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Abstract

This report describes some of the multivariate data analysis techniques used in meteorology and

oceanography and provides the necessary background and software to undertake appropriate anal-

yses of a given data set. The multivariate data analysis techniques discussed are for the identifica-

tion of simple patterns within a data set and between data sets, and for studying the characteristics

of moving patterns in space-time data sets.

Among the data analysis techniques discussed are Empirical Orthogonal Function (EOF) Anal-

ysis, Complex EOF Analysis, and Canonical Correlation Analysis, which are useful in the descrip-

tion and prediction of climate.

Results of EOF and Complex EOF analysis of TOPEX/Poseidon derived sea level height

anomaly data in the Indian and Pacific Oceans at inter-annual time scales are presented. Results

of Canonical Correlation Analysis of a sample data set is also presented.



Contents

i

Acknowledgements iv

Abstract vi

List of Tables x

List of Figures xi

1 INTRODUCTION 1

1.1 Scope of the report . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2 PATTERNS WITHIN MULTIVARIATE DATA 4

2.1 Singular Value Decomposition . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2.2 Principal Component Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.2.1 Stationary Vector . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.3 Empirical Orthogonal Function Analysis . . . . . . . . . . . . . . . . . . . . . . 9

2.3.1 Interpretation of EOF . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.3.2 Advantages . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.3.3 Shortcomings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.3.4 EOF Analysis and Statistical Forecasting . . . . . . . . . . . . . . . . . 13

2.3.5 Statistical and Dynamic methods of prediction . . . . . . . . . . . . . . 14

2.3.6 Variations in conventional EOF . . . . . . . . . . . . . . . . . . . . . . 14

2.4 Factor Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.5 Varimax Rotation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.5.1 Rotation of Principal components with complex elements . . . . . . . . . 21

2.6 Number of Components to retain . . . . . . . . . . . . . . . . . . . . . . . . . . 21

2.7 Correlation matrix or covariance matrix? . . . . . . . . . . . . . . . . . . . . . . 22



Contents viii

3 Moving patterns in space-time data sets 24

3.1 Analysis of Fourier coefficients of time series . . . . . . . . . . . . . . . . . . . 24

3.2 Cross spectral analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

3.3 Lagged cross correlation analysis . . . . . . . . . . . . . . . . . . . . . . . . . . 26

3.4 Frequency Domain Complex PCA (FDPCA) . . . . . . . . . . . . . . . . . . . . 26

3.5 Time Domain Complex PCA (TDCPCA) . . . . . . . . . . . . . . . . . . . . . 27

4 Relationships between data sets 30

4.1 Combined Principal Component Analysis . . . . . . . . . . . . . . . . . . . . . 31

4.2 Single-field-based PC/EOF Analysis . . . . . . . . . . . . . . . . . . . . . . . . 32

4.3 SVD of Covariance Matrix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

4.4 Canonical Correlation Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

4.4.1 Description of Canonical Variables . . . . . . . . . . . . . . . . . . . . 34

4.4.2 Determination of Canonical Variables . . . . . . . . . . . . . . . . . . . 34

4.4.3 Correlation between ξi and η j . . . . . . . . . . . . . . . . . . . . . . . 37

4.4.4 Spatial Patterns and Time functions . . . . . . . . . . . . . . . . . . . . 38

4.4.5 Limitations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

4.5 Barnett and Preisendorfer method . . . . . . . . . . . . . . . . . . . . . . . . . 39

5 Examples of Horel [1984] 41

5.1 Complex EOF Analysis: Computer Simulated data . . . . . . . . . . . . . . . . 41

5.1.1 Example 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

5.1.2 Example 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

5.1.3 Example 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

5.1.4 Example 4# . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

6 TOPEX/Poseidon Sea Level Height Anomaly 61

6.1 Complex EOF Analysis: TOPEX/Poseidon - Indian & Pacific Oceans . . . . . . 62

6.2 EOF Analysis: TOPEX/Poseidon - Indian & Pacific Oceans . . . . . . . . . . . . 70

7 Summary 80

A Software 81

A.1 EOF Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

A.1.1 Computer Program: eof-vec.f . . . . . . . . . . . . . . . . . . . . . . . 82

A.1.2 Specification File: eof-vec.spc . . . . . . . . . . . . . . . . . . . . . . . 104

A.2 Hilbert Transform . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

A.2.1 Computer Program: hilbert.f . . . . . . . . . . . . . . . . . . . . . . . . 105



Contents ix

A.2.2 Specification file: hilbert.spc . . . . . . . . . . . . . . . . . . . . . . . . 119

A.3 Complex EOF Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120

A.3.1 Computer Program: ceof-vec.f . . . . . . . . . . . . . . . . . . . . . . . 120

A.3.2 Specification File: ceof-cpc.spc . . . . . . . . . . . . . . . . . . . . . . 150

A.4 Cross Spectrum Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151

A.4.1 Computer Program: cross-spec.f . . . . . . . . . . . . . . . . . . . . . . 151

A.4.2 Specification File: cross-spec.spc . . . . . . . . . . . . . . . . . . . . . 172

A.4.3 Correction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 172

A.5 Canonical Correlation Annnalysis . . . . . . . . . . . . . . . . . . . . . . . . . 173

A.5.1 Computer Program: canonical.f . . . . . . . . . . . . . . . . . . . . . . 173

A.5.2 Data: pielou-page-357.dat . . . . . . . . . . . . . . . . . . . . . . . . . 190

A.5.3 Results: see-cca.res . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 191

Bibliography 194



List of Tables

2.1 Significance test for selecting number of EOFs to retain . . . . . . . . . . . . . . 23

6.1 T-P data - Indian Ocean (Interannual): CEOF - Variance explained . . . . . . . . 63

6.2 T-P data - Pacific Ocean (interannual): CEOF - Variance explained . . . . . . . . 63

6.3 T-P data - Indian Ocean (Interannual): EOF - Variance explained . . . . . . . . . 70

6.4 T-P data - Pacific Ocean (interannual): EOF -variance explained . . . . . . . . . 70



List of Figures

2.1 Singular Value Decomposition of a Matrix X . . . . . . . . . . . . . . . . . . . 5

2.2 Principal Component Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

5.1 Example 1: Data & Hilbert transform . . . . . . . . . . . . . . . . . . . . . . . 42

5.2 Example 2: Data & Hilbert transform . . . . . . . . . . . . . . . . . . . . . . . 43

5.3 Example 3: Data & Hilbert transform . . . . . . . . . . . . . . . . . . . . . . . 44

5.4 Example 4#: Data & Hilbert transform . . . . . . . . . . . . . . . . . . . . . . . 45

5.5 Complex EOF analysis: Example 1. Stick diagram . . . . . . . . . . . . . . . . 48

5.6 Complex EOF analysis: Example 1. Amplitude & phase . . . . . . . . . . . . . . 49

5.7 Complex EOF analysis: Example 2. Stick diagram . . . . . . . . . . . . . . . . 50

5.8 Complex EOF analysis: Example 2. Amplitude & phase . . . . . . . . . . . . . . 51

5.9 Complex EOF analysis: Example 3. Stick diagram . . . . . . . . . . . . . . . . 52

5.10 Complex EOF analysis: Example 3. Amplitude & phase . . . . . . . . . . . . . . 53

5.11 Complex EOF analysis: Example 4#. Stick diagram . . . . . . . . . . . . . . . . 54

5.12 Complex EOF analysis: Example 4#. Amplitude & phase . . . . . . . . . . . . . 55

5.13 Example 1: Data & Reconstructed data from CEOF-1 . . . . . . . . . . . . . . . 56

5.14 Example 2: Data & Reconstructed data from CEOF 1 & 2 . . . . . . . . . . . . 57

5.15 Example 3: Data & Reconstructed data from CEOF 1 & 2 . . . . . . . . . . . . 58

5.16 Example 4#: Data & Reconstructed data from CEOF 1 . . . . . . . . . . . . . . 59

5.17 Example 4#: Data & Reconstructed data from CEOF 1 & 2 . . . . . . . . . . . . 60

6.1 Low Pass Filter Response functions . . . . . . . . . . . . . . . . . . . . . . . . 64

6.2 T-P data - Indian Ocean (Interannual): Spatial CEOF-1 Amplitude . . . . . . . . 65

6.3 T-P data - Indian Ocean (Interannual): Spatial CEOF-1 Phase . . . . . . . . . . . 66

6.4 T-P data - Indian Ocean (Interannual): Temporal CEOF 1&2 . . . . . . . . . . . 67

6.5 T-P data - Pacific Ocean (Interannual): Spatial CEOF-1 Amplitude . . . . . . . . 68

6.6 T-P data - Pacific Ocean (Interannual): Temporal CEOF 1&2 . . . . . . . . . . . 69

6.7 T-P data - Indian Ocean (Interannual): CEOF-1 Hov-moller Rossby waves . . . . 71



List of Figures xii

6.8 T-P data - Indian Ocean (interannual): CEOF-1 Hov-Moller Kelvin wave . . . . . 72

6.9 T-P data - Indian Ocean (annual): CEOF-1 Hov-Moller Rossby waves . . . . . . 73

6.10 T-P data - Indian Ocean (annual): CEOF-1 Hov-Moller Kelvin wave . . . . . . . 74

6.11 T-P data - Indian Ocean (Interannual): spatial EOF-1 elevation . . . . . . . . . . 75

6.12 T-P data - Indian Ocean (Interannual): Temporal EOF 1&2 . . . . . . . . . . . . 76

6.13 T-P data - Pacific Ocean (Interannual): spatial EOF-1 elevation . . . . . . . . . . 77

6.14 T-P data - Pacific Ocean (Interannual): Temporal EOF 1&2 . . . . . . . . . . . . 78

6.15 T-P data - Pacific Ocean (Interannual): spatial EOF-2 elevation . . . . . . . . . . 79



Chapter 1

INTRODUCTION

In meteorology and oceanography we often come across multivariate data sets of large dimensions,

which are generally formed from repeated observations on several physical variables. These vari-

ables may be continuous over space and time, but observations on them are generally made only

at discrete points, which may not necessarily be over an uniformly spaced grid in space. For ex-

ample, the sea surface temperature (SST) measured at synoptic hours at several stations over an

ocean surface (the Indian Ocean) for several years forms a multivariate data set. Physical vari-

ables such as SST are continuous in both space and time. But due to the practical limitation in the

observational system we can collect data only at limited number of spatial points and time steps.

Hence the given data set may be considered as a sample from a much larger continuously varying

space-time function/field of the variable. Such large data sets of physical variables are analyzed to

• summarize and extract salient features embedded within them, and

• examine relationships between them.

Methods used for these analyses include estimation of simple spatial and temporal averages, auto-

correlation and spectral density functions to sophisticated multivariate analyses. In this report

some of the multivariate data analysis techniques used in meteorology and oceanography are dis-

cussed. Multivariate data can be considered as a set of points in a space of several dimensions.

For example if the data set consists of ‘N’ samples on ‘p’ variables, it can be considered as ‘N’

points in the p-dimensional variable space or ‘p’ points in the N-dimensional sample space. If the

dimension of the space in which the multivariate data is depicted is more than three, then picturing

such a space in the mind becomes difficult. Hence different analysis techniques are devised to

project the data points on to a space of reduced dimensions. Though the dimensions of the new

data spaces may still be more than three, such analyses often provide better overview of impor-

tant features of the phenomenon observed. All multivariate analyses generally aim at simplifying
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and reducing the complexity of the problem. They examine whether there are structurally simpler

ways of representing the complex data set under study, e.g. by transferring a set of interdependent

variables to a set of independent variables or by reducing the dimensionality of the variable space.

Consider, for example, a case in which we have p variables and are interested in their variances and

correlations. There are p means, p variances and p(p-1)/2 correlations (i.e. p(p+3)/2 parameters

altogether) to describe its variability. If we can transform the variables to an un-correlated set we

can reduce the required parameters by p(p-1)/2 (i.e. to 2p parameters). Some of the analyses used

to extract useful information from multivariate data sets are:

1. Analysis of patterns within a multivariate data

• Principal Component (PC) Analysis

• Empirical Orthogonal Function (EOF) Analysis

• Factor Analysis

2. Analysis of moving patterns in space-time data

• Analysis of Fourier coefficients of time series

• Cross spectral analysis

• Lagged cross correlation analysis

• Frequency Domain PCA (FDPC)

• Complex- PC and Complex-EOF Analyses

3. Analysis of relationships between data sets

• Combined Principal Component Analysis (CPCA)

• Single-field-based PCA (SFPCA)

• SVD of Covariance matrix between two fields

• Canonical Correlation Analysis (CCA)

• Barnett and Preisendorfer method

The purpose of this report is to describe some of the multivariate data analysis techniques

used in meteorology and oceanography and provide the necessary background and softwares to

undertake appropriate analyses of a given data set.
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1.1 Scope of the report

The multivariate data analysis techniques to identify simple patterns within a single data set are

discussed in Chapter 2; techniques to detect moving patterns in space-time data set are discussed

in Chapter 3; while in Chapter 4, the techniques to identify relationships between data sets are

discussed.

The following softwares developed in FORTRAN for the multivariate data analysis and time

series analysis are presented in the Appendix A:

• A software for the EOF analysis of a matrix with real elements, since most of the analyses

of multivariate data sets are based on EOF analysis.

• Separate software for Cross Spectrum analysis, Low pass filter/ Band pass filter/ Hilbert

transform, and Complex EOF analysis, required for Analyses of moving patterns in data

sets.

• The software for Canonical Correlation Analysis to study relationships between data sets.

Results of this analysis for “Test data” taken from Pielou [1977] are presented in this ap-

pendix. Canonical Correlation Analysis is one of the operational empirical methods used

for the prediction of El Nino/ La Nina phenomena mentioned by Glantz [2001].

In Chapter 5 the results of Complex EOF analysis of the synthetic data of Horel [1984]

are presented. And in Chapter 6 Complex EOF analysis as well as EOF analysis of a typical

geophysical data set, viz., the TOPEX/Poseidon derived sea level height anomaly data are

presented.
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PATTERNS WITHIN

MULTIVARIATE DATA

Suppose that we have a multivariate data set formed by N samples of observations on p scalar

variables. For example SST values at p stations (these stations are not necessarily over a uniformly

spaced spatial grid) measured at times t1, t2, ....., tN . This multivarite data set can be considered as

a matrix with N-rows and p-columns, and we will denote this data matrix as X . The entries in each

column Xi of X form a time series of SST’s at each station and can be considered as a position

vector of a point in a N-dimensional sample space. The rows of X are called the maps or fields

of the physical variable and can be considered to define N position vectors in a p-dimensional

variable space. The statistical tools used to analyze such multivariate data sets of scalar fields

are Principal Component Analysis (PCA), Empirical Orthogonal Function (EOF) analysis and the

Factor analysis. These analyses are essentially the same except for some minor differences and can

be explained through Singular Value Decomposition (SVD) of matrices. These analyses reduce

the variability in the data set into a few patterns.

2.1 Singular Value Decomposition

We shall consider here the decomposition of a given matrix X of size (N, p) as a product of three

matrices; two of them (U and V ) have orthonormal column vectors and the third Γ is a diagonal

matrix. That is,

X = UΓV T (2.1)

which is called the singular value decomposition of matrix X . Matrix U is of size (N,r) and V is

of size (p,r) and r (r ≤ Min{N, p}) is the rank of the matrix X , where Min{·} stands for minimum
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value. Γ is an (r,r) diagonal matrix with diagonal elements γi called the singular values of X . The

matrix multiplication involved in (2.1) is illustrated in Figure 2.1.

Figure 2.1 Singular Value Decomposition of a Matrix X

X
(N × p)

= U
(N × r)

Γ
(r × r)

V T

(r × p)

.

The rank of a matrix is defined as the dimension of the largest square sub-matrix of the given

matrix whose determinant is non-zero. From this definition it follows that a matrix must have its

rank equal to or less than the number of columns or rows in it, whichever is minimum. It also

implies that the rank of a product matrix cannot exceed the rank of its components. Further, if the

rank of a matrix is equal to the smaller dimension of a matrix, it cannot be split into component

matrices having smaller order. By order of a matrix we refer here to the smaller dimension of

the matrix. Obviously the ranks of all the three component matrices in (2.1) will be r and the

diagonal elements of Γ are non-zero. The existence of such decomposition is apriori assumed

in this analysis. We will discuss below the technique followed to generate U , Γ and V in (2.1),

which will also demonstrate the existence of such decomposition. First pre-multiplying both sides

of (2.1) by XT , post-multiplying by V and noting the imposed condition of orthonormality on

column vectors of U and V , (i.e. UTU = I and V TV = I, where I is a unit matrix) we get,

RV = X T XV = V ΓU TUΓV TV = VΛ (2.2)

where R = XT X is a square symmetric matrix of order (pxp) and Λ = Γ2 is a diagonal matrix of

order (r x r) with diagonal elements λi = γi
2. From (2.2), for each diagonal element of Λ we have,

(R−λiI)Vi = 0 (2.3)

which could be recognized as a matrix eigenvalue problem. Matrix R being a cross product of

matrix X of rank r and being symmetric has r (r ≤Min{N, p}) positive non-zero eigenvalues. Now
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the eigenvalues of R could be computed along with their eigenvectors using standard techniques.

The eigenvalues arranged in the descending order of magnitude down the principal diagonal form

the matrix Λ and the corresponding normalized eigenvectors arranged from left toward right form

the columns of V . As the columns of V are the normalized eigenvectors, the orthonormality

condition initially imposed on the columns of V is readily satisfied. Then the matrix U could be

obtained by post multiplying (2.1) by V Γ−1, where Γ is a diagonal matrix with
√

λi along the

principal diagonal. This implies that the columns of U are linear functions of the columns of the

data matrix X . Similarly we can show that the columns of V can be obtained as linear functions of

the rows of X . Further as imposed initially, the column vectors of U will be orthonormal. We now

show that the column vectors of U are the eigenvectors of the matrix Q = XXT . For this we post

multiply both sides of (2.1) by XTU and get,

XX TU = UΓV TVΓTUTU = UΛ (2.4)

where the diagonal elements λi of Λ are the eigenvalues of R. From (2.4), since Q = XXT , we can

see that all the eigenvalues λi of R and the corresponding column vectors Ui satisfy the relation,

(Q−λiI)Ui = 0 (2.5)

which implies that λi and Ui are respectively the eigenvalues and eigenvectors of the matrix Q.

We shall discuss here certain useful results connected with the singular value decomposition

of a data matrix.

• It follows from the above discussions that R and Q, being the cross products of the same

matrix X (i.e. R = XT X and Q = XXT ), are both symmetric, have the same rank and the

same non-zero positive eigenvalues.

• By recalling one of the results of matrix theory, that the sum of all eigenvalues of a square

symmetric matrix is equal to the trace of the same matrix, and since the trace of the cross

correlation matrix is the sum of squares of all the elements (i.e. the variance) of the matrix

X , we have,

r

∑
i=1

λi = Tr{R} = Tr{Q} =
N

∑
i=1

p

∑
j=1

x2
i j = Var{X} (2.6)

where Tr{·} stands for the trace defined as the sum of the elements of the principal diagonal

of a square matrix, and the Var{·} stands for the variance of a matrix.

• We can represent the matrix X as a sum of a series of products of vectors Ui and Vi in the

form,



PATTERNS WITHIN MULTIVARIATE DATA 7

X = UΓV T =
r

∑
i=1

λiUiV
T

i (2.7)

and the correlation matrices R and Q in the form

R = X T X = V ΛV T =
r

∑
i=1

λiViV
T

i (2.8)

Q = XX T = UΛUT =
r

∑
i=1

λiUiU
T
i (2.9)

• Finally the ‘r’ orthonormal column vectors of V can be considered to define an r-dimensional

subspace in the p-dimensional variable space. Similarly the ‘r’ orthonormal column vectors

of U define an r-dimensional subspace in the N-dimensional sample space.

2.2 Principal Component Analysis

The Principal Component Analysis (PCA) is concerned with the representation of a data matrix in

terms of new variables, which are linear combinations of the original variable but are themselves

uncorrelated or orthogonal. Let X be the given data matrix of size (N, p) and of rank r. Then, the

required new variables can be constructed as linear combinations of the original variables, using

the singular value decomposition of the given data matrix. Post multiplying (2.1) by one of the

eigenvectors Vi of the cross correlation matrix R = XT X , we get,

XVi = UΓV TVi = Uiγi ≡ ξi (2.10)

Evidently the vector ξi is a linear function of the column vectors of the given data matrix X , and

ξi is orthogonal since ξT
i ξ j = γiUT

i Ujγ j = γiδi jλ j, where δi j = 1 if i = j and δi j = 0 if i �= j. Thus

the new vector ξi constructed using an eigenvector Vi of R, is the desired principal component.

Similarly by post multiplying the matrix X by different eigenvectors of the matrix R, we can

construct all the columns of the principal component matrix ξ and arrange them according to

the descending order of magnitude of their eigenvalues. Further the column vectors of ξ are

uncorrelated independent vectors. The matrix multiplication defined by (2.10) is illustrated in

Figure 2.2.

2.2.1 Stationary Vector

The principal components have another useful property. Suppose we look for a set of new vectors

as linear functions of the columns of X and also have stationary values for their variances. Let one

of the new vectors be,
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Figure 2.2 Principal Component Analysis

X
(N × p)

Vi

(p × r)

= ξi

(N × r)

η = Xa (2.11)

where ‘a’ is a column vector of size p. The variance of η is given by,

Var{η} = ηT η = aT XT Xa (2.12)

It is now required to find ‘a’ such that the variance of η is stationary, subject to the condition

aT a = 1. This problem is equivalent to determining an unconditional stationary value of,

L = aT XT Xa−λ
(
aT a−1

)
(2.13)

where λ is the Lagrangian multiplier, an unknown to be determined. For L to be stationary, we

require,

(R−λI)a = 0 (2.14)

where R = XT X . This can readily be recognized as a matrix eigenvalue problem and ‘a’ is an

eigenvector of the matrix R. That is, η is the same principal component ξi defined in (2.10).

Note that the above discussions imply that the principal components ξi are linear function of the

column vectors of the given data matrix X , uncorrelated or orthogonal among themselves and have

the property of stationary variance.

Let us express here the data matrix in the form of a series in principal components and also as

products of Ui and Vi (as in (2.7)),

X = ξV T =
r

∑
i=1

ξiV
T
i =

r

∑
i=1

γiUiV
T

i (2.15)
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If we approximate X by considering only the first k (k < r) terms of the above series, then,

X ≈ X̂ =
k

∑
i=1

ξiV
T

i =
k

∑
i=1

γiUiV
T

i (2.16)

and from (2.6),

Var{X̂} = Tr{X̂ X̂T} = Tr{ξV TV ξT} = Tr{
k

∑
i=1

γ2
i UiU

T
i } = Tr{ξξT} =

k

∑
i=1

λi (2.17)

That is the variance of X̂ is equal to the sum of the first k highest eigenvalues of the matrix

XX T . Also it follows from the stationary properties of the principal components that Var{X̂}
is the largest possible part of the variance of X that can be accounted for by taking k terms in

the expansion defined in (2.15). Hence, in the expansion of the matrix X in terms of Ui and

Vi in (2.15), the first term, γ1U1V T
1 , accounts for a maximum percentage of the variance of X .

Similarly the second term in the expansion (2.15) explains the largest percentage of variance of X

left unexplained by the first term and so on. That is, the sum of the first k products in the expansion

(2.15) explains the maximum possible variance of X and the residual variance left unexplained is

minimum. This is also called the least square property of this expansion.

Alternatively by post multiplying XT by Ui (one of the eigenvectors of the matrix Q = XXT ),

we get another set of principal components of dimension p,

XTUi = V ΓUTUi = γiVi = ζi (2.18)

and by post multiplying XT by different eigenvectors of the matrix Q, we can construct all the

columns of the principal component matrix ζ.

2.3 Empirical Orthogonal Function Analysis

Let X be the given data matrix of size (N, p) and of rank r. In Empirical Orthogonal Function

(EOF) analysis the data matrix X is expressed in terms of a set of orthonormal vectors Ui and Vi,

which are linear functions of the vectors of the matrix X , in the form,

X = UΓV T ≈
k

∑
i=1

λiUiV
T
i (2.19)

where k < r, the rank of the matrix X . Since the decomposition of the matrix X defined in (2.19)

is exactly the same as that in SVD analysis, the desired vectors Ui and Vi in EOF analysis are

determined using the SVD analysis of X . These vectors are also linearly related to the principal

components ξ and ζ. Hence the stationary properties of the principal component expansion of
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matrix X (see (2.15)) prove that the first term γ1U1V T
1 in (2.19), accounts for the maximum per-

centage of the variance of X . Similarly the second term in (2.19) explains the largest percentage

of variance of X left unexplained by the first term and so on. That is EOF generates a minimum

number of new variables such that they contain nearly all the essential information in the larger set

of observed variables. In this sense EOF is a multivariate method for data reduction or method for

removing data redundancies. Generally, this property of EOF often provides a better overview of

the underlying salient features of the phenomena observed and may also open up new directions

for investigation. EOF analysis is the most frequently used statistical technique in meteorology

and oceanography to analyze multivariate data sets of large dimensions describing the space-time

distribution of physical variables.

As an example, the repeated measurements of SST values at several stations in an ocean region

can be considered to form a data matrix describing a space-time data function/field sampled at

limited number of points from the continuously varying field of SST. Consider a data matrix X

of size (N, p) describing the space-time distribution of physical variable, as in the example cited

above. This matrix can be expressed in terms of Empirical Orthogonal Functions/vectors Ui and Vi

as in (2.19), where the orthnormal vectors Ui in the N-dimensional sample space can be considered

as a function in time or the temporal EOF. The orthnormal vectors Vi in the p-dimensional variable

space can be considered as a function describing the spatial distribution or the spatial mode or the

spatial EOF of the physical variable of interest. The pattern obtained when a spatial EOF is plotted

as a map, represents the mode/ shape of a standing oscillation. The corresponding time function

shows how this pattern oscillates in time.

2.3.1 Interpretation of EOF

EOF analysis is concerned with the partitioning of the variance of the given data matrix into a

series of products of space and time functions. The time functions of the EOF analysis often offer

clues to identify the physical mechanism responsible for the variability observed in the data. We

can also expect the spatial patterns/ modes of the first few orthogonal functions to be related to

possible dynamical modes of physical behavior. But these empirical modes do not necessarily

correspond to dynamical modes which conform to physical constraints through governing equa-

tions and associated boundary conditions. This is because, often a single physical process may

be spread over more than one EOF. In some cases more than one physical process may be con-

tributing to the variance contained in a single EOF. However, EOFs offer the efficient statistical

compression of the data field to describe the variability of data sets on a space of reduced dimen-

sions. This is expected to facilitate physical interpretation and whether the empirical modes are

related to physical modes is a matter of subjective interpretation.
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2.3.2 Advantages

• The main feature of EOF is the construction of a few orthogonal vectors in a way that they re-

duce the overall complexities of the data by taking advantage of inherent inter-dependencies

within them. In this sense EOF analysis is a method for removing data redundancies.

• EOF is a tool for describing the variability in the data by a few patterns.

• A minimum number of new variables, which are linear combinations of the original ones,

are formed in EOF analysis, such that the new variables contain nearly the same amount of

information as the original data set. In this compressed form the new variables, hopefully,

bring out the underlying salient features of the phenomena observed.

• A limited number of the first few EOFs can be used to reconstruct the data field, and thereby

eliminate those scales of variability that are less energetic in their contribution to the data

variance.

• The contribution of any pair of eigenvectors (Ui,Vi) to the sum of the squares of the ele-

ments of the data matrix is given by the corresponding eigenvalue λi, which is a measure of

relative importance of each pair of vectors. The contribution to this sum from the smaller

eigenvalues is sometimes considered as noise.

• It should also be noted that the methods used for achieving all this are basically linear.

2.3.3 Shortcomings

• The spatial orthoganality of the eigenvectors often imposes undesirable constraint on the

analyzed results (maps). The first map or the spatial eigenvector and the corresponding

time function are not influenced by this constraint imposed. But the remaining eigenvectors

often bear predictable geometric relationships to the first eigenvector. For example, if the

first eigenvector is of one sign throughout the domain, the second will generally be bipolar

with its zero line passing through the highest value of the first eigenvector. The third one

may be either bi-polar (rotated with respect to the other two) or a more complicated pattern

with its maximum near zero lines of the other eigenvectors.

Partially because of the orthoganality constraint, the spatial eignvectors depend on the par-

ticular domain used for the analysis. That is, an eigenmode (physical pattern) over a part

of the region may not be the same when the same eigenmode is determined for the whole

region. But the invariance of eigenmodes when the domain changes, is a fundamental ne-

cessity of the analysis to be physically meaningful. That is, if EOF is not overly sensitive to

the area, the physical interpretation of the EOF modes will be more meaningful.
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• When individual spatial maps are used to study the correlation between the time series at two

grid points, it is possible to have one spatial map indicate that two time series are positively

related, while the other map indicate they are negatively correlated. The physical interpreta-

tion becomes difficult when the contributions from different spatial maps are significant to

the correlation between two time series.

• In EOF analysis, a given function of space and time is always expressed as a sum of a series

of products of two functions, one of which depends only on the spatial coordinate and the

other function depends only on time (2.19). Such products when considered independently

are known to represent standing mode of oscillations. Hence, each product in the series can

describe only a standing mode of space-time variation, and propagating waves cannot be

detected by this method. This characteristic of EOF severely restricts its usefulness when

propagating disturbances are present in the data, as they are expressed as standing waves by

EOF analysis.

Example

Consider a moving disturbance h(x, t) = F (κx−ωt), given in the form of a discrete data set Hi j.

Using EOF analysis, Hi j can be expanded in the form,

h(x, t) ≡ Hi j = T1(t)X1(x)+ T2(t)X2(x)+ ...

Each term in the above expansion is a product of two functions, one of which depends only on

time and the other only on spatial coordinate. Hence, each product represents the oscillations of a

standing mode. Also as each product is examined independently in EOF analysis, the propagating

characteristics of the data cannot be detected by this analysis. To be specific consider the example

of a wave moving in x direction,

h(x, t) = Cos(κx−ωt) = Cos(kx)Cos(t)+ Sin(κx)Sin(ωt)

which is also expressed as a sum of products of pairs of functions of space and time. This function

as a whole describes a moving wave. But each pair in the above expansion separately describes a

standing wave. Through EOF analysis of the discrete form Hi j of this function can be expressed

as a sum of two products, each containing a spatial vector and a time vector. The pair of vectors

in one of these products will correspond to the pair of functions Cos(κx) and Cos(ωt), evidently

describing a standing wave. Similarly the other pair of vector will correspond to Sin(κx) and

Sin(ωt) and describe the other standing wave. Hence through this analysis, it appears that there

are two standing modes instead of a propagating wave. This artifact is introduced purely by the

EOF analysis.
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The advantages and the shortcomings discussed above are true also for the PCA of multivariate

data discussed in this section. Despite these shortcomings, the EOF analysis is found adequate in

many applications.

2.3.4 EOF Analysis and Statistical Forecasting

EOF analysis has found a central place in statistical forecasting, which essentially attempts to

express the future state objectively as a function of its past or present state, without explicit con-

sideration of the nature of the governing dynamics. The orthonormality of the vectors derived

through EOF analysis and a fewer number of them required to represent a large fraction of the

sum of squares of the elements of a data matrix are desirable features for the construction of sta-

tistical prediction equations. Usually the predictand or dependent variable is related to a linear

combination of predictor or independent variables using multiple linear regression technique. The

predictors may be the past or present values of the predictand or of any other related parameter at

the same or different locations.

Let, the predictand be y and its estimate be ŷ. Then the linear predictor in terms of the M data

parameters dn with zero mean will take the form

ŷ = ∑M
n=1αndn (2.20)

where αn are the regression coefficients. Defining the optimal predictor/regression formula as the

one having the mean square error between y and ŷ minimum, we have,

J = 〈(y− ŷ)2〉 = 〈y2〉+∑M
n=1∑

M
m=1αnαm〈dndm〉−2∑M

m=1αm〈dmy〉 (2.21)

where the angle brackets 〈·〉 denote the population mean or the expected value, and αn can be

determined by minimizing J (i.e. by the method of least squares).

A measure used to determine the closeness with which the predictor estimates the predictand

is known as the skill of prediction, and is defined with the help of total and explained variance.

The total variance or the sum of the squares of deviations of y from its mean may be expressed as,

〈(y− ȳ)2〉 = 〈(y− ŷ)2〉+ 〈(ŷ− ȳ)2〉+ 2〈(y− ŷ)(ŷ− ȳ)〉 (2.22)

The first term on the right hand side of the above equation, is the unexplained variance and

the second term is the variance of the predicted value or the explained variance, i.e. the variance

explained by the regression equation. The last term can be easily shown to be identically equal to

zero. Then the skill of prediction with respect to the population is given by,

S = (Explainedvariance/TotalVariance) = 〈(ŷ− ȳ)2〉/〈(y− ȳ)2〉 (2.23)
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which represents the fraction of 〈(y− ȳ)2〉 which is predictable.

Davis [1976] has defined the skill of prediction based on the data sample used for determining

the regression coefficients as hind-cast skill (SH), and (SH − S) as the artificial predictability. He

has proved that SH is always greater than S and the artificial predictability is proportional to the

ratio between the number of data parameters M and the sample size N.

To reduce the artificial predictability, two avenues are open. One is to increase the sample

size, but this is not often possible. The other method is to reduce the number of data parame-

ters/predictors. Lorenz [1956] pointed out that the number of predictors M, as a thumb rule may

be chosen such that M/N < 0.1 to reduce the artificial predictability. Predictors, which are poorly

connected with the predictand, may be excluded subjectively by a process of screening. For exam-

ple, in ocean-atmospheric forecasting problems the predictors, which are not dynamically related

to the predictands, could be excluded. An objective method for reducing the number of predictors

to a few new independent predictors is EOF analysis.

2.3.5 Statistical and Dynamic methods of prediction

Dynamic method of prediction attempts to determine the future state as a complicated nonlinear

function of the present state and of the intervening external influences through the solution of gov-

erning equations and boundary/ initial conditions. When simplified linearized dynamic equations

are used, the fields of interest in the very near future will be a linear function of the present state.

Thus the dynamical equations themselves justify the statistical prediction methods. Also it should

be mentioned that the dynamic methods as practiced are not entirely free of empirical relations

and the approximations made are suggested by the observed behavior of the phenomenon (i.e.

available statistics) rather than by pure dynamic theory. Hence we may summarize here that these

two methods are not entirely independent of each other, as it appears.

2.3.6 Variations in conventional EOF

EOF analysis essentially consists of determining the eigen values (real non-negative) and eigen

vectors of the cross-product (covariance/ correlation) matrix, which has real value elements ai j ,

and is square and symmetric (i.e., aji = ai j). An extension of EOF analysis is Complex EOF anal-

ysis, which essentially consists of determining the eigen values (real non-negative) and complex

eigen vectors of a Hermitian matrix. A Hermitian matrix has complex value elements ai j , and is

square and anti symmetric (i.e., aji = a∗i j, where ‘*’ indicates the complex conjugate).

While Complex EOF analysis can be used to study the characteristics of propagating waves

as well as standing waves, EOF analysis is useful for studying standing waves only. Before the

advent of Complex EOF analysis, Cross-spectrum analysis (more details of which are given in
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Chapter 3.2) was the standard method for studying geophysical space-time data displaying propa-

gating features.

There are two types of Complex EOF analysis, viz., Complex EOF analysis in frequency

domain and Complex EOF analysis in time domain.

In Complex EOF analysis in frequency domain, at a specific frequency band, the eigen values

and eigen vectors of the spatial cross-spectral matrix, which is Hermitian are determined. Thus

in this analysis (more details of which are given in Chapter 3.4) the first step is Cross-spectrum

analysis. Two oceanographic examples where Complex EOF analysis in frequency domain has

been used are that of Wang and Mooers [1977] and Michaelson [1982]. This technique was found

suitable for analyzing time series in which the energy contained in the data is confined to a few

frequency ranges.

In Complex EOF analysis in time domain, the data field to be analyzed is augmented in a

manner that helps in detecting the propagating features within it, for which a complex field is

constructed from the observed space-time data field. The original data field defines the real part

of this complex field, and the imaginary part of this field is defined by the Hilbert transform of

the data field. The complex eigenvectors are then determined from the Hermitian cross-product

(covariance/ correlation) matrix derived from the complex time series. It may be mentioned that

the Hilbert transform of a series has its phase advanced by 90o, i.e., the original time series and

its Hilbert transform are in quadrature; however the amplitude remains unaltered. Thus in this

analysis (more details of which are given in Chapter 3.5) the first step is the computation of the

Hilbert tranform of each time series. An excellent review of Complex EOF analysis in time domain

is given in Horel [1984]. While the earliest oceanographic application Complex EOF analysis in

time domain is that of Barnett [1983], more recent applications are that of White [2000a] and

White [2000b]. This technique appears to be more appropriate for data sets with energy spread

over a wide range of frequencies.

It is generally accepted, for example by Horel [1984], that Wallace and Dickinson [1972] and

Wallace [1972] are the pioneers of Complex EOF analysis in frequency domain. However in our

opinion what Wallace [1972] has actually performed appears to be Complex EOF analysis in time

domain.

Barnett [1984] has extended Complex EOF analysis in time domain to a vector field - the wind

vector. This analysis can be used in case of ocean current vector also. Kundu and Allen [1976]

had applied the algorithm of Complex EOF analysis in time domain to the current vector field

off Oregon by taking the u-component of the current as the real part and the v-component of the

current as the imaginary part. However the approach of Kundu and Allen [1976] appears to be

questionable as the u- and v-components of the current are generally not in quadrature [Horel,

1984].
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In all the techniques discussed in Chapter 2 and as well as in Chapter 3 for the analysis of

complex data matrices, the cross-product matrices are square. But, while analyzing the interde-

pendence between two sets/groups of variables, which are physically related and measured at same

number of time levels, the covariance matrix between the two data sets need not be a square matrix.

In this case again we use the EOF analysis of covariance matrix to determine the interrelationship

between the data fields. The details of this analysis has been discussed under SVD analysis of

coupled field in Chapter 4

2.4 Factor Analysis

In factor analysis we construct two matrices called factor score and factor loading matrices, each

having only a few columns or rows, such that their product contains all the essential information

contained in the larger data matrix. The possibility of the existance of such a simple representation

is assumed apriori in this analysis. The product of the factor score (F) and factor loading (A)

matrices can be considered as an estimate of the data matrix X , i.e.,

X ≈ FA (2.24)

and the residual matrix defined as the difference between X and FA is small. It should be noted

that the aim of the factor analysis is not the exact representation of the original data matrix.

If for example, the data matrix X is of size (N, p) and rank r, then the mathematical represen-

tation of R-mode factor model is,

X = F1A1 + E1 (2.25)

where F1 called the factor score matrix is of size (N,k) and is assumed to have its column vectors

(called the factors) orthonormal. Matrix A1 called the factor loading matrix, is of size (k, p). E1

called the matrix of residual or errors is of size (N, p), whose column vectors are orthogonal to

those of F1.

There are various procedures for the construction of these factor matrices depending upon the

additional conditions imposed on these matrices. The frequently imposed condition is that the

variance of the matrix F1A1 is maximum. The factor matrices satisfying this constraint can be

easily constructed using the principal components ζ. Once the number of factors ( say k factors,

k < r) is specified, then the first k columns of the component matrix ζ (2.18) can be considered to

form the k rows of the factor loading matrix A1 and the first k columns of U to form the columns of

the factor score matrix F1. The remaining (r−k) columns of U and ζ multiply to form the residual

matrix E1. The above three matrices satisfy perfectly the definition of the R-mode factor model

and the additional condition imposed on the variance of F1A1. As the magnitude of the eigenvalues
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generally reduce rapidly from its highest value, only a few factors are needed for sufficiently close

representation of the data matrix.

The alternative factor model called the Q-mode factor model is represented mathematically in

the form

X = A2F2 + E2 (2.26)

where F2 is the factor score matrix of size (k, p) and its rows are orthonormal. A2 is the matrix

of factor loading of size (N,k). The rows of the residual matrix E2 are orthogonal to those of

F2. Let us now impose the condition that the variance of the matrix A2F2 is maximum. Then the

factor matrices satisfying this constraint can be easily constructed using the principal components

ξ. The first k columns of the principal component matrix ξ (2.10) are chosen to form the columns

of A2 and the first k columns of V are chosen to form the rows of the factor score matrix F2. The

remaining (r− k) columns of ξ and V multiply to form the residual matrix E2. Now the matrices

A2 and F2 form the Q-mode representation of the data matrix.

2.5 Varimax Rotation

Consider k numbers of eigenvectors corresponding to the first ‘k’ largest eigenvalues of the cross-

product matrix (XT X) (where k ≤ r, the rank of the matrix X) forming the k columns of the matrix

V , and the corresponding principal components forming the matrix ξ. Note that in Q-mode factor

analysis, ξ and VT are denoted as factor loading matrix A2 and factor score matrix F2 respectively.

Then V and ξ (i.e. FT
2 and A2) have the following characteristics (see Chapter 2.2):

• V TV = I,

• ξi ≡ XVi = γiUi,

• ξT ξ = Λ is a diagonal matrix, i.e. column vectors of ξ are orthogonal among themselves.

ξT ξ is also stationary.

• The data matrix X can be approximated as, X ≈ ξVT ,

• XX T −ξξT = ε,

• The diagonal elements of the matrix ξξT ( i.e. ∑k
j=1 ξ2

i j) are known as the communality. It is

also the variance of the matrix X explained by each row of the principal component matrix

ξ of k columns. The diagonal elements of ε define the unexplained residual variance of X .
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As the principal components are primarily derived to reduce the dimensionality of the data

space, the elements of the principal components are often arbitrarily distributed, and the corre-

sponding spatial patterns are difficult to interpret.

The initial principal component solution is then linearly transformed/ rotated according to a

suitable criterion to obtain the desired end solution which is easier for interpretation. There are

two classes of transformation, orthogonal and oblique, used for this purpose. The orthogonal

transformation rigidly rotates a predetermined number of principal components through certain

angle in the reduced space determined by the PC/ EOF analysis, for better interpretation of the

data. In this method the orthogonality of the reference axes are retained. In oblique rotation

method, the principal component vectors are rotated without retaining the orthogonality of the

reference axes, to identify the data clusters (if they exist) and to provide greater interpretative

capability than orthogonaly transformed solutions.

The important difference among the principal components, orthogonaly rotated and various

obliquely rotated solutions is that the final vectors are described in terms of different sets of refer-

ence axes, but in the same Euclidean space of reduced dimensions.

The most frequently used varimax method, which uses the orthogonal rotation of principal

components is discussed here in some detail. In this method the variance of the squared rotated

components are maximized, unlike in the determination of principal components (where the sum

of the squares of the elements of the principal components determined are stationary). The varimax

rotation causes the elements / loadings of the rotated principal components to be redistributed,

such that a few elements have large amplitudes and many are close to zero, which increases the

discrimination among the elements. Hence, in large data matrices, regional relationships between

variables (if exists) are enhanced in contrast to the marginal ones over the remaining regions of

the domain. This hopefully makes the rotated solutions easier to interpret.

In varimax method the principal components (or factor loading vectors) are linearly combined

(or rotated) using orthogonal matrices. Let W be an orthogonal matrix with the property,

W TW = WW T = I

Then the principal components are rotated by W and the matrix X is expressed in the form,

X ≈ ξV T = ξWW TV T = ηV̂ T

where V̂ = VW and η = ξW . As infinitely many orthogonal matrices are possible, it should be

noted that the rotated solution η is only one among infinitely many alternative solutions. Then the

rotated matrices η and V̂ have the properties:

• ηηT = ξWW T ξT = ξξT i.e. the communality (∑k
j=1 ξ2

i j) is invariant under orthogonal rota-

tion
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• ηT η =W T ξT ξW =W T ΛW �= ξT ξ i.e. rotated column vectors of η are not orthogonal among

themselves and lose the principal component property

• and V̂ TV̂ = I.

For the principal components with real elements, the criterion used is that the variance,

σ2 = ∑k
j=1

{
∑N

i=1

[(
η2

i j/h2
j

)−∑N
i=1

(
η2

i j/h2
j

)
/N

]2
}

/N

is maximum, where h2
j is a normalizing factor and represents the variance of the j-th row of k-

principal components or the communality defined as,

h2
j = ∑k

n=1ξ2
jn = ∑k

n=1η2
jn

where k is the number of principal components considered in the varimax rotation.

The transformation matrix is determined for two principal components at a time, and then the

rotated principal components are obtained. For example, consider the orthogonal rotation of the

following two normalized principal components xi and yi (of row normalized principal component

matrix with the square root of their communality),




x1 y1

x2 y2
...

...

xN yN




[
Cosφ −Sinφ
Sinφ Cosφ

]
=




X1 Y1

X2 Y2
...

...

XN YN




where φ is the angle of rotation and,

Xi = xiCosφ+ yiSinφ

Yi = −xiSinφ+ yiCosφ

Now the varimax criterion requires that the sum of the variances of Xi and Yi,

Variance =
{

N∑N
i=1

[(
X2

i

)2
+

(
Y 2

i

)2
]
−

(
∑N

i=1X2
i

)2 −
(
∑N

i=1Y
2

i

)2
}

/N2

is a maximum. Differentiating the above expression with respect to φ, noting that,

(dXi/dφ) = Yi

(dYi/dφ) = −Xi
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and setting the derivative of the Variance to zero,

N∑N
i=1

[
XiYi

(
X2

i −Y 2
i

)]−∑N
i=1 (XiYi)∑N

i=1

(
X2

i −Y 2
i

)
= 0

and substituting for Xi and Yi in terms of xi and yi and φ, we get the angle of rotation φ satisfying

the varimax criterion as,

φ = (1/4)Tan−1(α)

where α = (α1/α2), and

α1 = 2
[
N∑N

i=12(xiyi)
(
x2

i − y2
i

)−∑N
i=12(xiyi)∑N

i=1

(
x2

i − y2
i

)]
α2 = N

{
∑N

i=1

[(
x2

i − y2
i

)2 − (2xiyi)
2
]}

−
{[

∑N
i=1

(
x2

i − y2
i

)]2
−

[
∑N

i=1 (2xiyi)
]2

}

Then both the principal components are rotated through the angle φ. This rotation operation is

made for all pairs (i.e. for k(k−1)/2 pairs) of principal components in the following order:

[(ξ1,ξ2), (ξ1,ξ3), (ξ1,ξ4), · · · (ξ1,ξk);
(ξ2,ξ3), (ξ2,ξ4), · · · (ξ2,ξk);

· · ·
· · · ;

· · · (ξk−1,ξk)]

After each rotation, the old components are replaced by the rotated component before the next

pair is taken for rotation in the scheme indicated above. The above rotation scheme is repeated

until k(k−1)/2 successive rotation of φ = 0 are obtained, i.e. until the process converges. When

the rotation of all the pairs of components is completed the rows of the rotated components are re-

normalized by the square root of their respective communalities. The effectiveness of the rotated

vectors in identifying the distinct regional features within the data set and helping in their phys-

ical interpretation, can be judged by the ratio between the variance (σ2) of the rotated principal

components and its limiting value, i.e. by the factor,

ν = 100σ2k/(k−1) (2.27)

where the limiting value of σ2 has been shown to be (k− 1)/k by Kaiser [1958]. From limited

number of studies Horel [1984] reports that if ν is large (> 60) the transformation efficiently de-

scribes regional factors which are nearly orthogonal, and if ν is small (< 40) the varimax approach

is inappropriate. It is in order here to remark that, even after rotation of the principal components,
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there is no guarantee that the rotated solution will help in the physical interpretation of the solution

or represent dynamically important variability. As with any statistical tool, one must determine

whether the rotated solutions have any physical meaning.

2.5.1 Rotation of Principal components with complex elements

For a complex data matrix, the principal component matrix will be complex (i.e. ηi j are complex),

and the criterion used in the varimax method is,

σ2 = ∑k
j=1

{
∑N

i=1

[(
η∗

i jηi j/h∗jh j
)−∑N

i=1

(
η∗

i jηi j/h∗jh j
)
/N

]2
}

/N

is maximum, where (h∗jh j) is the normalizing factor and represents the variance of the j-th row

of k-principal components or the communality.

2.6 Number of Components to retain

The number of principal components (Factors/EOFs/modes) retained for rotation can significantly

affect the rotated spatial pattern. Hence care should be exercised in selecting a proper number of

components (i.e. truncating the eigenvalue sequence) for easy interpretation of the rotated solu-

tions. There are several tests/methods to determine the number of components to be retained for

rotation. Horel [1984] suggests that more components than that indicated by typical significance

tests need to be retained, as this will not have adverse effects on possible interpretation of compo-

nents, but retaining less number of components leads to distortion of spatial patterns, which is not

easily recognizable.

The variance of principal components has the tendency to decay exponentially for less im-

portant components, and hence the curve ln(λj) against the eigenvalue number j becomes linear

at higher modes. Therefore, the eigenvalue sequence can be truncated at the value of k where

the curve becomes linear - this is the simplest method for selecting the principal components for

interpretation/rotation!

The lower bound criterion of Guttman [1954] and Hakstian et al. [1982] of retaining all of

the principal components that contribute more total variance than does the typical normalised

time series, i.e., one unit of total variance, has been used by Horel [1984] in complex principal

component analysis.

Preisendorfer and Barnett [1977] and Preisendorfer et al. [1981] suggested a Monte Carlo

technique for the selection of number of eigenvectors in a PC/EOF analysis for which the desired

signal within the data matrix is above the level of noise. Presented below is a brief summary of

one of their significance tests as reported in Overland and Preisendorfer [1982].
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Let λ j, j = 1, ..., p, be the nonzero eigenvalues (arranged in the descending order of their

magnitude) of the correlation matrix of the data field. We will form their normalized valuesλ̂ j =
λ j/

(
∑p

k=1λk
)

and compare each of these normalized eigenvalues with that derived from a spatially

and temporally uncorrelated random process. A random number generator is used to generate

independent sequence of length N for p independent Gaussian variables with zero mean and unit

variance. The p eigenvalues of the cross correlation matrix of the above p independent variables

are computed. This experiment is repeated (say) 100 times. Let the set of normalized eigenvalues

produced by the r-th Monte Carlo experiment be,

λ̂r
j = λr

j/
(
∑p

k=1λk
)
, j = 1,.....p

For fixed j, let us order the λ̂r
j so that,

λ̂1
j ≤ λ̂2

j ≤ λ̂3
j ≤ ·· · ≤ λ̂100

j

For selecting the principal components for which the the geophysical signal is greater than

the noise level, the significance test used by Overland and Preisendorfer [1982] is in their own

words “Terminate the sequence λj at j = p′, where p′ is the largest integer m such that λ̂m exceeds

λ̂95
m ”. For convenience Overland and Preisendorfer [1982] have tabulated λ̂95

j for j = 1,2,3,4,5;

N = 20,60,100,200,1000; and p = 9,36,64,100 Table 2.1. Overland and Preisendorfer [1982]

suggest on the basis of an example concerning cyclone frequencies in the Bering sea, that the

tabulated values of λ̂95
j , hold not just in case of eigen values computed from the correlation matrix,

but also from those computed from the covariance matrix also.

2.7 Correlation matrix or covariance matrix?

While discussing whether to use the correlation matrix or the covariance matrix in EOF analysis,

Overland and Preisendorfer [1982] suggest that the covariance matrix is appropriate in locating

specific regions with high variance relative to the rest of the field, for example in resolving the

spatial distribution of sea surface temperature (SST) anomalies as in Davis [1976]. Correlation

matrix on the other hand is more appropriate in cyclone climatology studies, where the primary

concern is the study of spatial oscillations or variations of primary storm tracks. Overland and

Preisendorfer [1982] state

Comparison of results of the EOF analysis applied to the correlation and covariance

matrix of the same data set illustrates an important point in choosing between one or

the other approach for application to a geophysical problem. Since the sum of the

eigenvalues equals the trace of the matrix, the principal components in the covariance
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Table 2.1 Values of λ̂95
j used in the significance test of Overland and Preisendorfer [1982] for

selecting the principal components above the noise level, where p is the number of spatial locations
and N is the number of elements in each time series

N
p j 20 60 100 200 1000
9 1 29.78 29.78 18.33 15.89 13.11

2 22.00 17.33 15.67 14.33 12.44
3 17.89 15.00 14.11 13.22 12.11
4 14.67 13.22 12.78 12.33 11.67
5 11.56 11.44 11.56 11.56 11.33

36 1 29.78 29.78 18.33 15.89 13.11
2 22.00 17.33 15.67 14.33 12.44
3 17.89 15.00 14.11 13.22 12.11
4 14.67 13.22 12.78 12.33 11.67
5 11.56 11.44 11.56 11.56 11.33

64 1 12.00 6.50 5.03 3.86 2.47
2 10.69 5.89 4.61 3.58 2.38
3 9.50 5.38 4.34 3.44 2.33
4 8.78 5.08 4.19 3.28 2.27
5 7.91 4.77 3.91 3.17 2.23

100 1 10.45 5.31 3.98 2.91 1.74
2 9.29 4.81 3.72 2.75 1.69
3 8.57 4.55 3.55 2.65 1.66
4 7.95 4.30 3.39 2.56 1.62
5 7.39 4.14 3.23 2.47 1.59

approach are affected by the variance of each spatial variable as well as the covari-

ance between the variables. The covariance approach would therefore be particularly

useful in locating specific regions with high variance relative to the rest of the field;

an example would be in resolving the spatial distribution of sea surface temperature

anomalies. In an application of the correlation matrix the sum of the eigenvalues will

again equal the trace of the matrix, but the contribution toward the vectorial direction

represented by the EOF’s is exclusively from the off-diagonal elements. The spatial-

patern-detection property of the correlation approach, as displayed in contour maps

of the EOF modes, is advantageous in such applications as the cyclone climatology,

in which one is specifically interested in spatial oscillations or variations of primary

storm tracks.


