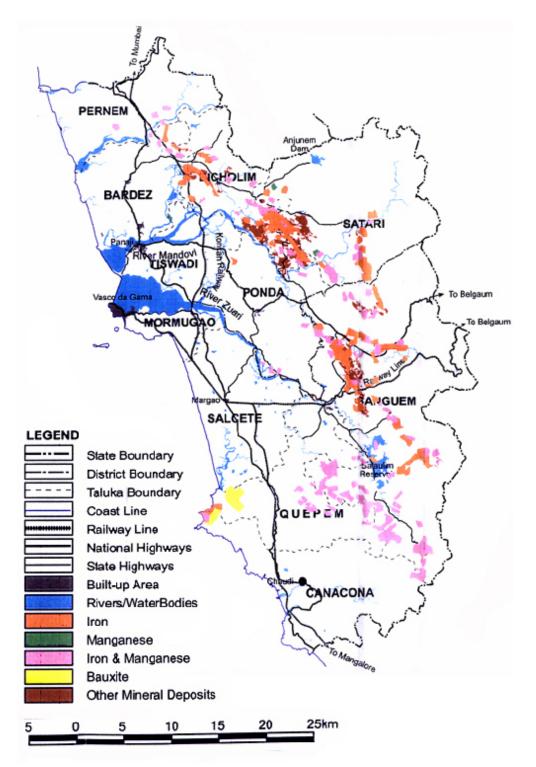
9

Distribution of iron and manganese


Analia M. Mesquita and Sujata Kaisary

National Institute of Oceanography, Dona Paula, Goa 403 004, India.

9.1 INTRODUCTION

An important industry in Goa is mining of iron and manganese ore. Active mining goes on at present at a number of locations distributed along a belt that stretches from north to south in the central part of the state. The present mining sites are shown in figure 9.1. The iron ore from these sites is transported in open trucks to a number of nearby convenient locations on the banks of the Mandovi and Zuari estuaries. From these locations the ore is transferred to barges, which take the ore to the Mormugao Port, from where it is shipped to other places.

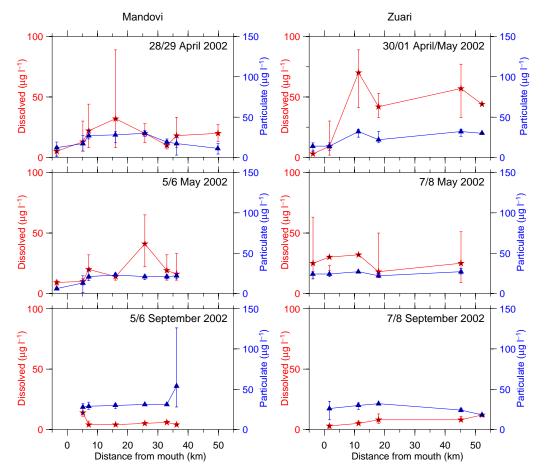
The mining operations and the process of transporting the ore generate dust that is then carried by winds to nearby areas. The wind-borne transport of dust is particularly strong during the dry season. It is expected that some of the dust would settle in the waters of the two estuaries, leading to significant concentrations of dissolved and particulate iron and manganese. Also contributing to these concentrations is water-borne transport of dust and sediments by streams that flow through the areas around active mining sites. This transport is particularly high during the summer monsoon. While the mining operations are suspended during this season because of rains (hence wind-borne transport is minimal), the runoff over mining areas, which ultimately ends in the Mandovi and Zuari estuaries, becomes a significant source of iron and manganese in the estuaries. In view of this, it is of interest to

Figure 9.1 Map of Goa showing areas of types of ores and mining activities. (Courtesy: Goa State Pollution Control Board, Goa.)

determine concentrations of dissolved and particulate iron and manganese in the water column in the estuaries and in the sediments. In this chapter, we report on the observed concentrations.

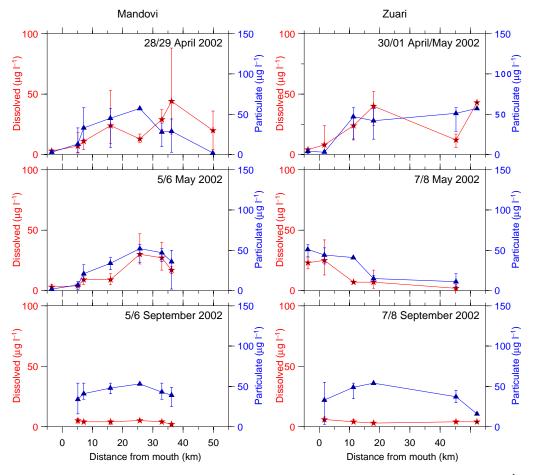
9.2 SAMPLING AND ANALYTICAL METHODS

The schedule of sampling of water for data discussed in this chapter is given in table 9.1. During each period of observation, water samples were collected at stations M_1-M_7 in the Mandovi and at Z_1-Z_5 in the Zuari (Map B). Station M_Z , which represents the regime off the mouths of the two estuaries, was also worked. During each period of simultaneous observations (stations were occupied by separate boats), which lasted 24 hours, a water sample was collected every three hours. Hence, at each station during each period of observation, there were eight samples. The variability during the 24-h period gives a measure of change due to tidal movement of water. Each water sample was collected using a Niskin bottle at a depth of approximately 3m from the surface. Sediment samples were collected once during a 24-h observation period by using a Van Veen grab of 0.04 m^2 area.


Sample collection, filtration, treatment, and analysis for iron and manganese was carried out according to the protocols of ultra-trace-metal analysis (Bruland *et al.* 1979; Danielson 1980) using atomic absorption spectroscopy (AAS). The accuracy of the dissolved metal analyses was found to be $\pm 5\%$ using certified reference waters CASS-3 and NASS-4 (supplied by National Research Council of Canada). Extractable metal concentrations in suspended particulate matter (SPM; > 0.45 µm) were analyzed after the acid digestion of SPM and drying of the residue to a constant weight on membrane filters. The same digestion procedure was performed on filters without particles to find procedural blanks. Dried bottom sediment samples were digested with a mixture of hydrofluoric-nitric-perchloric acids. The residue was dissolved in dilute hydrochloric acid and metal concentrations were determined by AAS. Analysis of the certified reference materials PACS-1 and BCSS-1, following the same protocol, showed good recoveries (~95%) of the metals.

Period of observation
28–29 April 2002 (spring tide)
5-6 May 2002 (neap tide)
5–6 September 2002
30 April-1 May 2002 (spring tide)
7-8 May 2002 (neap tide)
7–8 September 2002

Table 9.1 Schedule of sampling.


9.3 RESULTS AND DISCUSSION

Figures 9.2 and 9.3 summarize the observed spatial and temporal distribution of iron and manganese respectively. From the figures, no clear pattern emerges. On average, concentration of particulate iron in the Mandovi and Zuari vary from negligible concentration to about $50\mu g l^{-1}$. The range for dissolved iron too is similar. Dissolved manganese also varied from negligible concentrations to about $50\mu g l^{-1}$. and concentration of particulate manganese has a similar range. The observed concentrations in sediments are shown in figure 9.4. Again there is no clear temporal or spatial pattern. The range of concentration of iron in the two estuaries is $0-20mg g^{-1}$, and that for manganese is $0-15mg g^{-1}$.

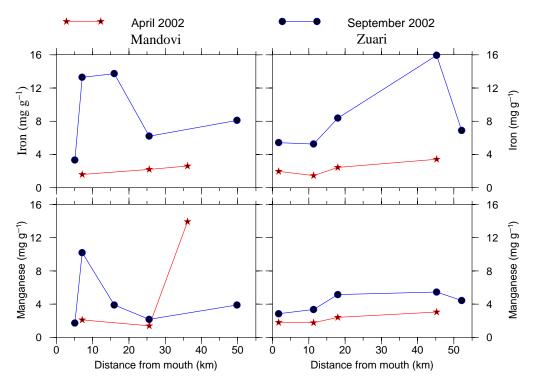


Figure 9.2 Variation in dissolved (red line) and particulate (blue line) iron $(\mu g l^{-1})$ in the Mandovi estuary (left panels) and the Zuari estuary (right panels) with distance from the mouth (km) of each estuary. The period of observations is identified at the upper right hand corner of each panel. The vertical bars indicate the range of observed values at the respective stations.

While there is no clear pattern for dissolved and particulate iron or manganese in the two estuaries, there is a weak tendency that is noticeable. The values often tend to be higher in the middle estuary, that is, somewhere mid-way between the head and the mouth of the estuary. This tendency implies that the source of iron and manganese is largest somewhere in the middle estuary, and not in the water that enters the estuary at the upstream end, or in the water on the shelf. This does make sense in view of the known sources: wind-borne dust or water-borne material, both arising from mining operations. The mines are distributed over a wide area (figure 9.1). As the material carrying iron and manganese is expected to reach the estuaries after following a chaotic path, it is not surprising that there is no clear spatial or temporal pattern to the distribution. It is also not surprising that

Figure 9.3 Variation in dissolved (red line) and particulate (blue line) manganese ($\mu g l^{-1}$) in the Mandovi estuary (left panels) and the Zuari estuary (right panels) with distance from the mouth (km) of each estuary. The period of observations is identified at the upper right hand corner of each panel. The vertical bars indicate the range of observed values at the respective stations.

Figure 9.4 Variation in sediment Fe and $Mn(mgg^{-1})$ in Mandovi and Zuari estuaries as a function of distance from the mouth (km).

the sediments did not show any systematic pattern. After deposition on the surface of the bottom of the estuary, the sediments would have been moved around in the estuary by tidal flows, until somehow they reach subsurface levels, where they would not be vulnerable to further movement. On the other hand, a mid-estuarine increase could also result from the release or re-precipitation of reduced or oxidized forms of iron and manganese from organic rich sediments; the relative importance of these processes is unknown.

It is worth noting that the samples that were analyzed here were derived from surface sediments. It is possible that a core collected in the estuary would exhibit a sharp change in iron and manganese distribution with depth because mining of iron and manganese in Goa started around 1950. If our hypothesis, that the concentration of metals in the estuaries today is primarily due to mining, is correct, then there should be a distinct reduction in concentration in sediments that were deposited prior to the 1950s.

References

- Achuthankutty C. T., Ramaiah N. and Padmavati G. (1997) Zooplankton variability and copepod assemblage in the coastal and estuarine waters of Goa along the central west coast of India; Intergovernmental Oceanographic Commission, 1 workshop report no. 142 (eds) Pierrot-Bults A. C. and Vander Spoel S., UNESCO, Paris, pp 1–11.
- Alongi D. (1990) The ecology of tropical soft-bottom benthic ecosystems; Oceanography and Marine Biology: An Annual Review 28 381–496.
- Álvares Claude (2002) Fish, Curry and Rice (Revised 4th edn.). Goa Foundation.
- Alzieu C. (2000) Environmental impact of TBT: the French experience; *Science of the Total Environment* **258** 99–102.
- Alzieu C. (2006) Effects of tributyltin pollution on oyster industry: the Arcachon Bay case; In: *Multiple dimensions of global environmental change* (ed.) Sangeeta Sonak, TERI Press, New Delhi, pp 444–458.
- American Society for Microbiology (1957) Manual of Microbiological Methods; ASM Press, Washington DC.

Anonymous (2002) Guidance notes to the European Blue Flag Beach Criteria; 29p.

- Ansari Z. A., Ingole B. S. and Parulekar A. H. (1986) Spatial and temporal changes in benthic macrofauna from Mandovi and Zuari estuaries of Goa, west coast of India; *Indian Journal of Marine Sciences* 15 223–229.
- Ansari Z. A., Ingole B. S. and Furtado R. (2003) Response of benthic fauna to different pollutants: Some case studies and relevance of benthos to environmental impact assessment;
 In: *Recent advances in environmental sciences* (ed.) Hiremath K. G. (Discovery Publishing House) pp 422–428.

- Aparna M., Shetye S. R., Shankar D., Shenoi S. S. C., Mehra P. and Desai R. G. P. (2005) Estimating the seaward extent of sea breeze from QuickSCAT scatterometry; *Geophysical Research Letters* **32** doi:10.1029/2005GL023107.
- Azam F. T., Fenchel J. G., Field J. S., Gray L. A., Mayer R. and Thingstad F. (1983) The ecological role of water column microbes in the Sea; *Marine Ecology Progress Series* 10 257–263.
- Bhosle N. B. (2006) Butyltin compounds in biofilms and marine organisms from Dona Paula Bay west coast of India; In: *Multiple dimensions of global environmental change* (ed.) Sangeeta Sonak (New Delhi, TERI Press) pp 432–443.
- Brock T., Madigan M. T., Martinko J. M. and Parker J. (1994) Biology of Microorganisms (7th edn.). Prentice Hall, New Jersey.
- Bruland K. W., Franks, Knauer G. A. and Martin J. H. (1979) Sampling and analytical methods for the determination of copper, cadmium, zinc and nickel at nanogram per liter level in seawater; *Analytica Chimica Acta* **105** 233–245.
- Bhattathiri R. M. S., Devassy V. P. and Bhargava R. M. (1976) Production at different trophic levels in the estuarine system of Goa; *Indian Journal of Marine Sciences* **5** 83–86.
- Coe M. T. (2000) Modeling terrestrial hydrological systems at the continental scale: Testing the accuracy of an atmospheric GCM; *Journal of Climate* **13** 686–704.
- Costa, Cosme Jose (undated) Goa and her khajans. Instituto Menezes Braganca.
- Danielsson L.-G. (1980) Cadmium, cobalt, copper, iron, lead, nickel and zinc in Indian ocean waters; *Marine Chemistry* **8** 199–225.
- Dauer D. M. and Conner W. G. (1980) Effect of moderate sewage input on benthic polychaete populations; *Estuarine and Coastal Marine Science* **10** 335–362.
- de Sousa S. N. (1983) Studies on the behaviour of nutrients in the Mandovi estuary during premonsoon; *Estuarine, Coastal and Shelf Science* **16** 299–308.
- Dehadrai P. V. and Bhargava R. M. S. (1972) Seasonal organic production in relation to environmental features in Mandovi and Zuari estuaries, Goa; *Indian Journal of Marine Sciences* **1** 52–56.
- Devassy V. P. (1983) Plankton production associated with cold water incursion into the estuarine environment; *Mahasagar* **16** 221–233.
- Devassy V. P. and Goes J. I. (1988) Phytoplankton community structure and succession in a tropical estuarine complex (central west coast of India); *Estuarine, Coastal and Shelf Science* 27 671–685.
- Devassy V. P. and Goes J. I. (1989) Seasonal patterns of phytoplankton biomass and productivity in a tropical estuarine complex (west coast of India); *Proceedings of the Indian Academy of Sciences (Plant Sciences)* **99** 485–501.

- Dufour A. P. (1984) Bacterial indicators of recreational water quality; *Canadian Journal of Public Health* **75** 49–56.
- ETOPO2 (2007) Online documentation. http://www.ngdc.noaa.gov/mgg/fliers/06mgg01.html.
- Friedrichs C. T. and Aubrey D. G. (1994) Tidal propagation in strongly convergent channels; *Journal of Geophysical Research* **99** 3321–3336.
- Fujioka R. (2002) Microbial indicators of marine recreational water quality; In: Manual of Environmental Microbiology, 2nd edn. (eds) Hurst C. J., Crawford R. L., Knudsen G., McIneney M. J. and Stetzenbach L. D., American Society for Microbiology Press, Washington DC, pp 234–243.
- Gauns M. (2000) Role of microzooplankton in the food chain dynamics of some tropical marine environments; Ph. D. Thesis, Goa University, India, pp. 220.
- Gerlach S. A. (1978) Food chain relationship in subtidal silty sand marine sediment and the role of meiofauna in stimulating bacterial productivity; *Oecologia* **33** 55–69.
- Geyer W. R., Townbridge J. H. and Bowen M. M. (2000) The Dynamics of a Partially Mixed Estuary; *Journal of Physical Oceanography* **30** 2035–2048.
- GLOBE (2004) The Global Land One kilometer Base Elevation (GLOBE) Digital Elevation Model. Version 1. 0. National Oceanic and Atmospheric Administration, National Geophysical Data Center, *http://www.ngdc.noaa.gov/mgg/topo/globe.html.*
- Godhantaraman N. (1994) Species composition and abundance of tintinnids and copepods in the Pichavaram mangroves (South India); *Ciencias Marinas* **20** 371–391.
- Goswami S. C. (1983) Coexistence and succession of copepod species in the Mandovi and Zuari estuaries, Goa; *Mahasagar* **16** 251–258.
- Government of Goa (1976) Goa, Daman and Diu Agricultural Tenancy Act, Fifth Ammendment (GDD 17 of 1976, S3). Government Gazette (Extraordinary) No. 29, dated 14/10/1976.
- Grasshoff K., Ehrhardt M. and Kremling K. (1983) Methods of Seawater Analysis. Verlag Chemie, New York, NY, 419 pp.
- Harleman D. R. F. and Lee C. H. (1969) The computation of tides and currents in estuaries and canals; *Technical bulletin 16, M. I. T., Massachusetts*, 264 pp.
- Hoch M. (2001) Organotin compounds in the environment an overview; *Appl. Organometallic Chemistry* **16** 719–743.
- Hwang H. M., Oh J. R., Kahng S. H. and Lec K. W. (1999) Tributyltin compounds in mussels, oysters, and sediments of Chinhae Bay Korea; *Marine Environmental Research* 47 61–70.
- Jay D. A. and Musiak J. M. (1994) Particle trapping in estuarine tidal flows; *Journal of Geophysical Research* **99** 445-461.

- Jay D. A. and Musiak J. M. (1996) Internal tidal asymmetry in channel flows: Origins and consequences; In: *Mixing Processes in Estuarine and Coastal Seas* (ed.) Pattiaratchi C., AGU, Washington D. C., pp 211–249.
- Jay D. A. and Smith J. D. (1990) Residual circulation in shallow estuaries, 2, Weakly stratified and partially mixed estuaries; *Journal of Geophysical Research* **95** 733–748.
- JGOFS (1994) Protocols for the Joint Global Ocean Flux Study (JGOFS) core measurements, Manual and guides 29, Scientific Committee on Oceanic Research, United Nations Educational, Scientific and Cultural Organization, Paris, 170 pp.
- Jyothibabu R., Madhu N. V., Jayalakshmi K. V., Balachandran K. K., Shiyas C. A., Martin G. D. and Nair K. K. C. (2006) Impact of fresh water influx on microzooplankton mediated food web in a tropical estuary (Cochin backwaters), India; *Estuarine, Coastal* and Shelf Science **69** 505–515.
- Krishnakumari L., Bhattathiri P. M. A., Matondkar S. G. P. and John J. (2002) Primary productivity in Mandovi–Zuari estuaries in Goa; *Journal of the Marine Biological Association of India* **44** 1–13.
- Kristensen E. M., Jensen M. H. and Anderson T. K. (1985) The impact of polychaete (*Nereis virens* Sars) burrows on nitrification and nitrate reduction in sediments; *Journal of Experimental Marine Biology and Ecology* 85 75–91.
- Leendertse J. J. and Gritton E. C. (1971) A water quality simulation model for well mixed estuaries; Vol. II, computation procedure; *R-708-NYC, The New York City Rand Institute technical report,* 53 p.
- Madhu N. V., Jyothibabu R., Balachandran K. K., Honey U. K., Martin G. D., Vijay J. G., Shiyas C. A., Gupta G. V. M. and Achuthankutty C. T (2007) Monsoonal variability in planktonic standing stock and abundance in a tropical estuary (Cochin Backwaters – India); *Estuarine, Coastal and Shelf Science* **3** 54–64.
- Madhupratap M. (1987) Status and strategy of zooplankton of tropical Indian estuaries: a review; *Bulletin of Plankton Society of Japan* **34** 65–81.
- Manoj N. T. and Unnikrishnan A. S. (2007) Tidal circulation and salinity distribution in Mandovi–Zuari estuaries; A numerical model study (unpublished manuscript).
- Mascarenhas A. and Chauhan O. S. (1998) A note on ancient mangroves of Goa, central west coast of India; *Indian Journal of Marine Sciences* **27** 473–476.
- McIntyre A. D. (1977) Effect of pollution on inshore benthos; In: *Ecology of marine benthos* (ed.) Coull B. C. (University of South Carolina Press) pp. 301–312.
- Miller C. B. (1983) The zooplankton of estuaries; In: *Estuaries and enclosed seas* (ed.) Ketchum B. H. (Amsterdam: Elsevier Scientific Publishing Company) pp. 103–149.
- Miranda de L. B., Castro de B. M. and Kjerfve B. (1998) Circulation and Mixing Due to Tidal Forcing in the Bertioga Channel, Sao Paolo, Brazil; *Estuaries* **21** 204–214.

- Nair R. R., Hashimi N. H. and Gupta M. V. S. (1979) Holocene limestones of part of the western continental shelf of India; *Journal of Geological Society of India* **20** 17–23.
- Naqvi S. W. A, Naik H., Jayakumar D. A., Shailaja M. S. and Narvekar P. V. (2006) Seasonal oxygen deficiency over the western continental shelf of India; In: *Past and Present water column anoxia* (ed.) Neretin L. N., NATO Sci. Ser. IV: *Earth and Environmental Science* 64, Dordrecht, The Netherlands: Springer, 195–224.
- Nayak R. K. and Shetye S. R. (2003) Tides in the Gulf of Khambhat, west coast of India; *Estuarine, Coastal and Shelf Science* **57** 249–254.
- Neetu S., Shetye S. R. and Chandramohan P. (2006) Impact of sea breeze on the wind-seas off Goa, west coast of India; *Journal of Earth System Science* **115** 229–234.
- Officer C. B. (1976) Physical oceanography of estuaries (and associated coastal waters); (New York: John Wiley & Sons) 465 p.
- Padmavati G. and Goswami S. C. (1996) Zooplankton ecology in the Mandovi–Zuari estuarine system of Goa, west coast of India; *Indian Journal of Marine Sciences* **25** 268–273.
- Panikkar N. K. (1969) New perspectives in estuarine biology; Proc. all India Symp. in Estuarine Biology, Madras, 27–30 December, 8 pp.
- Parulekar A. H., Dhargalkar V. K. and Singbal S. Y. S. (1980) Benthic studies in Goa estuaries.
 3. Annual cycle of Macrofaunal distribution, production and trophic relation; *Indian Journal of Marine Sciences* 9 189–200.
- Parulekar A. H. and Dwivedi S. N. (1973) Ecology of benthic production during southwest monsoon in an estuarine complex of Goa. Recent Researches in Estuarine Biology. (ed.) Natarajan R. (Delhi: Hindustan Publ. Co.) pp 21–30.
- Parulekar A. H., Harkantra S. N. and Ansari Z. A. (1982) Benthic production and assessment of demersal fishery resources of the Indian seas; *Indian Journal of Marine Sciences* 11 107–114.
- Qasim S. Z. (1977) Biological productivity of the Indian Ocean; *Indian Journal of Marine Sciences* **6** 122–137.
- Qasim S. Z. and Sengupta R. (1981) Environmental characteristics of the Mandovi–Zuari estuarine system in Goa; *Estuarine, Coastal and Shelf Science* **13** 557–578.
- Qasim S. Z. (2003) Indian Estuaries. Allied Publishers, 420 pp.
- Rainer S. (1981) Temporal pattern in the structure of Macrobenthic communities of an Australian estuary; *Estuarine and Coastal Marine Science* **13** 597–619.
- Rao T. S. S. (1976a) Salinity and distribution of brackish warm water zooplankton in India estuaries; Proceedings of the Symposium on warm water zooplankton, 196–204.

REFERENCES

- Rao V. P., Montaggioni L., Vora K. H., Almeida F., Rao K. M. and Rajagopalan G. (2003) Significance of relic carbonate deposits along the central and southwestern margin of India for late Quaternary environmental and sea level changes; *Sedimentary Geology* 159 95–111.
- Rao Y. P. (1976b) Southwest Monsoon; *India Meteorological Monograph (Synoptic Meteorology)*, No. 1/1976, Delhi, 376 pp.
- Robertson J. R. (1983) Predation by estuarine zooplankton on tintinnid ciliates; *Estuarine, Coastal and Shelf Science* **25** 581–591.
- Rubinoff J. A. (2001) Pink Gold: Transformation of backwater aquaculture on Goa's Khazan Lands; Economic & Political Weekly, 36:13, pp. 1108–1114. Memorial Library Periodical: AP E19 A543.
- Samant D. (2006) Abundance of pollution indicator and certain human pathogenic bacteria in Mandovi–Zuari estuaries; M. Sc. Thesis. University of Goa, 63p.
- Sankaranarayanan V. N. and Qasim S. Z. (1969) Nutrients of the Cochin backwaters in relation to environmental characteristics; *Marine Biology* **2** 236–247.
- Shankar D., Kotamraju V. and Shetye S. R. (2004) A quantitative framework for estimating water resources in India; *Current Science* **86** 543–552.
- Shetye S. R., Gouveia A. D., Shenoi S. S. C., Sundar D., Michael G. S., Almeida A. M. and Santanam K. (1990) Hydrography and circulation off the west coast of India during the southwest monsoon 1987; *Journal of Marine Research* **48** 359–378.
- Shetye S. R., Gouveia A. D., Singbal S. Y., Naik C. G., Sundar D., Michael G. S. and Nampoothiri G. (1995) Propagation of tides in the Mandovi–Zuari estuarine network; *Proceedings of the Indian Academy of Sciences (Earth and Planetary Sciences)* **104** 667–682.
- Shetye S. R. and Murty C. S. (1987) Seasonal variation of salinity in the Zuari estuary, Goa, India; *Proceedings of the Indian Academy of Sciences (Earth and Planetary Sciences)* **96** 249–257.
- Shetye S. R., Shenoi S. S. C., Antony M. K. and Krishnakumar V. (1985) Monthly mean wind stress along the coast of the north Indian Ocean; *Proceedings of the Indian Academy of Sciences (Earth and Planetary Sciences)* **94** 129–137.
- Simpson J. H., Brown J. Matthews J. and Allen G. (1990) Tidal Straining, Density Currents, and Stirring in the Control of Estuarine Stratification; *Estuaries* **13** 125–132.
- Sonak S., Kazi S. and Abraham M. (2005) Khazans in troubled waters (TERI Press, The Energy Research Institute, New Delhi).
- Stacey M. T., Burau J. R. and Monismith S. G. (2001) Creation of residual flows in a partially stratified estuary; *Journal of Geophysical Research* 106 17,013–17,037.

- Stoecker D. K. and Capuzzo J. M. (1990) Predation on protozoa: its importance to zooplankton; *Journal of Plankton Research* **12** 891–908.
- Sundar D. and Shetye S. R. (2005) Tides in the Mandovi and Zuari estuaries, Goa, west coast of India; *Journal of Earth System Science* **114** 493–503.
- Suprit K. and Shankar D. (2007) Resolving orographic rainfall on the Indian west coast; International Journal of Climatology, in press.
- Suresh I. and Shetye S. R. (2007) An analytical model for the propagation of tides in the Mandovi and Zuari estuaries, Goa, west coast of India (unpublished manuscript).
- Tamaki A. and Ingole B. S. (1993) Distribution of juvenile and adult ghost shrimps, *Callianassa japonica* Ortmann (Thalassinidea), on an intertidal sandflat: Intraspecific facilitation as a possible pattern-generating factor; *Journal of Crustacean Biology* 13 175–183.
- Tomas C. R. (1997) Identifying Marine Phytoplankton (New York: Academic Press) 858 pp.
- Townbridge J. H., Geyer W. R., Bowen M. M. and Williams A. J. III (1999) Near-bottom Turbulence Measurements in a Partially Mixed Estuary: Turbulent Energy Balance, Velocity Structure, and Along-Channel Momentum Balance; *Journal of Physical Oceanography* 29 3056–3072.
- Unnikrishnan A. S., Shetye S. R. and Gouveia A. D. (1997) Tidal propagation in the Mandovi–Zuari estuarine network, west coast of India: Impact of freshwater influx; *Estuarine, Coastal and Shelf Science* **45** 737–744.
- Wadia D. N. (1975) Geology of India (4th edn.). Tata McGraw-Hill Publishing Company Limited, New Delhi.
- Wafar S. (1987) Ecology of mangroves along the estuaries of Goa; Ph. D. Thesis, Karnataka University, Dharward.
- Wafar S., Untawale A. G. and Wafar M. V. M. (1997) Litter fall and energy flux in a mangrove ecosystem; *Estuarine, Coastal and Shelf Science* **44** 111–124.
- Xavier, Filipe Neri (1852) Bosquejo Historico das Comunidades das Aldeas dos Conselhos das Ilhas, Bardez e Salcete. Part I Govt. of Goa, pp 90.