Effect of monsoonal perturbations on the occurrence of phytoplankton blooms in a tropical bay

Jagadish S. Patil and Arga Chandrashekar Anil*

CSIR – National Institute of Oceanography, Dona Paula – 403 004, Goa, India.
Tel: 91(0)832-2450404; Fax: 91(0)832-2450615
*Correspondence to: acanil@nio.org

ABSTRACT:
In this study, the influence of intra-seasonal variations in rainfall and the resultant freshwater flux (monsoon perturbations) on phytoplankton bloom dynamics were evaluated by quantifying live phytoplankton at a fixed station (Dona Paula Bay, west-coast of India) every day during the 2008 southwest monsoon season (June-September). Pre-processing of the sample for live phytoplankton analysis using FlowCAM through fluorescence based quantification of phytoplankton size fractions is described for the first time. Six diatom blooms of autochthonous origin were encountered during the observations coinciding with nutrient enrichment and lull in river runoff. The blooms observed at the beginning (1st–bloom) and the end of the season (6th-bloom) were dominated by nano- and pico-phytoplankton and the intervening blooms by micro-phytoplankton. All the blooms coincided with flood tide or high tide under optimal salinity (>15) and light (depth of light penetration >50 cm; solar radiation 30–70 mW/cm²) conditions following heavy rainfall and nutrient flux. Termination of blooms coincided with nitrate exhaustion. Dinoflagellate (second dominant group) abundance was positively associated with depth of light penetration >100 cm and low nutrient concentrations. Bloom duration of 1-6 days was recorded indicating that such events are widespread and can significantly influence the system’s metabolic balance. The average net photic zone production of the season was positive (0.11+0.67 gO₂m⁻²d⁻¹) and a quarter of the monsoon season was net autotrophic. Although bloom production was underutilized (up to 63%), much of the systems carbon requirement (up to 70%) was met by allochthonous supply.

KEY WORDS: Tropical bay · FlowCAM · Phytoplankton · Diatoms · Dinoflagellates · Blooms · Monsoon
INTRODUCTION

Phytoplankton abundance and species composition in estuarine ecosystems are closely linked to various physical (advection, light, temperature, salinity, etc.), chemical (pH, nutrients) and biological (grazing) factors as well as interactions among them (Pennock 1985, Lehman 1992, Cole et al. 1992, Cloern 1996, Irigoien & Castel 1997, Sin et al. 1999, Underwood & Krompka 1999, Cloern & Jassby 2010, Zingone et al. 2010, Lawrenz et al. 2013). Hence the continual documentation of phytoplankton population dynamics with relevant environmental variables can provide information on the functioning of an ecosystem. The phytoplankton community, a source of organic carbon and energy for higher trophic levels, ultimately determines the nature of fishery production. The understanding of phytoplankton dynamics is therefore central to the understanding of how estuarine ecosystems work and how they respond to environmental stresses imposed by natural and anthropogenic activities (Cloern 1979). A four decade long study in San Francisco Bay has shown the importance of environmental monitoring in identifying the causes for the changes in the ecosystem functioning as well as for establishing and measuring outcomes of environmental policies that aim to maintain high water quality and sustain services provided by estuarine-coastal ecosystems (Cloern & Jassby 2012).

The estuaries in the Indian subcontinent are influenced by the southwest monsoon (SWM) rainfall during June to September and are therefore categorised among the most remarkable estuaries when compared with better-studied estuaries (eg. San Francisco Bay, Chesapeake Bay, Delaware Bay, Columbia River estuary, European estuaries) in the extra-tropical regions (Vijith et al. 2009). The distinguishing feature of the monsoonal estuaries compared to better studied estuaries is the high annual runoff and a distinctly higher runoff during monsoon season (wet season) as compared to non-monsoon season i.e. dry season (Vijith et al. 2009). Such typical alternating wet and dry seasons are also observed in other parts of Asia that experience monsoon climate, sub-tropical South America and parts of Australia and South Africa (Eg. Eyre 2000, Murrell et al. 2007, Vijith 2009, Sin et al. 2012).

The SWM brings in heavy precipitation (250 to 300 cm year⁻¹) in this part of the world and is known to influence the functioning of tropical estuarine systems and the adjoining regions by enforcing environmental perturbations. Increased flux of nutrients and suspended solids from land, as well as the intensifying anoxia on the western Indian continental shelf (Naqvi et al. 2000) are some of the instances for perturbations. Besides river water as a source, ground water, atmospheric transport and benthic flux are known to affect the patterns of nutrient inputs into estuaries (Nowicki & Nixon 1985, Malone et al.
1988, Paerl 1997, Conley 2000, Sarma et al. 2010). All these environmental perturbations are known to affect patterns of organic production, distribution of organisms, food webs, chemical fluxes, benthic-pelagic coupling, etc. (eg. Eyre & Ferguson 2006, Sarma et al. 2009, 2010, Vinagre et al. 2011, Patil & Anil 2011, Acharya et al. 2012). Phytoplankton which are important for the functioning of estuarine ecosystems and the adjoining seas respond quickly to such environmental perturbations. In the recent years, with the concern over the global increase in harmful algal blooms (HABs), studies related to dynamics of phytoplankton populations have gained further importance. Until recently, in the algal bloom monitoring programs, phytoplankton analysis was based upon cell counts using microscopy. However, microscope counting requires fixation, and available techniques for optimal preservation and enumeration of phytoplankton are taxon-specific (Zarauz & Irigoien 2008 and the references therein). Enumeration of live phytoplankton will thus be useful in overcoming this limitation. Taking this into consideration, we observed the phytoplankton bloom dynamics based on live cell monitoring (using FlowCAM) and the environmental settings influencing them by carrying out observations in the Dona Paula Bay (Fig. 1) during the SWM season of 2008. Personal observations indicated that the naked dinoflagellates (including HAB species) are known to occur in high numbers during or immediately after the monsoon in the study region and it is important to document the same.

Dona Paula Bay, located on the west-coast of India, Goa, is a semi-enclosed bay located at the mouth of the Zuari estuary. The river Zuari has its origin in the Western Ghats, and it extends up to 70 km before meeting the Arabian Sea. Zuari estuary is referred to as a “monsoonal estuary” as it comes under the influence of summer (south-west monsoon; SWM) during June to September (Vijith et al. 2009). During this period, the hydrodynamics of the estuary are controlled by the physics (natural patterns of river runoff and tides) and the changes associated with the onset of monsoon have marked effects on the physio-chemical nature of the water, phytoplankton community, food-web and production (Qasim & Sen Gupta 1981, Bhattachiri et al. 1976, Devassy & Goes 1988, Patil & Anil 2011, Rao et al. 2012). Earlier studies (Goes 1988, Krishnakumari et al. 2002), using low resolution sampling in this estuary but slightly upstream from the present station, revealed a minimum in cell abundance during the SWM seasons of the years 1980 and 1998 and attributed this to poor growth conditions (such as lowered light and salinity regimes caused by monsoon events) and the absence of species which can bloom under such conditions. However, some of the later studies (Mitbavkar & Anil 2002, Patil & Anil 2008) in the study area have reported Skeletonema blooms during SWM season under low saline conditions in the same system, as well as elsewhere along the west coast of India. Patil & Anil (2011) also reported mixed
species blooms of diatoms and dinoflagellates under high saline conditions during break period in monsoon. Such contrasting results indicate intra-seasonal variations (eg. number of bloom events, duration of the bloom, bloom causing species and the environmental factors causing blooms). Such variations can be captured only through high resolution sampling and the same is addressed in this study. Phytoplankton samples, along with related environmental parameters, were collected every 24 h from a fixed station in Dona Paula Bay. In addition, production and respiration measurements were also made at regular intervals in order to understand the metabolic status of the plankton. Currently, the seasonal metabolic status of the water column from the Mandovi-Zuari estuarine system is available (Ram et al. 2003). However, describing the patterns in the occurrence of blooms during different periods of SWM would improve our understanding of the interactions between the monsoon and phytoplankton activity.

MATERIALS AND METHODS

Study Site

Surface water samples were collected using a bucket from 28th May 2008 to 30th September 2008 in the Dona Paula Bay (average depth 3m at the station) at a fixed location (73.00°59′E; 15.00°25′N; Fig. 1a) between 11 AM to 12 PM. Thus, the sampling occurred at different phases of the tide (Fig. 1b). During the study period, the tidal amplitude ranged from a low of -0.24 m to a high of 2.22 m and the calculated tidal amplitude at the time of sampling ranged from 1.05 to 2.22 m (Fig. 1b). The time was fixed to avoid the complexity of diurnal changes in the biogeochemical properties while comparing the data.

Water Sampling

The temperature of the collected water sample was measured in situ at the time of sampling. The depth of light penetration was measured using a secchi disc. Salinity samples were analyzed by using a salinometer (AUTOSAL 8400A). Dissolved oxygen (DO) was measured after standard procedures (Parsons et al. 1984). The oxygen-saturation was calculated using temperature, salinity and dissolved oxygen values (Benson & Crause 1984). Nutrients (NH₄, NO₃-N, NO₂-N, PO₄-P and SiO₃) were analyzed once every three days following standard procedures (Parsons et al. 1984). Turbidity of the samples was measured in the laboratory using Trilogy (Turner designs) equipped with a turbidity module. Primary productivity (PP) was also measured by the dissolved oxygen method at regular intervals (approximately once every three days) during the investigation period. For PP measurements, two sets of BOD (Biological Oxygen Demand) glass bottles, one each for light and dark conditions,
were incubated by suspension for 24 h in a pond located on the premises. Due to very rough conditions, it was not possible for us to incubate the bottles at the study site; hence we selected an aquaculture pond in the premises of CSIR-NIO, which is close to the bay. The water transparency level (Secchi disc depth of 1-1.5m) and water temperature (+1-2 °C) of the pond were almost of the same magnitude as that of the study location. The dark bottles were wrapped with black tape and aluminium foil. The DO in both light and dark incubated samples were fixed immediately upon retrieval after 24h and analysed in the laboratory. The changes in DO concentrations in light and dark bottles between initial and after incubation were used to quantify net community production (NCP) and community respiration (CR). Gross primary production (GPP) was estimated as the sum of NCP and CR. The photic zone production and water column respiration were calculated by integrating the surface measurements over the photic depth (using secchi disc measurements) and total water column, respectively. The surface GPP and NCP were integrated over the photic zone using the secchi disc depth measurements (as on most of the occasions depth of light penetration was < 2 m) whereas the column CR (CCR) was calculated by integrating the CR to the total water column.

Chlorophyll a and size fractionation of chlorophyll fluorescence

A known volume (250 ml) of sea water was filtered through GF/F Whatman filter paper and the filter papers were immediately used for chlorophyll \(a \) analysis by 90% acetone extraction method as described in Parsons et al. (1984). The fluorescence readings of the extracted chlorophyll were made on a Trilogy (Turner designs) fluorometer, equipped with a chlorophyll module. The same module was also used for the determination of size fractioned chlorophyll fluorescence.

Phytoplankton size fractionation analysis was carried out with \textit{in vivo} chlorophyll fluorescence measurements of the seawater samples (total fluorescence) and the samples filtered through a 20\(\mu \)m mesh (nano- and pico-phytoplankton). The difference in the fluorescence reading gives the fluorescence of micro-phytoplankton. This method was used as there was a significant relationship between the \textit{in vivo} fluorescence and the extracted chlorophyll measurements (total and size fractions - data not shown).

FlowCAM analysis

Identification of live phytoplankton was carried out using a factory calibrated FlowCAM (Fluid Imaging Technologies, Inc., US) following a standard procedure in an auto-image mode using different magnifications (4x and 10x) and flow cells (300 \(\mu \)m and 100 \(\mu \)m) to capture all the phytoplankton size groups (>5 \(\mu \)m). However, it should be noted that the analysis of natural samples with FlowCAM
requires a planned preprocessing of the samples not only to avoid cell clumping and obstruction to flow chamber (Álvarez et al. 2011) but also to select the appropriate combination of flow cell and objective. Although FlowCAM is an advanced technology which has the ability of performing continuous recording of the images/data, one of the challenges with the system is optics, i.e. manual selection of objectives and flow cells depending on the particle size present in a sample to be analyzed. Considering the heterogeneous size distribution of the micro-phytoplankton and the optical limitations of FlowCAM (appropriate selection of flow-cells and objectives), the method used for the analysis of live micro-phytoplankton cells is described here. The method involves a systematic pre-processing of the samples to determine the dominance of micro-phytoplankton belonging to different size groups (<100 µm or >100 µm) in the natural sample to be analyzed. To the best of our knowledge, such an approach has not been described in earlier studies. The quantification of different size groups (< and > 100 µm) from natural samples was performed by in vivo fluorescence measurements using Trilogy equipped with the chlorophyll a module. This method was adopted as it is non-destructive, easy and enables quick assessment. The quantification of different size fractions was achieved by the following procedure (i) the fluorescence readings of the seawater sample were made, (ii) an aliquot of the sample was passed through a 100 µm mesh (iii) the raw fluorescence values of the prefiltered sample were measured and (iv) if the fluorescence values of the seawater sample and the 100 µm prefiltered sample were the same, then the samples were analyzed using the 10x objective and 100 µm flow cell. In cases where the fluorescence values of the seawater sample were higher than those of the 100 µm prefiltered samples, then the samples were analyzed twice using two different combinations of objectives (10x and 4x) and flow cells (100 µm and 300 µm). The 10x objective – 100 µm flow cell combination was used to analyze the samples for the quantification of phytoplankton having <100 µm in size, whereas the 4x objective and the 300µm flow cell were used for the quantification of phytoplankton >100 µm in size. Two to five ml of sample were analysed. Invalid images, bubbles and repeated images were removed manually from the database. The identification of phytoplankton species was also carried out manually based on the standard identification keys (Tomas 1997, Round et al. 1990, Desikachary 1987, Subrahmanyan 1959).

Meteorological parameters

Solar radiation and wind speed data were obtained from the Automatic Weather Station (AWS), CSIR-NIO, Goa, India. Data on rainfall and sunshine hours [the time of brightness (solar radiation > 1 mw
Statistical analyses

To evaluate the relationship between the phytoplankton (both abundance and biomass) and environmental parameters, canonical correspondence analysis and Spearman’s rank correlation test were performed using the Multi-Variate Statistical Package (MVSP) version 3.1 and Statistica (release 5) programs, respectively. As the resolutions of nutrient data and other environmental data are not the same, two CCA were performed. In CCA-1, the data on environmental parameters such as temperature, salinity, secchi disc depth (depth of light penetration), turbidity, rainfall, solar radiation and dissolved oxygen collected daily were examined, whereas in CCA-2 nutrient data collected at three day intervals were used. Prior to statistical analysis, the heterogeneity in the biological data were removed by subjecting all the data to log (x+1) transformation. To further identify the optimal ranges of different environmental parameters for the occurrence of high chlorophyll and abundance (diatoms and dinoflagellates) a scatter diagram was plotted with different salinity ranges (on ‘x’ axis) and corresponding values for each biological variables (on “y” axis) which were grouped into different levels based on the values of a given environmental parameter. For each biological variable, a total of nine such diagrams were plotted by using tidal amplitude, temperature, secchi disc depth, nitrate, phosphate, silicate, wind speed, rainfall and solar radiation as the grouping parameter.

RESULTS

Meteorological conditions

During the SWM period, the study region experiences high wind speed, low solar radiation and sunshine hours due to cloud cover and receives maximum rainfall (Figs. 2a to c). During the study period, incidences of heavy rainfall were observed on three occasions and the maximum rainfall received was 136 mm day\(^{-1}\) (Fig. 2a). Maximum wind speed (18 ms\(^{-1}\)) recorded was in the beginning of SWM with a subsequent decrease as the season progressed (Fig. 2c). Solar radiation (ranged between 49 to 67.3 mw cm\(^{-2}\)) and sunshine hours (variable with at maximum of 11 h) followed a similar trend (Fig. 2b, c).

Hydrographic conditions

Maximum surface seawater temperature (SST) was 32 \(^{\circ}\)C and the minimum was 25.8 \(^{\circ}\)C (Fig. 2a) during the study period. The data indicated that SST was >30 \(^{\circ}\)C before the onset of monsoon and <30 \(^{\circ}\)C
during the rest of the season. The salinity dropped at the onset of monsoon and intra-seasonal variability influenced by the intensity of freshwater flux was evident (Fig. 2a).

Transparencey and turbidity (measured by secchi disc and the turbidity module) varied significantly during the sampling period with values ranging from 23.4 to 285 cm and 154 to 22170 (au), respectively (Fig. 2b). These two variables showed a significant inverse relationship (Fig. 2b). The depth of light penetration was low from the beginning to the middle of the season but increased as the season progressed.

The variation in nutrient (NH$_4$, NO$_3$-N, NO$_2$-N, PO$_4$-P and SiO$_3$) concentrations showed that the nutrient inputs were introduced into the study region in pulses (Fig. 2d). Maximum nutrient (NO$_3$-N, and PO$_4$-P) concentrations were found during the early phase of SWM. Variations in NO$_2$-N, and NH$_4$ followed a similar trend. NH$_4$ ranged from 0.10 μM to 24.61μM, NO$_3$-N, ranged from 0.07 μM to 22.51μM, NO$_2$-N, ranged from 0.02 μM to 0.97 μM, PO$_4$-P ranged from 0.39μM to 3.96 μM and SiO$_3$ ranged from 8.06 μM to 82.67 μM (Fig. 2d). The DO concentrations and oxygen saturation ranged from 3.42 to 7.26 ml L$^{-1}$ and 52.1% to 106.5% respectively (Fig. 2e).

The metabolic rates, i.e., net community production (NCP), community respiration (CR), and gross primary production (GPP) in the surface and photic zone exhibited large variations during the monsoon season (Fig. 3a, b, c). The ranges for NCP, GPP and CR for surface waters were -1.66 to 1.88 g O$_2$ m$^{-3}$ d$^{-1}$, 0.08 to 3.12 g O$_2$ m$^{-3}$ d$^{-1}$ and 0.38 to 2.82 g O$_2$ m$^{-3}$ d$^{-1}$, respectively, whereas in the photic zone the ranges for NCP, GPP and CR were -1.5 to 1.8 g O$_2$ m$^{-2}$ d$^{-1}$, 0.02 to 4.3 g O$_2$ m$^{-2}$ d$^{-1}$ and 0.15 to 4.5 g O$_2$ m$^{-2}$ d$^{-1}$ (data not shown), respectively. The total water column community respiration (CCR) in the study location ranged from 1.13 to 8.46 g O$_2$ m$^{-2}$ d$^{-1}$ which is about 3.5 times (avg.) higher than the photic zone GPP. In the photic zone, GPP/CR ratio showed large variations indicating a significant fluctuation in the trophic status (Fig. 3e), whereas the prevalence of low GPP/CCR ratio (<1) indicating that the net heterotrophic conditions prevailed in the water column throughout the study period. NCP/GPP, which is an indicator of exportable production, ranged from a low of -7.74 to a high of 0.63 (Fig. 3d) and high positive values were observed during bloom periods.

Chlorophyll a, size fractionated in vivo chlorophyll fluorescence and phytoplankton community

The chlorophyll a concentrations and *in vivo* chlorophyll fluorescence ranging from 0.27 μg L$^{-1}$ to 8.97 μg L$^{-1}$ and 322 (au) to 5153 (au), respectively, showed a significant linear relationship (n=121, r=0.896,
Chlorophyll fluorescence revealed six peaks indicating phytoplankton blooms (Fig. 4a). Fluorescence data indicated that the maximum duration of the bloom to be six days. In addition to the high peaks, small peaks in chlorophyll concentrations were also observed. Size fractionated chlorophyll fluorescence revealed that the contribution of <20 μm (nano- and pico-phytoplankton) and >100 μm to the total chlorophyll pool ranged from 5% to 99% and 1% to 95% respectively (Fig. 4b). During bloom periods (except the first bloom), the contribution of micro-phytoplankton to the chlorophyll pool ranged from 60 to 90%.

FlowCAM data revealed that the phytoplankton densities ranged from a low of 0.0003 x 10^6 cells L^-1 to a high of 1.22 x10^6 cells L^-1 (Fig. 4a). The phytoplankton abundance observed during six chlorophyll peaks (bloom periods) ranged from 0.004 x10^6 cells L^-1 to 1.22 x10^6 cells L^-1. The maximum phytoplankton abundance was observed during the later stages of the monsoon period. Among the phytoplankton community, diatoms ranged up to 1.22 x10^6 cells L^-1, dinoflagellates ranged up to 0.011 x10^6 cells L^-1 and others (phytoflagellates) ranged up to 0.008 x10^6 cells L^-1 (Fig. 4a). In general, diatoms (82%) followed by dinoflagellates (10%) were the dominant components of the studied portion of the phytoplankton community.

The 1st bloom was observed from 31st May to 4th June. FlowCAM analysis revealed the dominance of *Navicula* and *Thalassionema* in the studied portion of the community. However, the size fractionation analysis revealed that <20μm phytoplankton (nano- and pico-phytoplankton) were the most important contributors to the chlorophyll peak. The 2nd bloom was observed from 24th–28th June. Micro-phytoplankton (*Ditylum, Odontella, Leptocylindrus* and *Thalassionema*) dominated in this bloom. The variation in the phytoplankton abundance coincided with fluctuations in salinity. The 3rd bloom was observed on 14th July and was dominated by *Skeletonema*. The 4th bloom was observed from 20th–23rd August. This bloom was caused by *Asterionellopsis, Bacteriastrum, Chaetoceros, Ditylum, Fragilariopsis, Leptocylindrus, Pseudonitzschia, Skeletonema, Thalassionema* and flagellates. The 5th and 6th blooms were observed from 1st–6th and 28th–30th September and were also dominated by the same species as the 4th bloom (except *Asterionellopsis*).

Relationship between environmental variables and phytoplankton abundance (total, diatoms and dinoflagellates) and chlorophyll fluorescence

The results of the correlation analysis and CCA are presented in Table 1 and Fig. 5, respectively. In the first CCA biplot, the 2-axes explained 98% of the relationship between the phytoplankton and
environmental conditions (without nutrients) whereas in the second CCA biplot, the 2-axes explained 97% of the relationship between the phytoplankton and dissolved nutrients. The results revealed that salinity, water transparency and nutrients (mainly nitrate and phosphate) are the most important environmental variables influencing the phytoplankton (chlorophyll and composition). The first CCA biplot (Fig. 5a) revealed that the water transparency (turbidity) and depth of light penetration (secchi disc depth) are the major factors influencing the phytoplankton (chlorophyll, and abundance of total phytoplankton and dinoflagellates). Spearman’s rank test revealed a significant correlation between the phytoplankton and water transparency (positive with sechi disc depth and negative with turbidity measurements). The CCA biplot also revealed that salinity is an important factor influencing the diatoms. However, Spearman’s rank test revealed a significant positive correlation between all the phytoplankton data and salinity. The optimal ranges of different environmental parameters for the occurrence of high chlorophyll and abundance (total phytoplankton, diatoms and dinoflagellates) are as follows: tidal amplitude 1.5 to 2.5m (which corresponds to flood tide or high tide); temperature 26 to 31°C; salinity: >15; depth of light penetration >50 cm (for dinoflagellates >100 cm); wind speed <10.8 ms⁻¹; rainfall <50 mm; solar radiation 30 to 70 mw cm⁻² (Figs. 6-8). The second CCA biplot, which explains the relationship between phytoplankton and dissolved nutrients revealed that the nitrate and phosphate are the major factors influencing the chlorophyll and phytoplankton abundance (both diatoms and dinoflagellates) (Fig. 5b). Spearman’s test showed a significant negative correlation between phytoplankton biomass and nutrients (nitrate and phosphate) indicating the utilization of the nutrients by phytoplankton (Table 1). The ranges of nutrient concentrations, which coincided with high chlorophyll and abundance (total phytoplankton, diatoms and dinoflagellates) are as follows: nitrate <4 µMol; phosphate <1.7 µMol; Silicate <50 µMol (Figs. 6-8).

DISCUSSION

During the SWM season, the surplus freshwater discharge from the Zuari River and precipitation are added to the Dona Paula Bay resulting in marked changes in salinity field, water transparency and nutrient influx (Figs. 2a, b & d). Irrespective of the tidal conditions, the observed daily variations in the salinity and rainfall indicated that the freshwater discharge and precipitation are not continuous (Fig. 2a) in the study region. The variation in salinity field is due to the episodes of high followed by a lull in runoff (Vijith et al. 2009). In the present investigation, salinity of <5 was observed only during August and early September (Fig. 2a) implying high runoff at this time. During the rest of the season, the variations observed were due to the usual estuarine processes. In this study, the frequencies of changes
were large and the duration for each change varied (few to several days). Such drastic changes in hydrodynamic characteristics influence the phytoplankton biomass and community (Fig. 4). In this study, all the six phytoplankton blooms (mainly by diatoms) reported all occurred at salinity >14 (Figs. 6-7). A lull in river runoff as evidenced by relatively high salinity results into longer water residence time and reduced turbidity which provides conducive environmental conditions for developing blooms of autochthonous origin (Philips et al. 2012). Other monsoonal estuaries (Mandovi and Godavari) exhibiting varying patterns of river discharge (both natural and dam controlled) located along the Indian coast also showed similar results.

In the Mandovi and Zuari estuaries, the variability in salinity (due to changes in natural discharge) is large, thereby resulting into number of peaks in phytoplankton biomass (Pednekar et al. 2011 and the present study). However, in the Godavari estuary (3rd largest river in India and 60th in the World), the dam controlled river discharge is continuous from July to December and the chlorophyll peak is associated with decrease in discharge (Sarma et al. 2009). These observations indicate that in monsoonal estuaries, the variations in river discharge (high, moderate and low) have a bearing on the nature of phytoplankton blooms. Even in a monsoon influenced temperate estuary (Asan Bay, Korea; Sin et al. 2012), some Australian estuaries (Eyre 2000, Ferguson et al. 2004) and the Gulf of Mexico (Murrell et al. 2007), river discharge is considered to be the main regulator of phytoplankton dynamics.

In this study, phytoplankton blooms of different duration (up to 6 days; Fig. 4a) were observed. These were caused by species belonging to different size groups. Nano- and pico-phytoplankton (<20μm) dominated the first and the last (6th) blooms which occurred during the beginning and the end of the monsoon (i.e., when the salinity was >30) (Fig. 4b). In Dona Paula Bay, the pico-phytoplankton community is mainly represented by phycoerythrin and phycocyanin containing *Synechococcus, Prochlorococcus* like cells and picoeukaryotes (Mitbavkar et al. 2012 and personal communications). The intervening blooms, which occurred in the salinity range of 14 to 30, were dominated by chain forming and larger micro-phytoplankton (>20μm). These blooms were mostly dominated by diatoms (*Asterionellopsis, Bacteriastrum, Chaetoceros, Ditylum, Fragilaropsis, Leptocylindrus, Pseudonitzschia, Skeletonema, Thalassionema*). The dominance of phytoplankton in each size fractions was substantiated by the FlowCAM data. Considering the tidal cycle and freshwater discharge as the major drivers for environmental perturbations in the monsoonal estuary during the monsoon, one would expect that the signals of the blooms would be short lived. However, the fact that the blooms were
observed for more than a diurnal tidal cycle indicates that they can be widespread spatially and can influence ecosystem functioning. Phytoplankton data revealed that blooms lasted for 3 to 6 days (except the 3rd bloom that was seen only for a day) indicating that blooms lasting for several days are common.

The metabolic processes such as GPP and CR are responsible for major flows of carbon in the upper waters of most aquatic systems. NCP determines whether the biological pump acts as a net source or sink of carbon (Williams 1993). An ecosystem is referred as autotrophic if production > respiration or heterotrophic if production < respiration. In this study, the variations in NCP suggest net autotrophic conditions prevailed during bloom events and net heterotrophic conditions during non-bloom events (except on certain occasions). This is because blooms are events of rapid production and accumulation of phytoplankton biomass (Cloern 1996). The average NCP of the photic zone is positive (0.11 ± 0.67 g O₂ m⁻² d⁻¹) and this was due to the bloom events further pointing out that a minimum of 25% (i.e. 30 days) of SWM to be net autotrophic. The lowest production was observed during the period of peak discharge which is characterized by high turbidity, low water transparency and very low salinity. The reduced productivity due to high turbidity is also observed in several estuaries (Soetaert & Herman 1995, Young & Huryn 1996, Cortner et al. 2000) including monsoonal estuaries (Thottathil et al. 2008, Sarma et al. 2009), which are presently experiencing increased anthropogenic pressure. It was also observed that maximum GPP corresponded with high CR values during low phytoplankton biomass. During high biomass periods, GPP corresponded with high NCP values. NCP/GPP was positive in the photic zone (0.02 to 0.63) during bloom events indicating that up to 63% of the exportable production is lost in the system either by sinking, remineralization or flushing. During other (non-bloom) periods, NCP/GPP was negative (-7.47 to -0.04) indicating that in situ production is not sufficient to meet the system requirements. During non-bloom period, phytoplankton biomass and oxygen saturation were low indicating low primary production. GPP/CCR ratio reveals that the in situ production (autochthonous supply) sustains up to 30% of the carbon requirement and the rest (up to 70%) is met by allochthonous input and benthic resuspension of the unutilized export production. The increase in allochthonous supply results in enhanced heterotrophic respiration and reduced primary production (Ram et al. 2003), whereas the benthic resuspension of the unutilized export production (mostly by phytoplankton benthic cells) characterized by low photosynthetic activity might serve as a seed source for the nature and composition of the phytoplankton bloom. In the study region the decline in bloom, due to decrease in nitrate concentrations and salinity change, coincided with the increase in the abundance of benthic cells (Patil & Anil, 2008) which served as a seed source for subsequent blooms.
CCA revealed that the variations in salinity, rainfall, water transparency, light and nutrients play an important role in determining the nature of phytoplankton blooms and composition (Fig. 5). The variations in the environmental parameters are dependent on the magnitude of river runoff. During high runoff, the freshwater input lowers the salinity. Furthermore, freshwater brings with it nutrients and sediments to the estuary. At the same time, however, low light availability and water residence time during periods of high runoff inhibit phytoplankton growth. When runoff decreases, turbidity begins to decrease and both salinity and water residence time increase. All the blooms observed here coincided with an increase in water transparency and availability of nutrients i.e. during the lull periods following substantial runoff events. The secchi-disc depth measurements and the phytoplankton (both chlorophyll and abundance) data revealed that a minimum of 50 cm depth of light penetration is essential for bloom formation in nutrient rich waters (Figs. 6-8). In all six bloom events, the decline in the bloom coincided with low nutrient concentrations, especially nitrate indicating the utilization of nutrients by the bloom (Fig. 2d). Recruitment of cells from the bottom sediments can also be an important factor in bloom formation (Underwood & Krompkkamp 1999). Some studies have also reported that exchange of algal cells between the benthos and water column can be significant in estuaries like Ems (de Jonge & van Beusekon 1995) and the Gironde (Irigoien & Castel 1997). Benthic propagules repopulate waters if resuspended and exposed to suitable light, temperature and nutrients (McQuoid et al. 2002). Since the study site is shallow, freshwater discharge can cause resuspension of diatom benthic propagules. The resuspended benthic propagules might then seed the subsequent blooms under suitable environmental conditions. Probably this process could be the reason for the occurrence of multi-species (Bacteriastrum, Chaetoceros, Ditylum, Fragilariopsis, Leptocylindrus, Pseudonitzschia, Skeletonema, Thalassionema) bloom thrice on different occasions (August 20 to 23, September 1-6 and 28-30).

The second most abundant group, the dinoflagellates, was also influenced by the variations in salinity, rainfall, wind speed, water transparency, light and nutrients (Fig. 5). In one of our earlier study, during bloom period the cell abundance ranged up to 9x10^4 cells L^{-1} (Patil and Anil 2011) however in the present study maximum cell abundance recorded was 9.5 x 10^3 cells L^{-1}. In view of this it is presumed that the dinoflagellate blooms were not observed in the present study even though they contributed more than that of diatoms on certain occasions. A noteworthy observation was that the increase in dinoflagellate abundance was associated with an increase in water transparency (>100 cm), solar radiation (30-70 mw cm^{-1}) and low nutrient concentrations (Fig. 8). Such an observation is noticed for the first time from the region. The increase in dinoflagellate population during the end of monsoon and
the beginning of post-monsoon (periods characterized by increased water transparency and salinity) was also reported in the Mandovi estuary which, with the Zuari River and Cumbarjua canal, forms the major estuarine system of the region (Pednekar et al. 2011). Although HAB dinoflagellates such as *Gymnodinium* (up to 800 cells L⁻¹; occurred on six occasions) and *Cochlodinium* (200 to 500 cells L⁻¹ occurred on two occasions) were encountered, they did not cause blooms as reported during the 2000 monsoon (Patil & Anil 2011). The break in rainfall during 2000 monsoon (July) coincided with a bloom of these organisms under high-saline, nutrient-poor and transparent water-column (secchi-disc depth – 245 cm) conditions (Patil & Anil 2011). However, such conditions did not occur during this study indicating that inter-annual variations and monsoon influenced perturbations play an important role in the occurrences of blooms.

In summary, this study provides insights into phytoplankton bloom formation during southwest monsoon (SWM) based on the high resolution observations of live phytoplankton cells and environmental parameters from a tropical estuary. The environmental data revealed that during SWM, the study region experiences significant variations in wind speed, turbidity and light conditions, water residence time and freshwater inputs (river and precipitation) with associated salinity and nutrient dynamics at time scales of days to weeks. Under such conditions, several phytoplankton blooms lasting for >1 day occurred indicating that such events are widespread and can influence the metabolic balance of the ecosystem. These blooms occurred when there was a lull in runoff under favorable conditions. All of the blooms coincided with flood tide or high tide under salinity conditions of >15 and specific light (depth of light penetration >50 cm; solar radiation 30–70 mW/cm²) conditions following heavy rainfall and nutrient flux. In addition, dinoflagellate abundance was noted to increase with an increase in the depth of light penetration (>100 cm) and at low nutrient concentrations. We conclude that the cyclicity and the characteristics of the intra-seasonal phytoplankton blooms in monsoonal estuaries are governed by the intensity and length of the perturbations.

Acknowledgements. Director, CSIR-NIO, for support and encouragement. We thank Mr. D. Sundar for providing the tidal amplitude data using the tidal analysis software kit (TASK-2000) during the sampling time. We are also thankful to the three anonymous reviewers for their suggestions in improving the manuscript. The JSP acknowledges Dept. of Science and Technology, Govt. of India for the award of SERC young scientist project. This paper is a NIO contribution….
LITERATURE CITED

Bhattathiri PMA, Devassy VP, Bhargava RMS (1976) Production at different trophic levels in the estuarine system of Goa. Ind J Mar Sci 5: 83-86

Desikachary TV (1987) Diatom flora of some sediments from the Indian Ocean Region. In: Atlas of Diatoms Fascicle II. T T maps and publications private limited, 328, GST Road, Chrompet, Madras. p 1-10

Subrahmanyan R (1959) Studies on the phytoplankton of the west coast of India, Parts I and II. Proc Indian Acad of Sci 50B: 113-187

Table 1. Results of Spearman’s rank correlation test between environmental variables and chlorophyll fluorescence, total phytoplankton and dominant phytoplankton group’s abundance. Only the combinations with significance level >95% are shown in bold.

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Chlorophyll fluorescence</th>
<th>Diatoms</th>
<th>Dinoflagellates</th>
<th>Total phytoplankton</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>R</td>
<td>p</td>
<td>R</td>
<td>p</td>
</tr>
<tr>
<td>Temperature</td>
<td>0.13</td>
<td>0.141</td>
<td>0.12</td>
<td>0.202</td>
</tr>
<tr>
<td>Salinity</td>
<td>0.32</td>
<td>0.000</td>
<td>0.07</td>
<td>0.442</td>
</tr>
<tr>
<td>Sechi disc depth</td>
<td>0.31</td>
<td>0.001</td>
<td>0.52</td>
<td>0.000</td>
</tr>
<tr>
<td>Turbidity</td>
<td>-0.27</td>
<td>0.003</td>
<td>-0.54</td>
<td>0.000</td>
</tr>
<tr>
<td>Dissolved oxygen</td>
<td>0.14</td>
<td>0.120</td>
<td>0.13</td>
<td>0.142</td>
</tr>
<tr>
<td>Oxygen saturation</td>
<td>-0.04</td>
<td>0.635</td>
<td>0.02</td>
<td>0.833</td>
</tr>
<tr>
<td>Rainfall</td>
<td>-0.24</td>
<td>0.007</td>
<td>-0.27</td>
<td>0.003</td>
</tr>
<tr>
<td>Wind speed</td>
<td>-0.33</td>
<td>0.000</td>
<td>-0.41</td>
<td>0.000</td>
</tr>
<tr>
<td>Solar radiation</td>
<td>0.14</td>
<td>0.116</td>
<td>0.32</td>
<td>0.000</td>
</tr>
<tr>
<td>Sunshine hours</td>
<td>0.14</td>
<td>0.127</td>
<td>0.31</td>
<td>0.001</td>
</tr>
<tr>
<td>Ammonia</td>
<td>-0.26</td>
<td>0.099</td>
<td>-0.43</td>
<td>0.006</td>
</tr>
<tr>
<td>Nitrate</td>
<td>-0.57</td>
<td>0.000</td>
<td>-0.41</td>
<td>0.008</td>
</tr>
<tr>
<td>Nitrite</td>
<td>-0.24</td>
<td>0.140</td>
<td>-0.25</td>
<td>0.116</td>
</tr>
<tr>
<td>Phosphate</td>
<td>-0.34</td>
<td>0.032</td>
<td>-0.44</td>
<td>0.004</td>
</tr>
<tr>
<td>Silicate</td>
<td>-0.29</td>
<td>0.067</td>
<td>-0.08</td>
<td>0.614</td>
</tr>
</tbody>
</table>
Legends to the figure

Fig. 1. (a) Geographical location of the time series station, (b) Freshwater discharge from Guloli River. Generally, Zuari river receives fresh water from the three rivers (Kushavati, Uguem and Guloli) located upstream. The freshwater discharge data only for Guloli River is presented for the study period. (It is pertinent to note that a Salauli Dam is built across the Guloli River and the discharge from this river occurs only when the water overflows. The discharge data for all the three rivers for the year 2011 monsoon was available. It is found that except at the beginning of the monsoon when the dam is yet to be filled up (for about a month) the pattern of discharge (highs and lows) from all the rivers is almost the same. For Guloli River, we account for nil discharge during early monsoon and up to 50 - 54% during rest of the season) (c) Variations in tidal amplitude during sampling. Bars indicate tidal height during the sampling and the symbol (black circles) indicates the height of the tide (high or low) 6:30h prior to sampling time. The region in the box represent the period of high chlorophyll.

Fig. 2. Temporal variations in the meteorological and environmental parameters during the 2008 south-west monsoon. (a) rainfall - bars, temperature - grey stars and salinity – black diamonds, (b) solar radiation - bars, secchi disc depth (depth of light penetration) - grey stars and turbidity – black diamonds, (c) wind speed - black diamonds and sunshine hours - grey stars (d) dissolved nutrients [ammonia (NH₄) – black open diamonds, nitrate (NO₃-N) - black diamonds, nitrite (NO₂-N) – grey cross, phosphate (PO₄) – grey circles and silicates (SiO₃) – black stars] and (e) dissolved oxygen (DO) - black diamond and oxygen saturation (O₂) - grey stars. Shaded region represents the period of chlorophyll peaks.

Fig. 3. Temporal variations in the surface and depth integrated metabolic rates (production and respiration rates) during the 2008 south-west monsoon. (a) surface and photic zone net community production (NCP), (b) surface (CR) and water column (CCR) community respiration, (c) surface and photic zone gross primary production (GPP), (d) surface NCP/GPP and (e) ratio of photic zone GPP and water column community respiration (Photic GPP/CCR). Shaded region represents the period of chlorophyll peaks.

Fig. 4. Daily variations in (a) chlorophyll fluorescence (bars) and the abundance data of total phytoplankton (diamonds), diatoms (open circles) and dinoflagellates (stars) and (b) phytoplankton size fractions (area graph) during the 2008 south-west monsoon period. Shaded region represents the period of chlorophyll peaks.

Fig. 5. Ordination diagrams for chlorophyll fluorescence and abundance (total phytoplankton, diatoms and dinoflagellates) based on canonical correspondence analysis (CCA) for (a) biological and environmental data (temperature, salinity, dissolved oxygen, secchi disc depth, turbidity, solar radiation, sampling tide and rainfall) and (b) biological and nutrients data [ammonia (NH₄), nitrate (NO₃), nitrite (NO₂), phosphate (PO₄), N:P ratio, and silicates (SiO₃)].

Fig. 6. Class scatter plots to derive optimal ranges of (a) sampling tide, (b) surface temperature, (c) secchi disc depth (depth of light penetration), (d) nitrate, (e) phosphate, (f) silicate, (g) wind speed, (h) rainfall and (i) solar radiation for each salinity range (x axis) and in vivo chlorophyll fluorescence (y axis) data points. Chlorophyll fluorescence and the corresponding environmental data were grouped based on the salinity ranges (<5, 5.1 to 10, 10.1 to 15, 15.1 to 20, 20.1 to 25, 25.1 to 30 and 30.1 to 35). The data points are displayed using the five symbols representing five different levels of ranges (range 1 – plain cross, range 2 – open diamond, range 3 – open square, range 4 – open circle and range 5 – open triangle) assigned to the respective environmental range. The range 1 and 5 values indicates the lowest
and highest side whereas as the values falling in range 2 to 4 are intermediates. Symbols above the shaded region represent the chlorophyll peaks at the respective environmental range.

Fig. 7. Class scatter plots to derive optimal ranges of (a) sampling tide, (b) surface temperature, (c) sechidisc depth (depth of light penetration), (d) nitrate, (e) phosphate, (f) silicate, (g) wind speed, (h) rainfall and (i) solar radiation for each salinity range (x axis) and diatom abundance (y axis) data points. Chlorophyll fluorescence and the corresponding environmental data were grouped based on the salinity ranges (< 5, 5.1 to 10, 10.1 to 15, 15.1 to 20, 20.1 to 25, 25.1 to 30 and 30.1 to 35). The data points are displayed using the five symbols representing five different levels of ranges (range 1 – plain cross, range 2 – open diamond, range 3 – open square, range 4 – open circle and range 5 – open triangle) assigned to the respective environmental range. The range 1 and 5 values indicates the lowest and highest side whereas as the values falling in range 2 to 4 are intermediates. Symbols above the shaded region represent the chlorophyll peaks at the respective environmental range.

Fig. 8. Class scatter plots to derive optimal ranges of (a) sampling tide, (b) surface temperature, (c) sechidisc depth (depth of light penetration), (d) nitrate, (e) phosphate, (f) silicate, (g) wind speed, (h) rainfall and (i) solar radiation for each salinity range (x axis) and dinoflagellate abundance (y axis) data points. Chlorophyll fluorescence and the corresponding environmental data were grouped based on the salinity ranges (<5, 5.1 to 10, 10.1 to 15, 15.1 to 20, 20.1 to 25, 25.1 to 30 and 30.1 to 35). The data points are displayed using the five symbols representing five different levels of ranges (range 1 – plain cross, range 2 – open diamond, range 3 – open square, range 4 – open circle and range 5 – open triangle) assigned to the respective environmental range. The range 1 and 5 values indicates the lowest and highest side whereas as the values falling in range 2 to 4 are intermediates. Symbols above the shaded region represent the chlorophyll peaks at the respective environmental range.
Fig. 1
Fig. 2
Fig. 3
Fig. 4

Fig. 5
Fig. 6
Fig. 7

- **a. Sampling tide (m)**
- **b. Water temperature (°C)**
- **c. Depth of light penetration (m)**
- **d. Nitrate (µM)**
- **e. Phosphate (µM)**
- **f. Silicate (µM)**
- **g. Wind speed (ms⁻¹)**
- **h. Rainfall (mm)**
- **i. Solar radiation (mW cm⁻²)**
Fig. 8