DEVELOPMENTAL CHARACTERS OF PSETTINA IIJMAE (JORDAN AND STARKS), BOTHID FLAT FISHES - PISCES

C.B. LALITHAMBIKA DEVI

National Inslifute of Oceanography, Regional Centre, Cochin-682 018.

Abstract

Post larval stages of Pserina iijimae (Jordan and Starks) ranging from 1.8 mm NL 1044.6 mm SL collected during Naga Expedition and International Indian Ocean Expedition (IIOE) are described. The characteristics which help to identily larval stages of Pseitina are the presence of pigmented urohyal appendage in early stages which gets progressively reduced during liexion stages and which disappears in later postflexion slages, the meristics, the spines on urohyal and posterior basipterygial processes and the absence of spines on cleithra. The P.ijijmae can be distinguished in the presence of spines on the median fin rays which differentiate near the baseosts along the dorsal and ventral body wall much before the fin rays.

The larvae of Piijimas were more abundant in the Guff of Thailand compared to South China Sea and Indian Ocean.

INTRODUCTION

Even though information on systematics and distribution of aduks of flat fishes from the Indo-Pacific region are well documented; the larvae of many of them still remains to be identified. Larvae of Psettina ijijmae from Guls of Tonkin has been reported by Perlseva - Ostoumova (1965). The present report attempts to elucidate the characteristics, developmental stages and distribution of P, iijimae collected from Indian Ocean, Gulf of Thailand and South China Sea.

MATERIAL AND MAETHODS

The larval stages of P.iijimae from the Indian Ocean, Gulf of Thailand and South China Sea collecied during International Indian Ocean Expedition
(1960-65) and Naga Expedition (1959-61) were sorted out from the zooplankton samples and identified upto specific level. A set of larvae were used for morphometric data and another set for numerical counts. A third set was sacrificed to study the development of bone and cartilage using differential stains of Alizarine Red and Alcian Blue after clearing the flesh with Enzyme Tripsin (Dingerkus and Uhler, 4977). During IIOE most of the samples were collected in a uniform manner with the Indian Ocean Standard net (Currie, 1963) adhering to the recommendation to haul the net vertically at a winch speed of $1 \mathrm{~m} / \mathrm{sec}$ from a depth of 200 m to the surface or, on the continental shelf from the bottom to the surface (IOBC, 1969). In the case of Naga Expedition different type of net was used and the volume of water filtered was obtained from the flow meter in most cases (Faughn, 1974). Statistical analyses of the data were made whenever possible. Wherever the sampling was not quantitative their presence was indicated by the $\operatorname{sign} X$ in the chart.

RESULTS

Larvae ranging from 1.8 mm NL to 20.2 mm SL and metamorphosed stage from 22.5 to 44.6 mm SL occur in the plankton collection of the IIOE and Naga Expedition. The larvae belonging to preflexion, flexion "and postflexion and metamorphosed stages are contained in the collections. (Figs. 1 A, B, C, Tables I-IV).

Morphology IGY

The larval body is thin, transparent and symmetrical in eariy stages. The eyes are symmetrical and black pigments are seen only from 2.6 mm NL larvae. The right eye has started shifting from its symmetrical position preparatory to migration to the left side in 13.5 mm SL larvae and the migration is completed in larvae ranging in length from 20.2 and 22.5 mm SL (Table I). The teeth are not visible in the larvae upto 2.3 mm NL. The anterior portion of the alimentary canal runs slightly slanting downwards towards the ventral aspect and makes an elliptical coil at the posterior end of the abdominal cavity. The terminal portion lies vertically down and the anus opens at the level of tenth myotome in early stages (Fig. 1A). In advanced stages, the alimentary canal becomes compactly packed with the ventral portion being pushed forward and the anus opens at the level of the seventh vertebral segment. The antero-posterior axis of the liver is longer than the dorso-ventral axis in early stages but after metamorphosis the latter is more. The swim bladder is situated in the posterior region of the abdominal cavity and oocupies the space between seventh and tenth vertebral segments.

Table 1: Morphometrics, in mm, of larvae and metamorphosed siage of P. iijimae. (specimens between dashed lines are undergoing notochord flexion)

STA ${ }^{\text {I }}$	$B 6$	RE	NC	SA	HL	SL	EW	EH	DPB	DAN	DCP	CPL	SPF
S5-23 A	1.8 NL	SYM	STR	1.00	0.41	0.13	0.18	0.21	0.61	045	--	--	
S7-13	2.1 "	*	"	1.30	0.55	0.16	0.23	0.23	0.71	0.50	--	--	
57-18G	2.6 "	*		1.50	0.74	0.16	0.23	0.26	0.97	0.61	-	--	
S5-22A	3.2 "	"		1.80	1.00	0.21	0.29	0.34	1.48	1.26	--	--	\cdots
S7-18G	3.7 "			1.70	1.00	0.31	0.29	0.32	1.50	1.30	--	--	0.70
S5-10	3.9 "			1.80	1.10	0.39	0.31	0.32	1.90	+1.50	--	--	0.90
S7.8B	4.3 "	-	"	1.90	1.20	0,35	0.34	0.35	2.30	2.20	--	--	0.90
S7-18G	4.6 "	"	EP	230	1.40	0.42	0.34	0.36	2.10	2.00	--	--	0.90
S7-18G	4.9 "			2.40	1.55	0.50	0.34	0.35	2.40	2.00	-	--	130
S7.8B	5.1 "		MF	2.40	1.60	0.55	0.38	0.43	2.70	2.40	-	--	1.30
S5-22E	5.2 "			2.30	1.60	0.58	0.39	0.42	2.70	2.70	-	--	1.30
S7-8B	$5.8{ }^{\text {" }}$		LF	2.40	1.80	0.55	0.42	0.48	3.00	2.80	--	-	1.30
S9-21	6.3 "			2.70	1.80	0.55	0.45	0.48	3.10	2.80	-	--	4.50
Ki-527	$6.6{ }^{\prime \prime}$	"		2.70	1.90	0.53	0.45	0.48	3.10	3.10	-	-	1.30
S9A-13A	.6.5 SL	*	FLD	2.50	1.80	0.55	0.48	0.53	3.40	3.20	0.58	0.32	1.10
S9A-13A	7.0 "			2.80	2.00	0.61	0.53	0.56	3.50	3.40	0.66	0.39	1.30
S9A-13A	8.6 "			3.30	2.20	0.63	0.53	0.60	4.40	4.30	0.90	0.42	1.50
S7-8B	9.1 "	*		3.50	2.20	0.69	0.52	0.58	5.40	5.30	1.13	0.52	0.30
S9A-13A	10.3 ${ }^{\text {\% }}$			3.60	2.40	0.64	0.52	0.58	5.50	5.40	1.32	0.64	1.70
S9A-13A	11.7"			3.70	2.80	0.74	0.58	0.61	5.70	5.80	1.61	0.66	1.60
S9A-13A	12.7^{*}			4.40	3.00	0.77	0.61	0.68	5.60	6.70	1.80	0.71	2.00
S9A-13A	13.5	MIG	1	4.40	3.00	0.74	0.60	0.64	5.90	6.60	2.00	0.79	1.90
S3-29	14.7 "			4.40	3.10	0.81	0.60	0.68	6.40	7.10	2.40	0.89	1.90
S11A-12	16.2 "	*		4.80	3.70	1.03	0.60	0.63	7.90	8.30	2.50	0.85	1.80
S4-U24	$18.5{ }^{\prime \prime}$		*	4.80	4.10	1.03	0.84	0.84	8.80	8.90	2.80	1.13	1.90
S5-28A	19.7 "	"		5.00	4.00	1.00	0.87	0.97	9.70	9.60	2.90	1.13	200
S5-28A	20.2 "	"	"	5.20	4.20	1.10	0.89	0.97	8.70	9.30	2.80	1.22	2.10
S9A-10	22.5 "	OVR	MET	5.40	6.10	1.50	1.29	0.90	8.60	8.40	2.60	1.38	3.10
S9A-4A	26.4 "	"	.	7.00	7.10	1.70	1.80	1.20	8.70	8.70	3.00	1.58	4.00
S9A-4A	36.4 "	"	*	9.50	9.10	1.90	2.60	1.90	10.90	11.30	3.70	2.20	6.10
S9A-5	44.6 "	*	"	11.00	11.70	2.50	2.70	1.90	14.20	'13.20	5.60	3.00	7.60

STN = Station ; $\mathrm{BL}=$ Body length $; R E=$ Right eye $; \mathrm{NC}=$ Nolochord $; \mathrm{SA}=$ Snout to anus, $\mathrm{HL}=$ Head Length ; SL = Snout length ; EW = Eye width ; EH = Eye height; DPB = Body depth at pectoral fin base $; D A N=$ Body depth at anus $; D C P=$ Caudal peduncle depth; $C P L=$ Caudal peducie length , $S P F=$ Snout to origin of pelvic fin $; S Y M=$ Symmetrical $; S T R=$ Straight $; E F=$ Early Hexion $: M F=$ Midflexion ; LF = Late flexion ; FLD = Flexed MIG = Migrating ; OVR = Over; MET = Metamorphosed

Fig. 1 A. Preflemion stage larva of Pselina iilimae 3.0 mm NL showing pigmented diverticulum.
B. Flexion stage larva of P. ijimas 5.7 mm NL .
C. Post fiaxion slage larva of ρ. iifimae 19.7 mm SL with entarged viow of spinules on rays.

A pigmented diverticulum is seen hanging down just in fromt of the first spine on the urohyal (Fig. 1A) in the earliest larvae of 1.8 mm NL . This urohyal appendage shrivels up as growih progresses and is traceable upto 12.7 mm SL in cleared specimens. The brownish black pigment at the base of the apperidage also disappears along with the appendage (Fig. 1C). Pigments are not noticed anywhere else on the body of the larvae.

Spines are late to appear on urohyal and posterior basipterygial processes (Fig. 1B). This species differs from others in that the spinules are seen distributed near the baseosts along the dorsal and ventrat body wall even before the formation of the fin rays (Devi, 1986). They are found distributed aiong the fin rays when the larvae attains 4.6 mm NL onwards and continue to exist even in metamorphosed stages. Spines on urohyal gets differentiated from larvae of 5.1 mm NL and posierior basipterygial from 7.0 mm SL (Table if). The spines on the posterior basipterygial processes is confined to its proximal half, the distal half being devoid of any such spines. The spines are not found on the cleithra. The spines on the posteriur basipterygial processes and urohyal reduce in size and disappear as soon as metamorphosis takes place.

Table II: Meristics of larvae and juvenile of P.iijimae (specimens between dashed lines are undergoing notochord flexion)

STATION	size stage (mm)	NC	RE	FIN RAYS				VERTEBRAE			SPINES		
				DL	AL	CL	LP	PCL	CL	TOTAL	UH		PBP
S5-23A	1.8 NL PF	STR	SYM	1	0	0	0				0	0	0
S7-18G	2.1 NL "	"	"	1	0	0	0				0	0	0
11	3.7 NL	"	"	1	0	0	0				0	0	0
S7-8B	4.3 NL "	"	"	$1+F$	rming	0	0				0	0	0
S9A-13A	4.9 NL EF	FL	"	"	*	ca. 4	0				${ }^{\circ} 0$	0	0
S7-8B	5.1 NL MF	*	"	"	,	ca. 8	0				6	0	0
S9A-13A	5.5 NL "	"	"	ca. 78	ca. 61	8	0				8	0	0
S7-8B	5.8 NL LF	"	"	ca. 82	ca. 60	11	0				9	0	0
S9A-13A	6.5 SL PTF	FLD	"	85	68	17	$2+4$	10	29	39	10	0	0
"	7.0 SL "	"	*	87	68	17	2+4	10	29	39	8	0	2
11	8.6 SL *	-	*	93	70	17	2+4	10	29	39	9	0	5
"	10.8 SL"	*	"	88	68	17	3+3	10	28	38	8	0	4
S6-30	11.5 SL"	*	*	86	69	17	3+3	10	29	39	8	0	7
S7-8B	13.5 SL"	*	MIG	86	69	17	$3+3$	10	28	38	9	0	10
S5-10	15.5 SL"	\cdots	"	88	70	17	$3+3$	10	29	39	10	0	10
S3-32	16.9 SL"	"	"	84	69	17	$3+3$	10	28	38	9	0	9
S5-28A	20.2 SL"	-	"	91	70	17	$3+3$	10	30	40	5	0	11
S9A-10	22.5 SLMET	-	OVR	82	68	17	$3+3$	10	29	39	0	0	0
S9A 4A	26.4 SL"	*	*	84	70	17	$3+3$	10	29	39	0	0	0
S9A - 5	44.6 SL"	"	"	82	68	17	$3+3$	10	28	38	0	0	0

[^0]The relative head length and the length between snout and pelvic fin base increase from preflexion to flexion stages, decrease from flexion to postilexion stages and then show increase from postflexton to metamorphosed stages but the increment is less that the preflexion values (Table III). The relative snout to anus length, depth at pectoral fin base as well as the eye width and height gradually decrease but the eye widh shows a slight increase in the metamorphosed stages. However, the increment is less than the preflexion values. The relative depth across anus decreases from preflexion to flexion stages but decreases again. The relative snout length shows slight increase during flexion stages, thereafter it decreases.

Table III : Body proponions of larvae of P.ifimae (Values given for each body proportion expressed as 10^{-2} of body length or head length, mean, standard deviation and range)

Stages	Snout to anus/Booy Length	Body Propertions Head length/Body length	Snout lengithead lengith	Eye width/Head length.
Proflexion	$52.57 \pm 7.09(44-62)$	$27.14+2.70(22-31)$	25.43 ± 5.16 (21-35)	33.00 ± 6.93 (28-44)
Flaxion	45.00 ± 3.70 (41-50)	$30.43 \div 13(20-23)$	30.57 ± 3.46 (26-36)	$23.71 \pm 0.95(22-25)$
Prostiexion	$32.33 \pm 5.07(25-40)$	23.25 ± 2.45 (20.29)	27.00 ± 2.19 (25-31)	$21.33+2.81(16.27)$
Metamomhosed	25.91 ± 4.11 (22.36)	26.27 ± 3.44 (23-35)	$24.00 \pm 2.28(21-27)$	26.55 ± 4.41 (19-33)
	Eye HeighvHead Length	Body depth at Pectoral vase before development of dorsal base/body length	body depth at Pectoral base after devalopment of dorsal base/fody length	Body depth at anus before the formation of siorsal \& anal/body length
Preflexion	36.00 ± 7.96 (29.51)	$40.17 \pm 6.34(34-49)$	53.00	$30.67 \pm 7.45(23-39)$
Flexion	$25.71 \pm 1.80(22.27)$		49.71 ± 2.69 (46-52)	
Postlexion	23.08 $\pm 3.06(17.28)$		48.58 ± 4.58 (43-59)	
Astamorphosed	$47.36 \pm 3.74(11-24)$		$39.36+4.20$ (30-43)	
	Bosy depth at anus after developrnent of Dorsal and Anal base/body laredt	Caudal peducle depth/ Body longth	Cadual Peduncle Length! Body lengith	Snout to pelvic fin base/Body length
Trallexion	51.00			$21.00 \pm 2.0(19-23)$
Floxion	$46.00 \div 3.65(41.52)$			25.00 ± 4.75 (20-34)
Prastlaxion	50.25 ± 3.03 (46-58)	13.5 ± 2.15 (3-16)	$5.83+0.39(5-6)$	$13.75 \pm 3.08(10-19)$
Matamerphosed	$33.73 \pm 4.67(29.45)$	11.78 ± 1.27 (10-14)	$6.18 \pm 0.60(5-7)$	$14.64 \pm 5.19(10-29)$

Fin and supporing structures
The elongated dorsal ray all the anterior end of the dorsal fin fold is seen in the larvae from very early stage uplo 20.2 mm SL. Plerygiophers and baseosis are differentiated in 3.6 mmNL but rays are not differentiated. The irst anal pierypiophore is differentiated in 3.7 mm NL and is long and slout. The fin rays and pterygiophores diferentiate from anterior io posterior. The first dorsal pterygiophore extends forwards beyond the anticulation of the elongaied dorsal ay in 5.8 mrm larvae which is indicated in 4.9 mm . The fist dorsal ray is very small and is diferenianod in 6.5 mm SL larves when full complemerts of 55 dorsal and 68 anal rays ae seen. The corsat and enal raya rang inm 82.93 and $68-70$ repertyely.

The rudiments of the hypurnal elemenis are seen differentiating as a pack of cells at the ventral caudal exiremity in 4.3 mm NL . Caudal rays are differentiated from 4.6 mm NL larvae. The inferior hypural middle and superior hypural middle are differentiated and carry four and two rays respectively in 4.6 mm NL larvae. In 5.5 mm NL larvae, inferior hypural lower is differentiated and the superior hypural upper in 6.5 mm SL. The flexion of the notochord takes place between 4.6 mm NL and 6.5 mm SL larvae. The epural component is differentiated in 4.9 mm NL larvae. The full complement of the caudal finrays are seen in 6.5 mm SL . Of the 17 caudal rays, 15 are borne by the hypural plates. The inferior hypural lower three, middle four, superior hypural middle five and upper three.

The pelvic fin complex appears as pack of cells at the ventral posterior face of the cleithra in 3.7 mm NL larvae. The pelvic fin radial rudiment (anterior basipterygial processes) is indicated in 4.3 mm NL larvae when the posterior basipterygial processes are also differentiated. The pelvic fin ray rudiments are seen in 6.3 mm NL and the rays are discernible in 6.5 mm SL . At this stage two of the left pelvic fin rays are seen in advance of the right fin rays. The left fin radial continues to grow in advance of the right and reaches the level of the cleithral tip in 6.5 mm SL and in 10.8 mm SL it reaches the level of the posterior mosi spine on the urohyal. In 20.2 mm SL larvae, the anterior rays of the pelvic fin super impose the urohyal and the tip of the cleithra is seen between third and fourth rays. The urohyal is differentiated in 4.3 mm NL .

Axial skeleton

The notochord remains vacuolated and segmented in larvae up to 4.9 mm NL . The segmentation commences from the anterior end. The firsi neural arch is differentiated as a cartilaginous loop like structure in front of the second neural arch in 4.3 mm NL larvae. It has no neural processes but there is a lancel shaped portion which is short and never reaches the body wall like other neural spines. It gets ossified in 10.8 mm SL, while the other processes get ossified much earlier $(6.5 \mathrm{~mm} \mathrm{SL}$). The first dorsal pterygiophore carries the elongated dorsal ray and is seen in the earliest larvae 1.8 mm NL. The first dorsal pterygiophore remain ossified from the earliest larvae. It grows over the skull: The precaudal neural processes are seen in 3.7 mm NL except the first. In caudal region, the neural and haemal processes are also differentiated in 3.7 mm NL and are completed in 5.8 mm NL (Table IV). The haemal arches of the precaudal region have starled differentiating in 3.7 mm NL and the tiny processes have slarted differentiating from 5.8 mm NL but completed only in 8.6 mm SL when six processes are discernible. The precaudal centra start differentiating from 5.5 mm NL and the caudal centra are only faintly marked which is clearly seen from 6.5 mm SL. The veriebrae start ossification from 10.8 mm SL. There are $10+28-39$ vertebrae including urosiyle.

Table IV : Development of vertebral column, caudal fin rays and caudal fin supporting bones in larvae of P. ilimae

Scation	BL	ST	NC	RE	Precaudal Vertebras					Caudal Verterbrae					UC	TV	CFR	Wral Bones.				
					NPR	NAR	HPR	HAR	CEN	NPR	NAR	HPR	HAR	CEN				SHU	SHM	IBM	IHL	$E P$
S5-23A	1.8 NL	PF	STA	SYM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
S7-18G	$2.1{ }^{\text { }}$	*	=	*	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
-	2.3 *	-	-	*	0	9	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
-	2.6 *	*	-	=	C	9	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
-	3.0 *	-	-	${ }^{\circ}$	0	9	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
S5-22A	3.2 =	n	*	-	0	9	0	0	0	0	0	0	0	0	- 0	0	0	0	0	0	0	0
S7-18G	3.7 =	=	"	-	9	0	0	3	0	7	10	11	10	0	0	30	0	0	0	0	0	0
S7-8B	4.3 "	$*$	\square	${ }^{\circ}$	9	1	0	6	0	24	3	25	3	0	0	38	0	0	0	0	0	0
S7-18G	4.6 *	EF	$F L$	*	9	1	0	B	0	24	3	24	3	0	0	37	6	0	x	x	0	0
S9A-13A	4.9 *		*	*	9	1	0	8	0	24	3	24	3	0	0	37	6	0	x	x	0	x
-	5.5 *	MF	*	-	9	1	0	8	10	26	3	26	3	+	0	39	8	0	x	x	x	z
S7-88	5.8 "	LF	-	\square	9	1	4	4	10	26	2	26	2	+	0	38	11	0	x	x	y	H
S9-13A	6.5 SL	PTF	FLD	*	9	1	4	5	10	26	2	26	2	26	1	39	17	x	x	x	x	\%
\cdots	7.6 *	=	*	-	9	1	4	5	10	26	2	26	2	28	1	39	17	x	x	x	x	x
-	$8.6{ }^{\circ}$	m	*	*	9	1	6	3	10	26	2	26	2	28	1	39	17	x	x	x	x	x
*	10.8 ${ }^{\text { }}$	=	*	*	9	1	6	3	10	25	2	25	2	27	1	38	17	x	x	x	x	x
-	11.7 $=$	*	"	"	9	1	6	3	10	26	2	26	2	28	1	39	17	x	x	x	x	ス
-	12.7 *	*	"	\cdots	9	1	6	3	10	26	2	25	2	28	1	39	17	x	x	\&	x	x
-	13.5 ${ }^{\text {\% }}$	\cdots	\cdots	MIG	9	1	6	3	10	25	2	26	2	27	1	38	17	x	x	r	x	x
S5-10	15.5 SL	PTF	FLD	MG	9	1	6	3	10	26	2	25	2	28	1	39	17	x	x	\times	4	x
S3-32	16.9 "	\cdots	.	-	9	1	6	3	10	25	2	26	2	27	1	38	7	x	x	x	\pm	A
S4-U24	16.3 ${ }^{\text {n }}$	$*$	"	-	9	1	6	3	10	26	2	25	2	28	1	38	17	x	x	x	x	x
S5-28A	20.2 ${ }^{\text {- }}$		"	\cdots	9	1	6	3	10	27	2	26	2	29	1	40	17	x	x	x	x	x
S9A-10	22.5 "	JUV	-	OVR	9	1	6	3	10	26	2	27	2	28	1	39	17	x	x	x	x	x
S9A-4A	$26.4{ }^{\text {n }}$	*	-	"	9	1	6	3	10	26	2	26	2	28	1	39	17	x	x	x	x	x
S9A-5	44.6"	*	"	.	9	1	6	3	10	25	2	25	2	27	1	38	17	x	x	x	x	x

$\mathrm{BL}=$ Body length; St = Stage; NC = Notochord; RE = Right eye; NPR = Neural processes; NAR = Neural arches; HPR = Haemal processes; HAR = Haemal arches; CEN = Centra; UC = Ural centrum; TV = Total vertebrae; CFR = Caudal fin rays; SHU = Superior hypural upper; SHM = Superior hypural midde; $1 H M=$ inferior hypural middle; $\mathrm{HL}=$ Inferior hypural lower; $\mathrm{EP}=$ Epural; $\mathrm{PF}=$ Preflexion; $\mathrm{STR}=$ Straight; $\mathrm{SYM}=$ Symmerrical $\mathrm{EF}=$ Early flexion; $\mathrm{FL}=\mathrm{Flexing} ; \mathrm{MF}=$ Midflexion; LF = Late flexion; PTF = Preflexion; FLD = Flexed; MIG = Migrating; JUV = Juvenile; OVR = Over.

Distribution

Larvae of P.inimae were very rare in the lIOE samples, being represented at two stations, one in the Strait of Malacca and the other near the norihwest coast of Sumatra (Indonesia) (Fig. 2). The salinity of these stations ranged between 32.40 and 35.03%. The sounding of these stations were 60 and 2000 m . They were found in the months of September and November. Only postilexion stages were found in the collections.

Fig. 2. Distribution of larvae of P. iijimae in the Indian Ocean (in set), Gulf of Thailand and South China
Sea. Closed sign $=$ night, open sign $=$ day; x-presence
In the Naga Expedition samples they were present in the collections taken from the Gulf of Thailand. They were found throughout the Gulf waters occurring more frequently in station near the shore (Fig. 2). Preflexion to metamorphosed stages were found in the collections. The larvae of P.iijimae were also found in
the South China Sea also but noi far away from the Gulf region. The larvae were mostly contained in the collection laken during night (37/55). Another peculiarity was the larvae of this species were found almost throughout the year except in May and July. Preflexion stages were found in the months of January, April, June, Augusi, September, October and November. All stages were found in the same collection taken from certain stations. The salinity ranged between 30.23 and 34.50%, The depth of the stations from where the larvae were collected varied from 18 to 67 m .

DISCUSSION

The larvae of P.ijizmae can be distinguished from those of other bothid larvae in the presence of spines on the median fin rays in the former which differentiated as soon as the fin rays are formed (Devi, 1986). It may be noted that the spines are present near to the baseosts along the dorsal and ventral body even before the fin rays are differentiated. The range in meristic counts of the larval forms agree with those of the adults.

Uchida (1936) has described post larval slages with a greatly elongated branched dorsal ray and identified them as P.ijijmae. The diagnostic features such as urohyal appendage, spines on urohyal and posterior basipterygial processes present in the larval forms of P.iijimae, being absent in the larval forms described by Uchida (1936) they cannot be placed under P.iijimae. The presence of elongated and branched dorsal ray together with the slender body of the larval forms described as Arnoglossus japonicus by Amaoka (1973). The larvae described by Amaoka (1976) as P.iijimae reported in detail by Periseva-Ostrumova (1965) from Gulf of Tonkin as well as the present series from the Indian Ocean, Gulf of Thailand and South China Sea in the absence of urohyal appendage and spines on urohyal and posterior basipterygial processes structures characteristic of P.ijijimae. Hence in all probability, the specimens described by Amaoka as P.ijimae may be referable to Bothus species.

Larval characteristics of P.iijimae reported and described by PertsevaOstroumova (1965) from Gulf of Tonkin agree with those from the Indian Ocean, Gulf of Thailand and South China Sea. The presence of larvae ranging from early stages of metamorphosing, and metamorphosed stages in the present series confirm the identification of Pertseva-Ostroumova (1965). The meristic counts agree with those of the adults. However, it is not clear whether the spines on fin rays, a characienstic feature of P.ijimae have been noted by PerisevaOstroumova (1965).

The presence of larvae mostly in the night collections show their preference to darkness. They show protracted breeding by their presence in mosi of the months.

Larve of P.ijijimae is reported from the Gulf of Thailand and South China Sea as well as from Indian Ocean for the first time.

ACKNOWLEDGEMENTS

The author is indebied to Prof. (Dr.)N. Balakrishnan Nair, Chairman, State Committee on Science, Technology and Environment, Kerala for valuable guidance and to late Dr. E.H. Ahlstrom, Southwest Fisheries Centre, La Jolla, California, USA for providing the Naga Expedition samples as well as for valuable suggestions. She is grateful to Dr.B.N. Desai, Director and Dr. M. Krishnankutty, Scientist-in-charge, Regional Centre of N.I.O. Cochin, for encouragement and to her husband Prof. (Dr.) K.P. Balakrishnan, School of Environmental Studies, Cochin University of Science and Technology for overall help.

REFERENCES

Amaoka, K. 1973. Siudies on the larvae and juveniles of sinisiral flounder. IV. Arnoglossus japonicus. Japan J. Ichthyol. 20 : 145-156.
Amaoka, K. 1976. Studies of the larvae and juveniles of sinistral flounder. VI. Psettina iijimae, P.tosana and P.gigantea. Japan J.Ichthyol. 22 : 201-206.
Currie, R.I. 1963. The Indian Ocean Standard Net. Deep Sea Res. 10 : 27-32.
Devi C.B.L. 1981. Developmental characters of bothid flat fishes of the genus Psettina. Rapp P.U. Reun. Cons. Int. Explor. Mer. 178: 588-589.
Devi, C.B.L. 1986. Studies on the Flat Fishes (Heterosomata) Larvae of the Indian Ocean. Ph.D. Thesis. Kerala University. 480 pp.
Dingerkus, G. and Uhler, L.D. 1977. Enzyme clearing of Alcian Blue stained whole small vertebrates for demonstration of cartilage. Stain Tech. 52: 229-232.

Faughn, J.L. 1974. Naga Expedition: Station Index and Data. Naga Report 1. 177 pp .

IOBC. 1969. Handbook to the International Zooplankton Collections. 1. Station List, IOBC/NIO. Cochin.

Pertsova-Ostroumova, T.A. 1965. Fiattish larvae from the Gulf of Tonkin. Akad. Nauk SSSR. Inst. Okeanol. Trudy. 80: 177-220.
Uchida, K. 1936. Note on two remarkable heterosomatous post-larvae with a greatly elongated and branched dorsal ray. Zool. Mag. 48: 497-504.

[^0]: - Spinules along the base of median fins
 $N C=$ Notochord; $R E=$ Right eye; $D L=$ Dorsal; $A L=A n a l ; C L=$ Caudal; $L P=$ Left pelvic; $P C L=$ Precaudal; UH = Urohyal; CR = Cleithra; PBP = Posterior basipterygial processes; PF = Preflexion; STR = Straight; SYM = Symmetricl; EF = Early flexion; FL = Flexing; MF = Midflexion; LF = Late flexion; $\mathrm{PTF}=$ Postflexion; $\mathrm{FLD}=$ Flexed; MIG $=$ Migrating; MET $=$ Metamorphosed; OVR $=$ Over.

