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Abstract: 

This paper assesses the characteristics of linear statistical models developed for Tropical Cyclones 
(TC) intensity prediction at global scale. To that end, multi-linear regression models are developed 
separately for each TC-prone basin to estimate the intensification of a TC given its initial 
characteristics and environmental parameters along its track. We use identical large-scale 
environmental parameters in all basins,derived from a 1979-2012 reanalysis product. The resulting 
models display comparable skill to previously-described similar hindcast schemes. Although the 
resulting mean absolute errors are rather similar in all basins, the models beat persistence by 20-40% 
in most basins, except in the north Atlantic and northern Indian Ocean, where the skill gain is weaker 
(10-25%). A large fraction (60 to 80%) of the skill gain arises from the TC characteristics (intensity 
and its rate of change) at the beginning of the forecast. Vertical shear followed by the maximum 
potential intensity are the environmental parameters that yield most skill globally, but with individual 
contributions that strongly depend on the basin. Hindcast models built from environmental predictors 
calculated from their seasonal climatology perform almost as well as when using real-time values. 
This has the potential to considerably simplify the implementation of operational forecasts in such 
models. Finally, these models perform poorly to predict intensity changes for Category 2 and weaker 
TC, while they are 2 to 4 times more skilful for the strongest TC (Category 3 and above). This 
suggests that these linear models do not properly capture the processes controlling the early stages of 
TC intensification. 
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Introduction 

Tropical Cyclones (hereafter TC) are amongst the most devastating natural phenomena and can 

have drastic socio-economic consequences in coastal regions around the globe (McPhaden et al. 

2009; Webster et al. 2008). There are six major tropical cyclogenesis areas in the world (Fig. 1): the 

North Western Pacific (NWP) is the most active cyclone region (~31% of the total number of 

cyclones at the global scale) followed by the North Atlantic (ATL; ~22%), the North Eastern Pacific 

(NEP; ~17%), the Southern Indian Ocean (SIO; ~13%) and South Western Pacific (SWP; ~10%). 

The North Indian Ocean (NIO) is least active cyclone region (~6%) but is the basin where TC cause 

largest casualties (Longshore 2008).  

Accurate forecasts of TC track and intensity are very important pre-requisites for a proper risk 

management. Tremendous progress has been made in forecasting TC tracks in the past two decades, 

leading to actual five-day track forecasts as accurate as three-day track forecasts a decade ago 

(Elsberry et al. 2013). In contrast, intensity forecasts have only modestly improved mainly for long 

lead-times (i.e., 3 to 5 days lead), the improvement rates being only one third of those for tracks 

(DeMaria et al. 2014). The intensity errors are indeed still large, reaching ~3-5kt at 12hr lead-time to 

20-25kt for 120hr lead-time (Cangialosi and Franklin 2014; DeMaria et al. 2014). Along with 

dynamical models, the so-called “statistical-dynamical models” are routinely used for predicting TC 

tracks and intensity. In a similar way to the early TC intensity statistical forecast schemes (e.g. 

Neumann 1972; Jarvinen and Neumann 1979; Merrill 1980; Chu 1994; Aberson 1998), these 

statistical-dynamical models use linear statistical regression techniques to predict intensity changes 

from predictors derived from climatology and persistence of TC characteristics such as their current 

intensity and its time-derivative. They do however also include large-scale environmental parameters 

along the cyclone track as additional predictors. The environmental parameters along the cyclone 

tracks (such as vertical wind shear) are usually obtained from a dynamical model forecast, hence the 

“statistical-dynamical” name. Using statistical-dynamical models to predict TC intensity forecasts is 

competitive with and often more skilful than using dynamical models (Kucas 2010; DeMaria et al. 

2007, 2014), with a considerably lower computational cost and far quicker run-time. Historically, 

different operational statistical-dynamical prediction schemes have been developed separately for 

each basin. The first operational statistical–dynamical model, the Statistical Hurricane Intensity 

Prediction Scheme (SHIPS model), was developed to forecast TC intensity in the Atlantic basin 

(DeMaria and Kaplan 1994a). It has undergone considerable changes since its introduction in 1991 

(e.g., Knaff et al. 2005), including a version implemented for the Eastern Pacific (DeMaria and 

Kaplan 1999). A logistic growth equation model (LGEM; DeMaria et al. 2009) with the same inputs 
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as SHIPS is also being used for ATL and NEP since 2006. The statistical typhoon intensity 

prediction scheme (STIPS; Knaff et al. 2005) was then developed in 2002 for the Northwestern 

Pacific region. It was further adapted for the southern hemisphere in 2005 (combining the SWP and 

SIO regions) and referred to as the southern hemisphere statistical typhoon intensity prediction 

scheme (SH-STIPS model; Knaff and Sampson 2009). A model based on STIPS has also been 

developed for the NIO (Kotal et al. 2008).  

Several large-scale environmental parameters are commonly used as predictors in these 

statistical-dynamical schemes, as they are known to influence the TC intensification. These 

parameters include the Maximum Potential Intensity (MPI) that a TC can reach, which increases 

with sea surface temperature (Merrill 1988; DeMaria and Kaplan 1994b; Webster et al. 2005), the 

mid-tropospheric relative humidity that favours TC intensification through its influence on 

convective buoyancy through entrainment of sub-saturated air (Emanuel et al. 2004) or the vertical 

wind shear that can inhibit TC intensification (Gray 1968; DeMaria 1996). Other environmental 

predictors in these statistical-dynamical models also include, amongst others, low-level vorticity and 

equivalent potential temperature as well as upper-level air temperature (Emanuel 2007; Knaff et al. 

2005; DeMaria et al. 2005). Because the current statistical-dynamical models have been developed 

individually for each basin, the selected large-scale environmental parameters used as predictors and 

the database from which these variables are extracted generally differ from one basin to another. It is 

also important to mention that, in real-time application, these environmental predictors are affected 

by errors in the forecasted location (DeMaria 2010, Tien et al. 2013).  

Very few studies attempted to compare the predictive skill of statistical-dynamical forecast 

models across different TC-prone regions. A recent study (DeMaria et al. 2014) provided a 

comparison of the intensity error of these models over the recent period as a function of the basin and 

offered an update to DeMaria et al. (2007). Their results indicate that these errors are generally larger 

for the NWP and southern hemisphere TC (~12kt at 24h lead-time and ~22kt at 120h lead-time) than 

for ATL and NEP TC (~10kt at 24h lead-time and ~15kt at 120h lead-time). This basin-wise skill 

dependency may however be partly related to the differences in the predictors and in datasets used in 

each of regional statistical schemes. The analysis performed by Lee et al. (2016) addresses this issue. 

They indeed developed a single global statistical model for all TC prone basins using consistent 

predictors derived from a single atmospheric dataset over the same period. They indeed show that a 

single model trained at global scale is almost as skilful as basin-wised trained models: while most 

basins exhibit very similar skills, a basin-wise training performs better for the NIO at long lead-time 

(and NEP to a lesser extend) presumably because it recognizes the short TC lifetime in this peculiar 
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basin. Their results also indicate a more modest basin-wise dependence than DeMaria et al. (2014). 

In line with De Maria et al. (2014), TC prediction for the NWP and the southern hemisphere still 

displays the largest errors at long lead-time (~23-25kt at 120h lead-time), while these errors are 

smaller in ATL (~19kt at 120h lead-time). The reasons behind this basin-wise skill dependency is 

however currently unknown. These differences may be related to the different TC intensity 

distribution in each of the basin: more intense TC in the NWP may for instance yield to larger 

forecast errors. This dependency could also simply be explained by differences in intrinsic TC 

intensity predictability in each basin. 

Little is also known about the relative TC intensity statistical-dynamical hindcast skill yielded 

by various predictors. Several studies (DeMaria and Kaplan 1994a, 1999; Knaff et al. 2005, 2009; 

DeMaria et al. 2014; Lee et al. 2015) acknowledged the key contribution arising from the storm 

climatology and persistence predictors in most basin-wise prediction schemes, the inclusion of large-

scale environmental parameters generally resulting in a modest skill improvement when compared to 

climatology and persistence-based models. Only a few studies provide a quantitative assessment of 

the respective influence of the various large-scale environmental predictors. A recent study 

discussing the case of the ATL basin (Lee et al. 2015) demonstrated that the initial TC intensity 

change is the most important predictor at short-time lead (<24h) but that MPI is the environmental 

parameter that yields most improvement at longer lead-times. In contrast, Sharma et al. (2013) show 

that the initial storm intensity is the most important parameter while the initial intensity time-

derivative is not an important predictor for the NWP basin. Results for these two basins are however 

very difficult to compare, as the statistical model architecture, considered period and environmental 

datasets and predictors all differ. 

Aside from the relative importance of predictors, very little is also known about the TC 

intensity statistical-dynamical hindcasts skill as a function of the TC characteristics, including their 

intensity. This assessment may however be very useful as it would allow us to better identify at 

which TC stage these models are less efficient and hence where a dedicated effort needs to be 

undertaken to improve the skill of these models. 

A thorough assessment of TC intensity statistical hindcasts models is hence still lacking. The 

objective of this study is therefore to identify the most important predictors in TC intensity statistical 

models at global scale as well as to assess the sensitivity of the model skill to TC intensity. This 

endeavour requires a common framework for a meaningful comparison of the results between each 

basin. As detailed in Section 2, we hence developed statistical-dynamical TC intensity hindcast 

schemes for each basin using consistent predictors derived from a single atmospheric dataset over the 
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same period. In Section 3, we discuss the basin-wise skill differences and the respective influences of 

the predictors on the model skill. We will also investigate the impact of environmental predictors 

calculated along the forecast track versus those calculated using climatology as well as stratify model 

performance by initial intensities. A summary and discussion of the results is provided in Section 4.  

2. Basin-wise statistical intensity forecast models 

2.1. Datasets 

Tropical cyclones location and wind intensity are derived from the International Best Track 

Archive for Climate Stewardship (IBTrACS; Knapp et al. 2010). IBTrACS combines the best track 

data from many agencies into one common format. We use the Joint Typhoon Warning Center 

(JTWC) data as our main database as it uses a consistent methodology for data preparation in every 

region (NWP, NEP, SWP, NIO and SIO basins), except in the ATL  where JTWC does not operate. 

For this region, we use the National Hurricane Center (NHC) data. Both JTWC and NHC use 1-min 

average for sustained wind speed. As acknowledged in the literature (e.g. DeMaria and Kaplan 1994; 

Knaff et al. 2005), the statistical properties of storms over land are different from those over the 

ocean and specific empirical inland decay models are used for predicting the intensity change for TC 

after landfall. Here, we only consider TC located over the ocean (i.e. all TC track points over land 

are excluded from the present analysis). One caveat of these best track data is that their intensity is 

generally derived using satellite-based methods, such as the Dvorak technique (Dvorak 1984). The 

intensity archived in these datasets are estimated to the nearest 5 kt at 6-h intervals. For this reason, 

model formulation as well as any discussion of intensity in this paper will be discussed in knots 

rather than in meters per second.  

We extract synoptic atmospheric conditions along the cyclone best tracks from the European 

Centre for Medium-range Weather Forecasts (ECMWF) Interim Re-Analysis (ERA- Interim; Dee et 

al. 2011) dataset. We use 34 years (1979-2012 period) of 6-hourly atmospheric ERA-I reanalysis 

fields at 0.75ox0.75o horizontal resolution. 

2.2. Model development 

Table 1 lists the predictors used in our TC intensity statistical hindcast schemes. These 

parameters are adapted from Knaff et al. (2005, 2009) and Sharma et al. (2013). Three variables 

account for the TC characteristics at the beginning of the forecast: the intensity (VMAX), the 

intensity squared (VMAX2) and the intensity change over the previous 12-hours also referred as 

persistence (PER). We have constructed a first set of basin-wise hindcast models that only uses those 

predictors (i.e. predictors 1-3 from Table 1: the initial intensity, its square, and the intensity change 
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12 hours prior to the start of the forecast), which we will refer to as the “baseline” models (Table 2). 

But we have also constructed models that also take the effects of environmental parameters along the 

cyclone tracks into account, referred to Atm models (Table 2).  

The selected large-scale environmental parameters are commonly used in the statistical-

dynamical models and are derived from the parameters list proposed by Sharma et al. (2013) for the 

NWP region and by Knaff et al. (2009) for the southern hemisphere. They have been computed using 

the 6-hourly ERA-Interim dataset and averaged in time along the TC track from the initial time till 

the forecast hour. They include the maximum potential intensity (MPI), a theoretical upper bound for 

the cyclone intensity that increases with sea surface temperature (Merrill 1987; Miller 1958; 

DeMaria and Kaplan 1994b; Emanuel 1988; Emanuel and Nolan 2004; Holland 1997; Webster et al. 

2005). We have used empirical formulae to estimate the MPI in each basin rather than the analytical 

formulation derived from thermodynamic principles by Emanuel (1986, 1995) because these 

empirical formulae are those currently used in operational statistical TC intensity forecast models. In 

addition, it appears that this analytical formulation results in an observed VMAX that exceeds the 

analytical MPI for ~10% of the TC cases (J. Knaff, personal communication). MPI is hence 

parameterized using an exponential function of sea surface temperature in the NWP, SWP, SIO and 

ATL regions, and a linear relationship in the NEP and NIO basins (DeMaria et al. 2005; Knaff et al. 

2005; Knaff et al. 2009; Kotal et al. 2009). These empirical relationships and the corresponding 

references are listed in Table 3. The MPI is computed using 6-hourly sea surface temperature fields 

from ERA-Interim dataset and its maximum value set to 185kt. MPI and MPI2 are both used as 

predictors in our model as it is the case in most other statistical-dynamical forecast models (see Table 

1). The 200-850 hPa wind shear magnitude (SHRD) and 200-850 hPa zonal wind shear magnitude 

(USHR) are used to account for the destructive effect of vertical shear on TC. These variables 

(SHRD and USHR) are averaged over an annular region within 200 to 800 km from the centre of the 

storm. Mid-tropospheric (i.e. average 300-500 hPa) relative humidity, temperature at 200 hPa 

(T200), and low-level (925 hPa) equivalent potential temperature (E925), all averaged within 200-

800 km of the TC, are also used as predictors (see Table 1). Low-level relative vorticity (at 850 hPa, 

Z850) is also used as a predictor, but area-averaged within 1000 km from the centre of the storm 

following Knaff et al. (2005, 2009).  

Two cross-terms, VMAX multiplied by MPI (VMXM) and VMAX multiplied by SHRD 

(VMXS), are also tested. Other previously-investigatedcross-terms did not result in a significant TC 

intensity forecast improvement (DeMaria et al. 2005; Knaff et al. 2005) and are not discussed 

further. In line with Sharma et al. (2013) but in contrast to Knaff et al. (2005, 2009), we do not 
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include the storm translation speed and pressure of the initial steering motion of the wind, as it 

resulted in marginal improvement of our forecasts (less than 1% skill improvement). We do not use 

any oceanic-derived metric as predictor in the model development because the short length over 

which reliable oceanic datasets are available (daily ocean-reanalysis dataset are only available from 

1993 onwards) would result in a considerable reduction of our training period. The primary aim of 

this work is indeed not to build an improved version of the existing statistical models, but rather to 

evaluate the importance of key predictors and regional skill variations, using a common framework. 

It must however be noticed that the inclusion of additional predictors does not affect the general 

conclusions derived from the present study. 

The distributions of five of the main predictors used in the present study are shown in Figure 2, 

separately for each TC-prone basin. The variables that account for the TC characteristics at the 

beginning of the forecast (VMAX and PER; Fig. 2a, b) share a rather similar distribution in all TC-

prone basins. The NWP region is however the region with the most intense TC (with an average of 

61 m.s-1 for the highest tenth percentile in this basin; see dashed vertical lines on Fig. 2a). In contrast, 

the NIO displays the weakest TC. The four other basins (NEP, SWP, SIO and ATL) generally share 

similar TC intensity distribution (Fig. 2a). The environmental parameters distribution is more basin-

dependent. For instance, the MPI distribution (Fig. 2d) exhibits its largest values in basins where the 

warmest surface temperature are found (NIO and NWP where their averaged MPI value exceed 150 

kt; see dashed vertical lines on Fig. 2d). In contrast, MPI values are far weaker in the ATL basin, 

where its distribution hardly overlaps those in the NIO and NWP basin, with an averaged value lying 

around 60 kt. While these distributions are more similar for SHRD and RHHI environmental 

parameters (Fig. 2c,e), they significantly differ from one basin to another, RHHI being for instance 

generally lower for the ATL basin and larger for the NWP, SWP and NIO basins. 

A proper interpretation of the regression coefficients arising from these statistical models and a 

proper assessment of the relative importance of each predictor require investigating the correlations 

existing between the different predictors. Table 4 displays such a cross-correlation matrix for all 

predictors taken at 60h (other lead-times give qualitatively similar results). VMAX and PER are only 

weakly correlated with other predictors, indicating that these parameters are relatively independent 

(except for VMAX and VMAX2 which are obviously correlated). The MPI, USHR, RHHI, E925 and 

MPI2 environmental predictor are generally correlated with each other, with correlations exceeding 

+/- 0.5. In contrast, SHRD, T200 and Z850 appear to be more independent. This implies that 

interpreting the values of the statistical model regression coefficients in terms of relative importance 

of various predictors is not straightforward, due to cross-correlations between most predictors. 
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In our statistical scheme, the dependent variable or the predictand is the change in intensity 

(DELV) between the start of the forecast and the considered lead-time (for lead times at 12 hours 

intervals, up to 120 hours). The predictors are the TC initial characteristics (predictors 1-3 in Table 

1) and large-scale environmental parameters (predictors 4-11 in Table 1) described in the previous 

section. We then construct a statistical model using a multiple linear regression (MLR) technique for 

each TC-prone basin. A MLR model is built separately for each of the forecast lead-time, 12, 24, …, 

120 hr. Eighty percent of the TC are used for building the model (training dataset) and the remaining 

twenty percent are used for testing the model performance. The training and testing datasets are 

chosen randomly but for entire TC tracks (i.e. all the values along a TC track are either included in 

the training or in the testing dataset). This avoids overfitting that could result from using data from 

the same TC in both the training and testing datasets.For more reliable results, each regional model 

fit was estimated 50 times for each forecast lead-time, using 50 different randomly-selected training 

and testing sets. The reported values are averaged over the 50 realizations. The 90% confidence 

interval on these values is derived using a bootstrap technique. To do so, we compute the average of 

50 randomly-selectedvalues from the 50 realizations (re-sampling is allowed). By repeating this 

process 1,000 times, we obtain 1,000 estimated mean values. The 90% confidence interval on the 

mean value is obtained from the 5% and 95% percentiles of this distribution. This procedure is 

applied separately for each TC basin (NWP, NEP, SWP, NIO, SIP and ATL), using the same 

predictors and datasets (except for ATLTC characteristics for which NHC TC characteristics are 

used in place of JTWC), allowing a fair comparison of results across TC-prone basins.  

We choose commonly used metrics to evaluate the model performance in order to compare our 

model skill with previously published results. These metrics include the mean absolute error (MAE; 

Lee et al. 2015; Knaff et al. 2005, 2009; Sharma et al. 2013) and the percentage of skill improvement 

compared to a given reference model (DeMaria et al. 2007). The MAE is defined as the mean of 

absolute values of the difference between predicted and observed TC intensity at each forecast hour. 

Consistently with DeMaria et al. (2007), the skill improvement is computed as follows,: 

Skill (%) = 100 * (MAEref – MAEModel) / MAEref,  (1) 

where MAEref is the MAE derived from a reference model and MAEModel is the MAE from the model 

being evaluated. In this paper, we will use different choices for the reference model. For example, we 

can use a reference model that neglects a given environmental predictor to assess its importance 

(Atm-VarN sensitivity experiments summarized in Table 2 and detailed later in the paper). We can 

also use “persistence” as a baseline model (where persistence is the simplest model of all, that simply 

assumes that DELV won’t change from its value at the forecast time).  
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In addition to the parameters used in our scheme, Knaff et al. (2005) also used two cross terms, 

namely VMXS and VMXM (also listed in Table 1). These terms make the assessment of the 

respective importance of the predictors involved in the cross-terms more complicated. To investigate 

whether they can be ignored, a sensitivity experiment was conducted to ascertain the importance of 

these terms. This model (referred to as Atm+Cross, see Table 2) is similar to our reference Atm 

model except that the two cross terms (VMXS and VMXM) are included in the predictor’s list. The 

statistics shown in Figure 3 (MAE and skill improvement of Atm+Cross relative to Atm, computed 

as in Eqn. (1)) and in the following analyses are calculated on the testingdataset of each experiment. 

As it will be illustrated later in Figure 5, performing the same diagnostics separately on the testing or 

training datasets generally leads to similar results. In agreement with past literature, Figure 3a first 

illustrates that the MAE generally increase with forecast lead-time: this increase is largest for 

forecast lead times between 12hr to 96hr and reduces beyond 96hr. When averaging results globally, 

the MAE of Atm experiments ranges from 5kt at 12h to 22kt at 120h (Fig. 3a, blue curve). As 

expected, the Atm models are systematically more skilful than persistence (Fig. 3a, black curve). The 

inclusion of cross-terms leads to a modest improvement of the model performance as measured by 

the MAE (Fig. 3a): this improvement is indeed marginal for long lead-times and slightly larger for 

shorter lead times (~1kt improvement between 24h to 48h). The percentage of skill improvement of 

Atm+Cross as compared to Atm is further provided in Figure 3b at three lead-time (24h, 60h and 

120h) for each TC-prone basin and globally. It indicates that including these cross terms results in a 

5% skill improvement at 24h, 2% at 60h and 1% 120h globally. The relative influence of these terms 

however varies from one basin to another, being slightly larger in the southern hemisphere and in the 

NEP and smaller in the NIO and NWP. Despite their non-negligible skill gain, we decided not to 

include VMXS and VMXM as predictors in our model as these cross terms prevent a simple 

quantitative assessment of the relative importance of the predictors involved in these cross-terms.  

2.3. Model Performance 

The Atm models skill is first evaluated by comparing basin-wise MAE of this model with 

similar results reported in the literature for the NWP (Knaff et al. 2005; their Table 6) and the 

combined results for the SWP and SIO (Knaff et al. 2009; their Table 5) for the training dataset and 

for the ATL on the testing dataset (Lee et al. 2015; their Figure 5). To the author’s knowledge, such 

error estimates are not available for NEP and NIO in the peer-reviewed literature. As displayed in 

Figure 4, our model skill generally compares favourably with previously published results. For the 

NWP region, our model is slightly less skilful than the STIPS model initially developed by Knaff et 

al. (2005), especially for lead-times > 48h, for which our MAE is larger by ~1-2kt (Fig. 4a). Our 
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model performs slightly better for the SIO and SWP regions as compared to the SH-STIPS model 

proposed by Knaff and Sampson (2009), with a MAE reduction up to ~2-3kt for long lead-time (Fig. 

4b). Finally, our model performs very similarly to the recent model proposed by Lee et al. (2015) for 

the ATL region, our MAE being slightly weaker by 1-2kt for mid-range lead-times (Fig. 4c). The 

modest differences between the skill of the model proposed in the present study and the skill from 

the models detailed in the past literature demonstrate that our model includes the most important 

predictors for an accurate TC prediction in each basin, giving us confidence in the robustness of the 

results discussed in the next section. These modest differences could arise from different sources: the 

choice of predictors, the source of the atmospheric data and TC database as well as the different 

training/testing periods. The sensitivity to the choice of the period is further discussed below. 

Statistical-dynamical models presented by Knaff et al. (2005, 2009) are built on a rather short 

period (~7 years) as compared to our Atm experiment that is built from a dataset spanning 34 years. 

These may partly explain the skill differences seen in Figure 4ab. To investigate this further, Figure 5 

compares the performance of our ours statistical hindcast scheme built based on a 34 years long 

period (27 years for training and 7 years for testing; right panels in Figure 5) to that obtained when 

using a 7 years period (~5.5 years for training and ~1.5 years for testing; left panels in Figure 5). 

Using a 7 years dataset results in far weaker training errors than testing errors, especially in the 

southern hemisphere and ATL basin (~5kt for SWP+SIO basin, and ~3kt for ATL at long lead-time 

and only ~1kt for WP). In contrast, models built over a longer 34-year periodexhibit far weaker skill 

differences between the training and testing datasets (less than 1kt in all the basins). These 

differences can be attributed to the tendency of models trained with relatively small datasets to 

overfit the data, which leads to accurate training skill but degraded testing skill. When using a 7-year 

dataset, the training performance indeed diverge more from the testing performance for basins with a 

lower TC density (e.g. SIO+SWP and ATL) relative to the most active TC-prone basin (NWP), for 

which the larger number of cyclones yields a larger training sample. As Knaff et al. (2005, 2009) 

provided the MAE from their training dataset of ~5 years long, a fair comparison with our scheme 

would be to compare these results with our training results for the shorter training period (blue 

curves on the left panels of Figure 5). Doing so, although slightly less accurate, our results comes 

closer to Knaff et al. (2005) for the NWP basin and outperforms the results of Knaff et al. (2009) for 

the southern hemisphere even more than in Figure 4b. 

The data length also considerably influences the stability of the skill: using a smaller dataset 

systematically leads to a larger spread of the model performance between the 50 models built based 

on random selections of the training/testing datasets (shadings of the left panels of Figure 5) relative 
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to bigger datasets (shadings of the left panels of Figure 5). For the southern hemisphere, the MAE on 

the testing dataset at 120 h forecast lead-time ranges between ~19kt and ~26kt when the model is 

built on a 7 years period while it ranges between ~19kt and ~23kt when the model is built for 34 

years. These results illustrate the strong sensitivity of the model skill to the period used to build the 

model, demonstrating that building a model with larger datasets using a cross validation method will 

systematically result in more reliable and robust estimate of the skill. In the following sections, we 

will hence calculate the metrics used in the present study (MAE and skill improvement) for the entire 

34 years on the testing average of the 50 randomly-selected realisations of the model.  Since best 

track locations are used in these evaluations, the results are not influenced by track errors that occur 

with real-time applications of these models (DeMaria 2010, Tien et al. 2013).  

3. Results 

3.1. Basin-wise performance   

As discussed in the introduction, DeMaria et al. (2014; their Figure 4) and Lee et al. (2016; 

their Figure 1) provided a recent basin-wise evaluation of the statistical-dynamical models 

performances. DeMaria et al. (2014) showed that the NWP and the southern hemisphere basins 

generally exhibit larger MAE (~22-24kt at 120h lead-time) than the ATL basin (~15kt at 120h lead-

time). These differences may however be partly due to the different training/testing periods, 

predictors and atmospheric datasets used to derive the large-scale environmental parameters. The 

common framework allows addressing the basin-wise skill differences more thoroughly. As 

compared to DeMaria et al. (2014), Figure 6a indicates that the MAE derived from our common 

modelling framework only modestly differs from a basin to another: they systematically range 

between 8 and 11kt at 24h and between 20 and 24kt at 120h. The MAE values are however slightly 

larger for the NEP region at short time-lead and for the NWP region at long time-lead. In contrast, 

they are weaker for the NIO and SIO regions at short time-lead and for SWP at long time-lead. 

While results from DeMaria et al. (2014) indicate that errors are generally far larger for southern 

hemisphere TC than for NEP TC, it is not the case in our analysis, implying that the differences 

discussed in DeMaria et al. (2014) are hence likely attributable to the differences in the modelling 

framework (the LGEM model used for ATL and NEP regions includes the same inputs as SHIPS but 

utilizes a more sophisticated prediction equation; see DeMaria et al. 2009) rather than to the inherent 

predictability of TC in these basins. In contrast, the larger MAE in the NWP region as compared to 

ATL basin, also noticeable in DeMaria et al. (2014), cannot be explained by differences in the model 

architecture and are hence likely to arise from the specific TC characteristics in this basin (e.g., the 

fact that this basin hosts generally stronger TC) or to the inherent predictability in this region. The 
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basin-wise differences of the errors derived from our models discussed above are generally 

consistent with the analysis derived by the common modelling framework also developed by Lee et 

al. (2016; their Figure 1). 

Comparing the basin-wise models performances based on the percentage of improvement 

compared to simple persistence (Fig. 6c) provides a different picture from the comparison based on 

the MAE (Fig. 6a). Based on this metric, four basins (NWP, SWP, SIO and NEP) exhibit similarly 

high percentages of improvement relative to persistence, ranging from ~20 to 40% at lead-times 

between 48 and 120 hours. In contrast, the skill improvement compared to persistence is 

considerably weaker in the ATL and to a lesser extent in the NIO basin, where it ranges ranging 

between 15 and 25%. This finding qualitatively agrees with the analysis performed by Lee et al. 

(2016; their figure 1c). While the ATL model exhibits one of the weakest MAE, it also exhibits one 

of the weakest relative improvement compared to persistence (along with NIO). This apparent 

discrepancy can be explained by the performance of the persistence model in each basin. Figure 6b 

indeed shows that MAE from persistence is actually weaker for both the ATL and NIO basins, 

illustrating that TC in these basins undergo smaller intensity changes than in other basins. The NWP 

model exhibits one of the strongest MAE butdisplays one of the largest improvements relative to 

persistence (along with SWP). The persistence yields large MAE in the NWP (Figure 6b), likely due 

to intense TC in this basin that can hence undergo strong intensity changes (see Figure 2a). Similarly, 

the persistence model yields a weak MAE  in the NIO, most likely because this basin on average 

exhibits the weakest TC (see Fig. 2a). This interpretation does not however hold for the ATL basin 

where TC intensity distribution is similar to that in the NEP and SIO basins (see Fig. 2a) but its 

persistence skill is larger than in these basins. It implies that, for similar TC intensity, the TC 

intensity is more steady than in other basins.  

We further investigate differences in the basin-wise models by comparing the coefficients of 

the multiple linear regression at 60h lead for each basin for some key predictors in Figure 7. This 

figure first reveals that these regression coefficients are generally significantly different from zero 

(see error bars in Figure 7) and exhibit consistent signs and order of magnitude across basins, 

suggesting qualitatively similar influences of each predictor. For instance, PER regression 

coefficients are systematically positive, illustrating that an intensifying TC is likely to further 

intensify in the near future. Similarly, regression coefficients for RHHI are systematically positive, 

demonstrating the favourable impact of large mid-tropospheric humidity on TC intensification. In 

contrast, regression coefficients for SHRD are systematically negative, highlighting that a strong 

vertical shear is detrimental to TC intensification in all basins. Results related to MPI are more 
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difficult to interpret as they involve two predictors (MPI and MPI2) that are strongly correlated (see 

Table 4). Regression coefficients are generally negative for MPI, and positive for MPI2, except for 

SIO where these two signs reversed. This change of sign could result from the strong correlation 

existing between these two parameters (MPI and MPI2; see Table 4) that could result in coefficient 

estimates that may drastically change from one basin to another. Because VMAX and VMAX2 are 

also strongly correlated, their regression coefficients are also difficult to interpret. Despite this 

overall consistency of the regression coefficients amongst the basins, the exact values of these 

coefficients vary significantly from one basin to another. While SHRD and PER regression values 

are rather close to each other in most basins, it is not the case for instance for RHHI whose 

regression coefficients can vary by an order of magnitude from one basin to another. As shown in 

Figure 2d, the rather different distribution of this parameter amongst the basins could explain the 

basin-wise differences in the regression coefficients, i.e. the influence of a given environmental 

parameter may differ depending the range of this parameter variation in each basin.  

Figure 7 clearly indicates that the linear regression coefficients can vary from a basin to 

another, suggesting that it is better to construct TC intensity statistical hindcast schemes regionally 

than globally. To quantify this, we constructed a hindcast scheme that was trained collectively on all 

the basins (Glob model; see Table 2). The performance of the regional models relative to that of a 

global model is shown in Figure 8. As expected from the basin-wise disparity for some of the 

regression coefficients, regional models generally outperform the global model. However, when 

comparing these skills at global scale, the improvement arising from a regional training compared to 

a global one is rather modest, reaching respectively 2%, 3% and 1% at 24h, 60h and 108h (Fig. 8), 

suggesting that it may be possible to build an efficient statistical model for TC intensity forecast at 

global scale. These relative improvements however strongly vary from one basin to another: some 

regions such as SIO and SWP exhibit very similar skills when trained regionally or globally while 

the improvement gained from a regional training is larger for the NIO basin, especially at mid to long 

time-lead (up to 5%). A similar finding has already been reported in Lee et al. (2016) and has been 

attributed to the ability of regionally-trained model to recognize the short TC lifetime in this peculiar 

basin. As expected, the regression coefficients for each predictor derived from the global model 

generally falls within the range of those derived for the regional ones (Fig. 7). 

3.2 Relative importance of predictors  

Following this basin-wise performance assessment, our next objective is to compare the 

respective contribution of each predictor to the overall skill of these models. We first assess the 

contribution of the TC characteristics at the beginning of the hindcast, since they strongly contribute 
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to the model skill (e.g. DeMaria and Kaplan 1994a, 1999; Knaff et al. 2005, 2009; Lee et al. 2015). 

In Figure 9, we compare the skill of the “Atm” models with all environmental predictors to that of 

“baseline” models (Table 2) built by only accounting for the TC initial characteristics (predictors 1, 2 

and 3 from Table 1). This figure reveals that TC characteristics (i.e., the baseline models) explain a 

large fraction of the MAE decrease when compared to persistence (Fig. 9a): the average MAE at 60 

h averaged over all basins decreases by 6 kt (25 kt to 19 kt) from persistence to baseline model and 

by only further 2.5kt (to 16.5 kt) for the Atm model. When averaged over all basins, the relative 

improvements compared to persistence range from 19% for 24hr lead to 27% for 108-h lead time for 

the baseline model, while they reach 24% for 24-h lead time to 36% for 108-h lead time for the Atm 

model (Fig. 9b). The inclusion of the large-scale environmental parameters in the predictors hence 

results in an additional skill improvement relative to the baseline model ranging from ~5% at 24hr to 

~9% at 108hr.  That is, accounting for environmental parameters accounts for 20 to 40% of the Atm 

model performance. The improvement brought by the inclusion of environmental parameters is 

qualitatively similar from one basin to another (Fig. 9b). As a summary, Figure 9 generally illustrates 

that the TC initial characteristics account for a large fraction of the TC hindcasts skill of the 

statistical-dynamical linear models in all TC basins, in agreement to previously published literature. 

To further quantify the relative contribution of each large-scale environmental parameter listed 

in Table 1 (predictors 4 to 11), a series of experiments excluding each of these environmental 

parameters is carried out (Atm-VarN experiments in Table 2). The contribution of each large-scale 

environmental parameter is assessed by calculating the percentage of skill improvement of the Atm 

model relative to Atm-VarN, using Eq. (1). For VMAX and MPI parameters, both the term and its 

square are removed from the predictors list when carrying out the Atm-MPI and Atm-VMAX 

experiments. Figure 10 displays this result for a particular lead-time (60 h). When averaged over all 

basins, SHRD is the most important environmental parameter, yielding to a ~4% skill improvement. 

The most important parameters are then MPI (~2.5%) followed by Z850, USHR, RHHI and T200 

(~1%). Finally, E925 contributes very weakly to the skill improvement at global scale (~0.25%). 

When looking at these contributions basin-wise, the skill improvement is also generally dominated 

by a subset of environmental parameters. As it is the case at global scale, SHRD is generally the 

most important environmental parameter in all TC-prone basins, except in the NEP and NWP where 

the improvement brought by MPI is larger. Its contribution is particularly large in the Indian Ocean 

basin (NIO and SIO) where it yields to ~8% of skill improvement versus 2 to 4% improvement in 

other basins. While the MPI contribution is the second largest when assessed at global scale, its 

contribution varies considerably from one basin to another: it is relatively large in the NWP, NEP 
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and NIO (~2 to 4% improvement) but far weaker in SWP, SIO (less than 1%) and ATL (less than 

2%). Finally, some parameters yield negligible improvements in most basins but are skilful for some 

specific basin: it is for instance the case for RHHI which does not contribute much in most basins, 

while this parameter is amongst the two most important (with SHRD) for the SWP basin. This 

probably translates some differences in the relative importance of processes that control the TC 

intensity between various basins as well as the basin-wide climatology and variability of these 

quantities. The basin-wise differences above are qualitatively similar at all forecast lead times, 

except in the NIO and ATL basins where the relative importance of each parameters considerably 

vary as a function of the lead-time (not shown). While this sensitivity is most likely related to the 

reduced dataset used to build the model for the NIO basin, the reasons behind this sensitivity are 

unclear for the ATL and would require further investigation for this specific basin. 

3.3 Real-time vs climatological environmental parameters  

The environmental parameters used as predictors in the present and previously published TC 

intensity statistical-dynamical hindcast models are systematically calculated based on data at the 

lead-time of the forecast (and at previous lead-times, since some variables are averaged from the 

forecast time to the lead time). These daily data hence include seasonal variations but also 

perturbations at other timescales, ranging from synoptic features to large-scale interannual anomalies 

associated with climate modes such as the El Niño Southern Oscillation. In this section, we evaluate 

the relative contribution of the mean climatological seasonal cycle and non-seasonal variability to the 

performance of the model. To reach that goal, we perform additional regional experiments in which 

the climatological environmental parameters are used in place of the actual environmental 

parameters at the time of the hindcast (Atm_Clim experiment; see Table 2). In the case of Atm_Clim 

experiments, the parameters have been computed along the TC track from a 6-hourly ERA-Interim 

climatological dataset. As for the Atm model, these parameters are then averaged in time along the 

TC track from the initial time till the forecast hour. Comparing Atm_Clim with Atm experiments 

hence allows assessing the added value of considering the environmental parameters actual values 

instead of considering those derived from a climatological environment for each basin. Figure 11a 

illustrates the model using a climatological seasonal cycle for environmental predictors (Atm_Clim) 

yields a very similar skill compared that using actual values (Atm): the globally-averaged MAE is 

nearly identical for lead-times greater than 84 h, where errors tend to saturate, and only slightly 

reduced for shorter lead-times. Figure 9b allows a basin-wise quantification of that feature. At global 

scale, using real-time predictors does not improve the model skill at long lead-time but modestly 

improves it at short to mid-range lead-time (1 to 3%). The added value of using daily parameters in 
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place of climatological parameters varies from one basin to another: it does not improve the skill for 

NWP and NEP and marginally for the ATL basin (~2%). In contrast, the use of daily parameters 

leads to a larger improvement for the southern hemisphere TC, especially in the SIO basin where this 

improvement reaches ~8% for medium to long lead-time. The good performance of the Atm_Clim 

hindcast scheme suggests that TC intensity changes are far more constrained by the spatial patterns 

and seasonal variations of environmental predictors rather than by their non-seasonal component 

related to synoptic signals and large-scale climate modes, especially for the northern hemisphere. 

3.4 Skill as a function of TC intensity  

 We finally evaluate the model skill as a function of the TC intensity. For this purpose, the 

predictands are divided into two subsets based on the TC intensity. The TC up to category 2 (<96 kt) 

are referred to as “moderate” (~60% of the dataset) category 3-5 (≥96 kt) are considered as “strong” 

(~40% of the dataset). Rather surprisingly, Figure 12 indicates that the model skill strongly depends 

on the TC intensity, with considerably weaker skill for moderate relative to strong TC. The global 

skill improvement relative to persistence indeed reaches ~35% to 45% for the strongest TC (Fig. 

12a) but only ~10% to 20% for moderate TC (Fig. 12b). That is, the TC hindcast model is about 

three to four times more skilful for strong than for moderate TC. This result holds for all basins but is 

particularly striking for ATL where the model skill is marginal for moderate TC. We further checked 

that results related to the basin-wise performance of the model (Fig. 6), the importance of TC initial 

characteristics (Fig. 9), the relative environmental parameters (Fig. 10) and the good performance of 

Atm_Clim compared to Atm (Fig. 11) obtained for the entire TC database hold true for the strongest 

TC (not shown). 

5. Summary and discussion 

The prediction of tropical cyclone intensity is still a challenging problem. Along with 

dynamical models, TC intensity prediction relies on statistical-dynamical linear models that use 

linear statistical regression techniques to predict intensity changes from predictors derived from 

initial TC characteristics and from large-scale environmental parameters along the TC track. Given 

the tremendous consequences of TC worldwide, there is a need to better assess the performance of 

these regional models. However, it is difficult to compare these models across TC basins, as these 

models have generally been developed independently, using different predictors, atmospheric 

datasets and training periods. In this paper, we develop statistical-dynamical linear hindcast models 

for each TC-prone basin using the same set of predictors, atmospheric dataset and extended 

training/validation period (1979-2012). TC intensity statistical-dynamical linear hindcast models are 
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hence built consistently for all TC-prone basins. A similar consistent methodology has recently been 

developed in Lee et al. (2016) but as a first step to develop an autoregressive model able to simulate 

the climatological distribution of global TC intensity, that can ultimately be used for projecting 

future changes in TC in response to climate change. The goal of the present study is different as we 

use this common framework to assess the relative importance of TC initial characteristics vs. 

environmental parameters in the models skill, identify the most skilful environmental predictors in 

each basins and investigate the sensitivity of the skill to the TC strength. The models in this study 

display similar skills to those previously published, giving confidence in the conclusions drawn from 

this analysis. We have shown that the long period that we consider in the present study ensures a 

better robustness of the results. Re-conducting analyses in this paper over 1990-2012, during which 

intensity records (e.g. Kossin et al. 2013) and tracks (Velden et al. 2006; Knapp and Kossin 2007) 

are more reliable, does not change the overall conclusions of the present study (not shown). 

Our results first reveal that the mean absolute errors derived from these regional models are 

rather similar amongst the different TC-prone basins. However, the relative skill improvement 

brought by using this multi-linear statistical framework as compared to simple persistence is larger 

for northwest and northeast Pacific, the southwest Pacific and the southern Indian Ocean than for the 

Atlantic and Northern Indian Ocean basins. This relative skill difference can confidently be 

attributed to weaker errors for persistence in the Atlantic and Northern Indian Ocean basins, i.e. TC 

intensity is more steady in those basins. These results qualitatively agree with the analysis performed 

by Lee et al. (2016). Some differences can however be noticed. Our model outperforms theirs in the 

southern hemisphere for all lead times and in the NIO for long lead times (Figure 6a), while their 

configuration behaves better for long lead times in the Atlantic (their Figure 1b). These differences 

may arise due to differences in the selection of predictors and training/testing period. We further 

show that that the regression coefficients for each predictor of these models generally exhibit 

consistent signs and order of magnitude across basins, suggesting qualitatively similar influences of 

each predictor. Comparing results from models trained for each TC-prone regions to those from a 

model trained over the entire globe demonstrates that the improvement arising from a regional 

training compared to a global one is rather modest, reaching respectively 2%, 3% and 1% at 24h, 60h 

and 108h, suggesting that it may be possible to build an efficient statistical model for TC intensity 

forecast at global scale, in line with Lee et al. (2016).  

Several studies already mentioned that, amongst all predictors, the storm characteristics at the 

beginning of the forecast (intensity and its time-derivative) are dominant contributors to the skill. 

Our results confirm those findings and quantifies them more precisely: TC initial characteristics 
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contributes to ~ 60 to 80% to the model skill improvement relative to persistence in all TC-prone 

basins, with large-scale environmental predictors accounting for the rest (~20 to 40 %). At global 

scale, we find that the most important environmental predictor is the vertical shear, followed by the 

maximum potential intensity. Other environmental parameters contribute less to the skill 

improvement. Vertical wind shear plays a key role in most TC-prone basins, but the relative 

contribution of environmental parameter varies considerably from a basin to another. Vertical wind 

shear has a very large impact in the Indian Ocean, contributing to ~8% of the skill increase relative to 

persistence. Our result for the northwest Pacific broadly agrees with the STIPS model result that also 

showed that the vertical shear and the maximum potential intensity are the most important predictors 

(Knaff et al. 2005). Lee et al. (2015) do not use the 850hPa vorticity as a predictor in their model, 

which is the second most important predictor in our model for the Atlantic. However, in the absence 

of this parameter in their model, vertical shear and a form of maximum potential intensity are the two 

most important atmospheric predictors, which are first and third most important parameters in our 

analysis for this basin. A more quantitative comparison with earlier studies is however not possible 

due to various differences arising from the choice of predictors, data source and period.  

One of the key results of the present study could lead to a considerable simplification of the 

implementation of current statistical forecast of TC intensity. Our results indeed reveal that a model 

built from climatological environmental parameters along the TC track yields nearly the same 

predictive skill as a model built from real-time values. The improvement of using real-time 

environmental parameters is marginal for the northern hemisphere TC (less than 2%), but larger for 

the southern hemisphere TC (up to 9% in the SIO). This result echoes Lee et al. (2015) who 

demonstrated that their statistical hindcast model has a comparable skill when using environmental 

predictors derived from monthly rather than daily environmental data for the case of the Atlantic. In 

agreement with our results, this suggests that subseasonal variations of environmental parameters 

only marginally contribute the skill improvement of the model. Our results further demonstrate that 

the same conclusion holds for interannual anomalies, such as those associated with large-scale 

climate modes such as the El Niño Southern Oscillation. This result is potentially interesting for 

statistical operational forecasting of TC intensity. For implementation purposes, it is indeed far 

simpler to use atmospheric predictors calculated from their seasonal climatology than to retrieve the 

real-time forecasted values of those predictors along the forecasted TC track. This strategy may 

however not be adapted to the southern hemisphere, where our results suggest the largest skill gains 

when accounting for real-time environmental parameter variations. 
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Finally, our analysis also demonstrates that these forecasting schemes are skilful to predict 

intensity changes for strongest TC (from Cat 3 to 5), while it is hardly the case for moderate TC 

(Cat-2 and below).The skill improvement relative to persistence is indeed three to four times weaker 

for moderate than for the strong TC. It is plausible that the strength of the control of a given 

environmental parameter is varying as a function of the TC intensity, a non-linear behaviour that our 

linear scheme is not able to capture. It will be interesting to investigate whether non-linear statistical 

prediction schemes are able to improve the hindcasts for moderate cyclones. The use of non-linear 

schemes such as Artificial Neural Networks (Fine, 1999) or Support Vector Machines (Cortes and 

Vapnik, 1995) may be beneficial to further improve the performance of these statistical TC intensity 

models. 

In real-time applications of these methods it is important to note that both uncertainties in TC 

location and intensity and the use of a forecast track will result in additional sources of errors.  

Nonetheless, results of this study will still be valid.  
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Figure Captions: 

Figure 1: Tropical Cyclones (TC) climatological density (per 4ox4o bin) global map. The six red 
frames indicate the TC-prone regions for which individual statistical TC intensity prediction 
models are build (NWP: North Western Pacific, NEP: North Eastern Pacific, SWP: Southwestern 
Pacific, ATL: Atlantic, SIO: Southern Indian Ocean, NIO: Northern Indian Ocean). The numbers 
in parenthesis indicate the total number of TC considered for each region over the 1979-2012 
period.  
 
Figure 2:(a) Normalized distribution of TC intensity for each basin. Vertical dashed lines 
indicate the mean of the upper tenth percentile of the distribution for each basin. Normalized 
distribution of (b) SHRD, (c) MPI and (d) RHHI at 12h lead-time for each basin. Vertical dashed 
lines indicate the mean of the distribution for each basin.  
 
Figure 3:(a) MAE as a function of lead-time, averaged over all basins for persistence (black 
line), Atm model (blue line) and Atm+Cross model (red line). (b) Percentage of Atm+Cross 
improvement relative to Atm at 24h, 60h and 108h lead-times, for each basin and globally. 
Atm+Cross model is similar to Atm model, except that the two cross terms (VMXS and VMXM) 
are included in the predictors list. Error bars give the 95% confidence interval estimated from 
a bootstrap technique detailed in section 2.2. 
 
Figure 4:(Left panels) MAE as a function of lead-time for persistence (black line), Atm model 
(blue line) and previously published results (red line) in (a) the NWP for the training dataset 
(compared to Knaff et al. 2005; their Table 6), (c) in the southern hemisphere (SWP+SIO) for 
the training dataset (compared to Knaff et al. 2009; their Table 5) and (e) the ATL for the 
testing dataset (compared to Lee et al. 2015; their Figure 5).  
 
Figure 5:(Left panels) MAE as a function of lead-time of the training dataset (blue line) and 
testing dataset (red line) for the Atm model built from a 7 year period in the (a) NWP, (b) 
SWP+SIO and (c) ATL. MAEs from already published results are also shown as dashed lines. 
(Right panels) Same as left panels but for a model build over a 34 years period. Thick lines 
indicate MAE resulting from averaging results from 1000 simulations with different randomly 
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selected training/testing datasets while shading indicate the 5% lower and 95% higher bound 
of the ensemble distribution. 
 
Figure 6: MAE as a function of lead-time for (a) Atm model and (b) persistence for each basin 
(i.e. NWP, NEP, SWP, ATL, SIO, NIO). (c) Percentage of skill improvement of these models 
relative to persistence as a function of lead-time for each basin. See section 2.2 for a definition 
of persistence metric and the skill metrics shown on panel c. Error bars on panels a and c give 
the 95% confidence interval estimated from a bootstrap technique detailed in section 2.2. 
 
Figure 7:(a) Regression coefficients for the key predictors used in the Atm model at 60h for 
each basin. Error bars give the 95% confidence interval estimated from a bootstrap technique 
detailed in section 2.2. These regression coefficients have been multiplied by 100, 1.5, -0.5, 100, 
-1 and 2 for VMAX2, PER, MPI, MPI2, SHRD and RHHI respectively for a better readability. 
 
Figure 8:Percentage of model skill improvement relative to persistence for basin-wise trained 
Atm models (light colors; see Table 2) and the globally-trained Glob model (plain colors; see 
Table 2)at 24h, 60h and 108h, as a function of the basin. Error bars give the 95% confidence 
interval estimated from a bootstrap technique detailed in section 2.2. 
 
Figure 9:(a)MAE as a function of lead-time, averaged over all basins, for persistence (black 
curve), Atm model (blue curve) and baseline model (red curve). (b) Percentage of skill 
improvement of baseline (plain colors) and Atm models (light colors) relative to persistence at 
24h, 60h and 108h lead for each basin and globally. Only the TC initial characteristics 
(predictors 1 to 3 in Table 1) are used as predictors in the baseline model (cf table 2). Error 
bars give the 95% confidence interval estimated from a bootstrap technique detailed in section 
2.2. 
 
Figure 10:Percentage of skill improvement of Atm relative to Atm-VarN (see table 2) at 60h for 
each basin and globally. This is a measure of the respective contributions of the SHRD, MPI, 
PHHI, T200, USHR, E925 and Z850 predictors to the overall skill. Error bars give the 95% 
confidence interval estimated from a bootstrap technique detailed in section 2.2. 
 
Figure 11:(a)MAE as a function of lead-time, averaged over all basins, for persistence (black 
curve), Atm model (blue curve) and Atm_Clim model (red curve). (b) Percentage of skill 
improvement of Atm relative to Atm_Clim at 24h, 60h and 108h lead-times for each basin and 
globally. In Atm_Clim, the environmental parameters are calculated from their climatology, 
rather than on their actual value at the forecast time (cf. Table 2). Error bars give the 95% 
confidence interval estimated from a bootstrap technique detailed in section 2.2. 
 
Figure 12:Percentage of Atm model skill improvement relative to persistence for (a) strong 
and (b)moderate TCat 24h, 60h and 108h, as a function of the basin. Here, TC up to category 2 
(< 96 kt) are considered as “moderate” and those under category 3-5 (≥ 96 kt) are considered 
as “strong”. Error bars give the 95% confidence interval estimated from a bootstrap technique 
detailed in section 2.2. 
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Table 1: List of the predictors used in the present study. The predicted variable is DELV, i.e. the 
intensity change since the forecast start, at 12, 24, … , 120 hours into the forecast. The variables 
marked with a * are estimated from an area-average within 200 to 800 km of the cyclone track. 
The variables marked with a ** are estimated from an area-average within 1000 km of the 
cyclone track. The variables marked with a # are time-averaged from the initial to the forecast 
time. The variables in black (No 1 to 11) are used in the Atm reference model presented 
throughout the paper. The variables in italics (No 12 and 13; i.e. the cross-terms) are 
commonly used in statistical-dynamical forecasts but are discarded from the final list of 
predictors in the present study to allow a proper assessment of the relative importance of each 
of the predictors (see text for details).  
 
 

Name Predictors used 

Atm Regional models built with predictors 1-11 in each basin 

Atm+Cross  Regional models built with predictors 1-13 (Table 1) in each basin 

Baseline Regional models built with predictors 1-3 in each basin 

Atm-VarN As Atm, without predictor N; For Vmax and MPI, both the term and its 
square are removed from the predictors list 

Atm_Clim As Atm model but atmospheric predictors (4-11) are calculated from 
climatological fields 

Glob Single global model built with predictors 1-11 

 
Table 2: List of different sensitivity experiments performed and related predictors used. The 
numbering of the predictors used refers to the parameters listed in Table 1 
  

S. No. Predictor Description 
1 VMAX Initial intensity 
2 VMAX2 Initial intensity squared 
3 PER Intensity change during previous 12 hour 
4 MPI# Maximum potential intensity 
5 MPI2# Maximum potential intensity squared 
6 SHRD*# 200 to 850 hpa Wind shear magnitude 
7 USHR*# 200 to 850 hpa Zonal wind shear magnitude 
8 RHHI*# 500 to 300 hpa Average relative humidity 
9 T200*# 200 hpa Temperature  

10 E925*# 925 hpa Equivalent potential temperature 
11 Z850**# 850 hpa Vorticity  
12 VMXS VMAX*SHRD 
13 VMXM VMAX*MPI 
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Basin MPI Equation Reference 

NWP A+BeC(T-T0), A=38.21 kt, B=170.72 kt 
C=0.1909 oC-1, T0=30.0 oC 

Knaff et al., Wea. 
Forecasting, 2005 

NEP A+BT, A=-79.17262 m s-1, B=5.361814 
m s-1oC-1 

DeMaria et al., Wea. 
Forecasting, 2005 

SWP, SIO A+BeC(T-T0), A=-42.1 kt, B=220.58 kt 
C=0.0792 oC-1, T0=30.0 oC 

Knaff et al., Aust. Met. 
Oceanogr. J., 2009 

NIO A+BT, A=-889.64 m s-1, B=35.714 m s-

1oC-1 
Kotal, et al., Meteorol. Appl., 
2009 

ATL A+BeC(T-T0), A=28.2 m s-1, B=55.8 m s-1 
C=0.1813 oC-1, T0=30.0 oC 

DeMaria et al., Wea. 
Forecasting, 2005 

 
Table 3: Empirical formulation of the Maximum Potential Intensity (MPI) for each TC-prone 
basin and related references. 

 
Table 4: Correlation table between predictors at 60h at global scale. Performing these 
correlations per basin provides similar qualitative results. Bold numbers shows the 
correlations significant at 99% statistical significance level from t- test.  
  

 VMAX PER MPI SHRD USHR RHHI T200 E925 Z850 VMAX2 MPI2 

VMAX 1.00 0.14 -0.20 0.03 0.21 -0.23 0.23 -0.09 0.08 0.96 -0.23 
PER  1.00 0.12 -0.19 -0.11 0.19 0.00 0.18 0.02 0.13 0.13 
MPI   1.00 -0.32 -0.53 0.50 0.44 0.72 0.09 -0.12 0.99 
SHRD    1.00 0.45 -0.18 -0.05 -0.42 0.02 0.00 -0.29 
USHR     1.00 -0.48 -0.17 -0.50 -0.09 0.17 -0.52 
RHHI      1.00 0.21 0.52 0.14 -0.17 0.52 
T200       1.00 0.46 0.15 0.24 0.42 
E925        1.00 0.04 -0.04 0.70 
Z850         1.00 0.10 0.16 
VMAX2          1.00 -0.15 
MPI2           1.00 
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Figure 1: Tropical Cyclones (TC) climatological density (per 4ox4o bin) global map. The six red 
frames indicate the TC-prone regions for which individual statistical TC intensity prediction 
models are build (NWP: North Western Pacific, NEP: North Eastern Pacific, SWP: Southwestern 
Pacific, ATL: Atlantic, SIO: Southern Indian Ocean, NIO: Northern Indian Ocean). The numbers 
in parenthesis indicate the total number of TC considered for each region over the 1979-2012 
period.  
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Figure 2:(a) Normalized distribution of TC intensity for each basin. Vertical dashed lines 
indicate the mean of the upper tenth percentile of the distribution for each basin. Normalized 
distribution of (b) SHRD, (c) MPI and (d) RHHI at 12h lead-time for each basin. Vertical dashed 
lines indicate the mean of the distribution for each basin.  
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Figure 3:(a) MAE as a function of lead-time, averaged over all basins for persistence (black 
line), Atm model (blue line) and Atm+Cross model (red line). (b) Percentage of Atm+Cross 
improvement relative to Atm at 24h, 60h and 108h lead-times, for each basin and globally. 
Atm+Cross model is similar to Atm model, except that the two cross terms (VMXS and VMXM) 
are included in the predictors list. Error bars give the 95% confidence interval estimated from 
a bootstrap technique detailed in section 2.2. 
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Figure 4:(Left panels) MAE as a function of lead-time for persistence (black line), Atm model 
(blue line) and previously published results (red line) in (a) the NWP for the training dataset 
(compared to Knaff et al. 2005; their Table 6), (c) in the southern hemisphere (SWP+SIO) for 
the training dataset (compared to Knaff et al. 2009; their Table 5) and (e) the ATL for the 
testing dataset (compared to Lee et al. 2015; their Figure 5).  
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Figure 5:(Left panels) MAE as a function of lead-time of the training dataset (blue line) and 
testing dataset (red line) for the Atm model built from a 7 year period in the (a) NWP, (b) 
SWP+SIO and (c) ATL. MAEs from already published results are also shown as dashed lines. 
(Right panels) Same as left panels but for a model build over a 34 years period. Thick lines 
indicate MAE resulting from averaging results from 1000 simulations with different randomly 
selected training/testing datasets while shading indicate the 5% lower and 95% higher bound 
of the ensemble distribution. 
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Figure 6: MAE as a function of lead-time for (a) Atm model and (b) persistence for each basin 
(i.e. NWP, NEP, SWP, ATL, SIO, NIO). (c) Percentage of skill improvement of these models 
relative to persistence as a function of lead-time for each basin. See section 2.2 for a definition 
of persistence metric and the skill metrics shown on panel c. Error bars on panels a and c give 
the 95% confidence interval estimated from a bootstrap technique detailed in section 2.2. 
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Figure 7:(a) Regression coefficients for the key predictors used in the Atm model at 60h for 
each basin. Error bars give the 95% confidence interval estimated from a bootstrap technique 
detailed in section 2.2. These regression coefficients have been multiplied by 100, 1.5, -0.5, 100, 
-1 and 2 for VMAX2, PER, MPI, MPI2, SHRD and RHHI respectively for a better readability. 
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Figure 8:Percentage of model skill improvement relative to persistence for basin-wise trained 
Atm models (light colors; see Table 2) and the globally-trained Glob model (plain colors; see 
Table 2)at 24h, 60h and 108h, as a function of the basin. Error bars give the 95% confidence 
interval estimated from a bootstrap technique detailed in section 2.2. 
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Figure 9:(a)MAE as a function of lead-time, averaged over all basins, for persistence (black 
curve), Atm model (blue curve) and baseline model (red curve). (b) Percentage of skill 
improvement of baseline (plain colors) and Atm models (light colors) relative to persistence at 
24h, 60h and 108h lead for each basin and globally. Only the TC initial characteristics 
(predictors 1 to 3 in Table 1) are used as predictors in the baseline model (cf table 2). Error 
bars give the 95% confidence interval estimated from a bootstrap technique detailed in section 
2.2. 
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Figure 10:Percentage of skill improvement of Atm relative to Atm-VarN (see table 2) at 60h for 
each basin and globally. This is a measure of the respective contributions of the SHRD, MPI, 
PHHI, T200, USHR, E925 and Z850 predictors to the overall skill. Error bars give the 95% 
confidence interval estimated from a bootstrap technique detailed in section 2.2. 
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Figure 11:(a)MAE as a function of lead-time, averaged over all basins, for persistence (black 
curve), Atm model (blue curve) and Atm_Clim model (red curve). (b) Percentage of skill 
improvement of Atm relative to Atm_Clim at 24h, 60h and 108h lead-times for each basin and 
globally. In Atm_Clim, the environmental parameters are calculated from their climatology, 
rather than on their actual value at the forecast time (cf. Table 2). Error bars give the 95% 
confidence interval estimated from a bootstrap technique detailed in section 2.2. 
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Figure 12:Percentage of Atm model skill improvement relative to persistence for (a) strong 
and (b)moderate TCat 24h, 60h and 108h, as a function of the basin. Here, TC up to category 2 
(< 96 kt) are considered as “moderate” and those under category 3-5 (≥ 96 kt) are considered 
as “strong”. Error bars give the 95% confidence interval estimated from a bootstrap technique 
detailed in section 2.2. 


