (b) the 
ensemble average of the generalized Hurst exponent )(qh  curve corresponding to the individual 
seahorse is exemplified. The shape of )(qh  curve for the individual is broad, indicating 
multifractal behavior. The highest degree of multifractality is evident in the 18 cm male 
seahorse. A relatively reduced multifractality and heterogeneity can be observed in the feeding 
clicks of 16 cm male seahorse. Note that the intercept point of the )(qh  curves for the individual 
is close to q =2. This intercept pattern reflects similarity in second-order Hurst exponent or 
power-law exponent (see Table I), and demonstrates a spectral blind spot identified by MFDFA 
(see text for more details). The second-order Hurst exponent account for the overall root-mean-
square (RMS) fluctuation in the data.   

FIG. 5. (Color online) Box plot represents the variability of the multifractal spectrum related shape 
parameters )(qhΔ  in the seahorse feeding clicks and associated surrogates. The illustration of the 
shape parameter is shown in Fig. 3b. The box in the figure represents the central 50% of the data. 
Its lower and upper boundary lines are at the 25% and 75% quantile of the data. The dashed line 
indicates the median. The two horizontal lines (below and above the box) demarcate the 
remaining data points outside the box that are not regarded as outliers. 

FIG. 6. (Color online) Panel (a) and (b) illustrates the comparison of )(qhΔ  and second-order Hurst 
exponent )2( =qh  with respect to seahorse body size. The corresponding weight values are 
displayed in the Panel (a), and regions of individual clicks are clearly delineated. The second-
order Hurst exponent values in Panel (b) have been calculated from the )(qh  curves for q =2. 
The identical and subtle variations in )2( =qh  are caused by the spectral blind spot identified by 
MFDFA.  
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