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Abstract 

The coral reef ecosystems in the Lakshadweep Sea are among the least studied due to the dearth of in-

situ measurements. The objectives of this study were to compare the remote sensing datasets with the 

available in-situ measurements and confirm the reliability of the former for further studies in this 

region. The study also examines how the sea surface temperature and salinity triggered coral bleaching 

during El Niño Southern Oscillation (ENSO) /Indian Ocean Dipole (IOD) events. We found that 

satellite observations of sea surface temperature (r = 0.94) and salinity (r = 0.81) correlated well with 

in-situ measurements. Such a high degree of correlation enabled us to analyse satellite data for inter-

annual variations like ENSO and IOD. In the study area, coral bleaching due to salinity variation was 

found to be negligible. The study delineates a coral bleaching threshold temperature and the prevalence 

of such warm waters in the coral environment. Analysis revealed a mass coral bleaching peak during 

the El Niño event in 2016, with a maximum prevalence of 78 days. Similarly, significant coral 

bleaching events were observed in 2010 (El Niño; 63 days) and 2019 (PIOD; 56 days). Maximum 

temperature was noticed during the spring inter-monsoon (March to May). But from 2015, intense 

warming in the coral region was also noticed in the fall inter-monsoon (October). Combined with 

global warming, the threat of thermal stress to corals may continue in the long term, which will 

negatively impact the health of reef ecosystems. 
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1.Introduction 

Coral reefs are considered comparable to tropical rainforests in terms of biodiversity, indicating their 

ecological importance on a global scale (Plaisance et al. 2011; Fisher et al. 2015). Coral reefs play an 

important role inhost significant small-scale and artisanal fisheries, which account for 10% of global 

fishing production, and thus have great socio-economic importance. The majority of coral reefs are 

found in tropical latitudes between 22°S and 22°N, where the maximum seasonal variation of ocean 

temperatures will be within 4–5 °C and by about 30°C on average during the highest day's temperature 

(Kleypas et al. 1999). 

The Lakshadweep Islands are among the least studied coral atolls located at a distance of 200–300 km 

from the southwest coast of India. Most of the islands’ coral reefs are atoll-type, except for the platform 

type reefs at Androth (Mallik 2017). The total reef area of the Lakshadweep islands is 933.7 square 

kilometres, which includes a combined lagoon area of 510 square kilometres and a diverse range of 

flora and fauna can observe in the lagoons on each island(Hoon 1997). In recent decades coral reefs 

have been under threat due to local population-related pressures and global climate change (Hoegh-

Guldberg et al. 2014; Nobi and Dinesh Kumar 2014; Stocker 2014; Kumaresan et al. 2018). Various 

environmental stressors, such as changes in temperature, increased solar radiation, and alterations in 

water chemistry, are known to cause coral bleaching. Additionally, physical stressors like 

sedimentation and increased turbidity can also contribute to coral bleaching (Hoegh-Guldberg 1999). 

Large-scale coral bleaching events are caused mainly by elevated sea surface temperature (SST)(Li 

and Reidenbach 2014). According to (Vivekanandan et al. 2008), coral bleaching episodes happen 

when surface waters become too warm and remain at that temperature for more than 28 days. 

Endosymbiotic microalgae (zooxanthellae), which normally provide the coral polyps with over 90% 

of their metabolic needs, are unable to withstand such high temperatures and are therefore expelled 

from the host (Eladawy et al. 2015).  

The geographic setting of the Lakshadweep Islands favour the increase in sea surface temperatures, 

ultimately leading to coral bleaching (Shenoi et al. 1999). In-situ coral reef monitoring via snorkelling 

or scuba diving gives vital information about reef health at local scales. But, the paucity of resources 

limits the coverage and repeatability of such monitoring to a small percentage of coral reefs worldwide. 

Understanding anthropogenic and climate change impacts on coral reefs in remote or inaccessible areas 

is made possible using remote sensing techniques. Because comprehensive individual surveys may be 

costly and time-consuming, attempts to broader monitoring of the environmental status of coral reefs 

(e.g., local or globally) rely on satellites (Rowlands et al. 2012) . Although satellites cannot directly 

monitor the health of coral reef ecosystems, satellite SST data can be used as a metric to indicate where 
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and when heat stress will cause corals to bleach (Hedley et al. 2016). Since 1980, global SST has been 

gradually increasing, which has increased in the frequency and intensity of El Niño Southern 

Oscillation (ENSO), and marine heatwave events (Bellwood et al. 2019). Such warming events have 

triggered massive coral bleaching (MCBE) and mortality (over 90% of coral reefs) worldwide since 

1998 (Podestá and Glynn 2001; Baker et al. 2008; Kleypas et al. 2015; Morrison et al. 2020). Because 

of weak monsoons, high sea pressure, recurrent winds from the east and southeast, and colder SST in 

spring and early summer (which may become warmer than typical by late summer), El Niño frequently 

results in drier conditions (Lough 1994; Risbey et al. 2009). The Indian Ocean Dipole (IOD) has a 

variety of consequences and contributions to the environmental settings of the region at a large scale 

(Saji and Yamagata 2003). The Arabian Sea experiences dry conditions and severe increases in 

temperature during positive IOD episodes, resulting in coral bleaching (Abram et al. 2008; 

Jayakrishnan et al. 2014). General estimates reveal that approximately 10% of the world’s coral reefs 

have already perished, and about 60% are at risk due to environmental and anthropogenic activities. 

Here we present an analysis of the SST and salinity variations in the Lakshadweep Sea and how these 

parameters trigger coral bleaching especially during ENSO and IOD events.  

2.Materials and methods 

The present study uses observational/satellite sea surface temperature and sea surface salinity datasets 

for a 12-year period (1st January 2010 to 31st December 2022) to elucidate environmental changes.  

2.1 In-Situ measurements 

Lakshadweep Islands are located in the Arabian Sea, about 225–450 km away from the southwest 

coast of India, between 8 °N and 12 ° 3' N latitude and 71 °E and 74 °E longitude (Figure 1). We 

conducted a total of four CTD surveys in the study area from 2021 to 2022. Two offshore surveys were 

carried out during cruises in the outer waters of the Lakshadweep islands in July 2021 and November 

2022. Additionally, two surveys were conducted in the lagoon habitats at selected sites within the 

Agatti, Kavaratti, Perumal Par, and Bangaram Islands in January 2022 and December 2022. The 

selection of these sites was based on the environmental conditions of the lagoon habitats. A table 

detailing the location of each sampling site can be found in the Supplementary section (Table S.T1). 

In-situ temperature and salinity data have been measured using Seabird 19 plus CTD. This CTD probe 

can measure depths up to 600m with a temperature accuracy of ±0.002°C and a conductivity accuracy 

of ±0.002 mS cm-1. We utilized five years’ 2017–2022weekly salinity data and daily data of SST from 

drifting subsurface profiling float (latitude: 11.47°N, longitude: 71.22°E) and NIOT buoy (Latitude: 
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10.87°N, Longitude: 72.21°E). This data was used to compare and validate data derived from satellite 

observations.  

2.2 Satellite observations 

Daily (night-time) SST data with 5 km resolution was retrieved from NOAA Coral Reef Watch 

(CRW), commonly known as CoralTemp. CoralTemp SST datasets were constructed by combining 

two related reanalyses (reprocessed) SST products and a near real-time SST product. The CoralTemp 

SST is one of the finest and most internally consistent daily global SST products ever generated, and 

included data from 1st January 1985 to the present. Weekly salinity data has been obtained from the 

Aquarius Level 3 sea surface salinity version 5.0 with a 1-degree resolution from 2011- Aug-25 to 

2015-Jun-07, and NASA Soil Moisture Active Passive (SMAP) version 3.0 with a resolution of 70 km 

from April-2015 to Dec 2021 Daily estimates of surface wind and precipitation datasets were obtained 

from the ECMWF-ERA-5 (https://cds.climate.copernicus.eu/).  

2.3 Quantifying agreement between datasets 

The in-situ measurements at 1 m depth were deemed the best/most reasonable to compare with remote 

sensing measurements (Thakur et al. 2018). A few metrics were used to assess the relationship between 

remote-sensing products and in-situ measurements. For this, we calculated the Pearson correlation 

coefficient (r), indicating the relation between the two variables. If the coefficient value lies between 

+ 0.50 and + 1, it is said to be a strong correlation. Next, we calculated the difference between the two 

measurements (value from the overlapping pixel of the remote sensing product minus the in-situ 

measurement, referred to as "bias"), by which bias's standard deviation (S.D.) and root mean square 

errors (RMSE) were estimated. We evaluated in-situ data with satellite products using the Index of 

agreement (d-index) by using the ratio between RMSE and the potential error between the two 

measurements. This index is also dimensionless, with a value that ranges from 0 (no agreement at all) 

to 1 (perfect agreement), and is sensitive to differences between two measurements. To assess the 

robustness of the correlation between SST and sea surface salinity (SSS), a Monte Carlo simulation 

was conducted (Preacher and Selig 2012). This involved generating 20,000 random datasets based on 

the observed data, while maintaining the same sample size and distribution characteristics. The 

correlation coefficient was calculated for each simulated dataset, resulting in a distribution of 

correlation coefficients. From this distribution, a 95% confidence interval was derived to estimate the 

uncertainty associated with the correlation estimate. 
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2.4 Indian Ocean Dipole (IOD) and El Niño Southern Oscillation (ENSO) 

We used the Dipole Mode Index (DMI) (Saji et al. 1999) for IOD and the Niño 3.4 index for ENSO to 

study their impact (Rasmusson and Carpenter 1982; Bamston et al. 1997; Trenberth 1997)on coral 

bleaching events. The IOD Index compares SST anomalies in a box that covers the western (50°E–

70°E, 10°S–10°N) and eastern (90°E–110°E, 10°S–0°) Indian Oceans. The Niño 3.4 SST anomaly 

index is constructed from SST in the Pacific region between 170°W–120°W, 5°S–5°N. The variability 

of Niño 3.4 in the Pacific region plays a significant role in shaping the climate conditions in the Indian 

Ocean region; and the Niño 3.4 index for the December–February (DJF) period and the IOD index for 

the March–June (MAMJ) period is used for the present study. Both indices are based on the Reynolds 

Olv2 SST study and were collected from the NOAA State of the Ocean Climate webpage (NOAA, 

2021). 

3. Results and discussion 

3.1 Statistical comparison 

The statistical analysis revealed the concordance of of satellite data with in-situ observations. Scatter 

plots between in-situ and satellite-derived SST (Figure 2a) showed a high positive correlation (Pearson 

correlation coefficient, r) of 0.94, while the correlation coefficient (r) for SSS was 0.81. In both cases, 

r values were statistically significant (p-value < 0.05). The S.D., mean, maximum, minimum, RMSE, 

Pearson correlation coefficient, and Index of agreement (d-index) between in-situ and satellite data in 

the study area are summarised in Table 1. The statistical analysis reveal a good agreement between the 

satellite and in-situ measurements. The S.D. bias for SST was 0.2°C. The SST had an RMSE range of 

0.2°C, with an index of agreement (d-indices) of 0.96. Similarly, salinity also showed good agreement 

with in-situ measurements. The Index of the agreement for the satellite salinity was 0.84, and with 

RMSE of 0.38.  The Monte Carlo simulation (Figure 2b) analysis also revealed a strong and statistically 

significant correlation between SST and SSS. The confidence interval for SST ranged from a lower 

limit of 0.9353 to an upper limit of 0.944, indicating that the true value of SST falls within this range 

with 95% confidence. This result was further supported by the exact confidence interval, which also 

showed consistent results with a lower limit of 0.9352 and an upper limit of 0.9444. Similarly, the 

analysis of SSS yielded a confidence interval with a lower limit of 0.7412 and an upper limit of 0.8616, 

suggesting that the true value of SSS falls within this range with 95% confidence. The exact confidence 

interval demonstrated consistent results, with a lower limit of 0.7415 and an upper limit of 0.8618. 

Overall, these findings indicate that the observed relationship between the variables is unlikely to be 

due to chance and is likely to be consistent across different datasets.  
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The results obtained from the both analyses enhance our confidence in the correlation and provide 

valuable insights into the association between SST and SSS in the study area. These results also justify 

further analysis using satellite data to understand inter-annual variations in ENSO and IOD and 

influence of these phenomena on coral bleaching events. 

3.2 Hydrography of the Lakshadweep region 

In the Lakshadweep Sea, the annual air temperature varies between 25 °C and 35 °C, with humidity 

above 70% for most of the year. The winds that prevail over the Lakshadweep are predominantly 

northwest throughout the year, with an average speed of 5–8 ms-1, which peaks from June to August. 

The Lakshadweep receives the most rainfall during this period, with a total annual rainfall of 1600 mm 

(Vijaykumar et al. 2014; Sreekesh 2016). The tide in the Lakshadweep Sea is mixed and semi-diurnal, 

with a maximum range of 1.4 m (micro-tidal). Minimum wave activity was noticed from November 

to March, while high wave activity was during the southwest monsoon (June–September) period. But 

the presence of coral reefs dramatically decreases wave activity and provides calm regions inside the 

lagoon (Prakash et al. 2014). The southeastern Arabian Sea is a dynamic climatic region influenced by 

the seasonal reversal of surface currents driven by wind patterns. This region experiences multiple 

surface ocean currents, including the West India Coastal Current (WICC), East India Coastal Current, 

Winter Monsoon Current, and Summer Monsoon Current (Shankar et al. 2002). Along the southwest 

coast of India, which includes the Lakshadweep region, the seasonal monsoons play a significant role 

in determining physical dynamics of the region. During the summer monsoon season , strong upwelling 

occurs, while downwelling prevails during the winter monsoon . (Smitha et al. 2008; Yi et al. 2018)The 

downwelling associated with the winter monsoon leads to convective mixing and deepening of the 

mixed layer (Madhupratap et al. 1996). Notably, the early winter monsoon gives rise to a large anti-

cyclonic eddy known as the Lakshadweep High (LH), which spans a diameter of 400 to 500 km and 

reaches depths of approximately 300 m(Shankar and Shetye 1997). Conversely, during the early 

summer monsoon, a cyclonic eddy called the Lakshadweep Low (LL) forms at the same location 

(McCreary Jr et al. 1993). The LH contributes to high SST and a deep thermocline, while the LL 

promotes lower SST and a shallower thermocline. The Arabian Sea is characterised by distinct water 

masses with varying temperature, salinity, and depth characteristics. The upper 100 m are dominated 

by the Arabian Sea High Saline Water (ASHSW), with temperatures ranging from 28°C to 24°C and 

salinity ranging from 36.7to 35.3PSU. Between 200 and 400 m, Persian Gulf Water (PGW) prevails, 

characterized by temperatures ranging from 19°C to 13°C and salinity ranging from 37.5 to 35.1 

PSU(Kumar and Prasad 1999). 
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The intrusion of low salinity waters from the Bay of Bengal into the Arabian Sea is clearly observed 

in the data presented in Figure 3(a–e). In November, the study area exhibited high salinity values (>35 

PSU), but it was noted that low salinity waters extended into the Arabian Sea up to a latitude of 6°N. 

However, in December, a patch of low salinity waters (<34 PSU) mixed with the higher salinity waters 

in the region and expanded to cover the study area, resulting in the entire region displaying a salinity 

< 35 PSU. By January, the salinity in the study area had dropped further (< 33.5 PSU), and the low 

salinity water mass had extended even further north. The analysis of SMAP data, capturing the annual 

variation in salinity from 2016 to 2022 in Agatti Island, also confirms the presence of low salinity 

waters originating from the Bay of Bengal in the study area. Additionally, the temperature-salinity (T-

S) diagram (Figure 3(e)) near the Agatti site indicates water characteristics typical of the Bay of 

Bengal, with temperature ranging from 25 to 29°C, salinity from 28 to 35 PSU, and sigma-t between 

21 and 22. These findings align with the established understanding that the study area experiences the 

influx of low salinity waters from the Bay of Bengal during the November to January season (Rao et 

al. 2014). 

Based on the CTD observations, Figure S1(a–d) illustrates the temperature variation along a selected 

transect off four islands of the Lakshadweep region. The water temperature in these islands exhibits a 

range between 28.6°C and 31°C. The highest temperature of 31°C is observed at the reef edge of 

Kavaratti Island. Agatti Island displays higher temperatures in the coastal region, while the lowest 

temperatures are observed in the reef edge region. On the other hand, Bangaram and Kavaratti Islands 

exhibit higher temperatures in both the coastal and reef edge stations. Kavaratti Island shows a similar 

temperature trend pattern as Bangaram Island. Perumal Par Island, on the other hand, displays a 

uniform water temperature throughout the entire water column. Figure S1(e–h) presents the variations 

in salinity in the four islands of the Lakshadweep region. The salinity values observed during the study 

range from 33.2 PSU to 34.9 PSU. Kavaratti Island exhibits the highest salinity value at the coastal 

station (34.9 PSU), Bangaram Island shows the lowest salinity value of 33.2 PSU. 

Figure S2(a–d) displays the variation of ocean temperature along a selected transect in the four islands 

of the Lakshadweep region in December 2022. The water temperature in the four islands exhibits a 

range between 28.3°C and 30°C. The highest temperature of 30°C was recorded in Bangaram Island. 

In contrast, the waters of Perumal Par Island showed a consistent and uniform water temperature 

throughout the entire water column. Figure S2(e–h) presents the variation of salinity in the four islands 

of the Lakshadweep region. During the observation period, the salinity values ranged from 34.5 PSU 

to 35.3 PSU. Kavaratti Island recorded the maximum salinity value at the coastal station (35.3 PSU). 
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The higher salinity in this region indicates the presence of high saline waters from the Arabian Sea. 

On the other hand, Bangaram Island exhibited a lower salinity value of 33.2 PSU.  

Figures S3 & S4 represent the offshore locations of the study area in July 2021 and November 2022. 

In both survey periods, the actual depth of each location was 700 m. However, due to the complex 

bathymetric gradient in the Lakshadweep atolls, the CTD was lowered only up to a depth of 75 m. 

From the Figure S3(a–h), it is evident that the mixed layer depth in the locations was about 55 m. The 

maximum temperature recorded at each location was around 29°C, while the minimum temperature 

was approximately 25°C. The salinity values ranged from 35.2 PSU to 35.7 PSU. In addition, from 

Figure S4(a–h), it can be observed that the mixed layer depth was below 20 m. The temperature values 

ranged from 29°C at the surface to 21°C at a depth of 75 m. The D26 was located at approximately 30 

m depth. The salinity values ranged from 34.8 PSU to 35.3 PSU, with a maximum of 35.5 PSU 

observed at a depth of 37 m. 

3.2.1 Climatology of the Lakshadweep reef region 

The daily climatology of SST and salinity in the Lakshadweep Sea, as shown in Figure 4, exhibited 

seasonal variation. During the Southwest monsoon (June to September), the SST decreased from 

29.5°C to 28.3°C, while the salinity varied from 35.3 PSU to 35.8 PSU. In the fall inter-monsoon 

(October), SST increased from 27.8°C to 28.5°C but remained unchanged during winter monsoon 

(November to February). Compared to the fall inter-monsoon (secondary heating period), the SST 

decreased from January to the first week of March. Further, a warming trend was noticed during the 

spring inter-monsoon (March to May; primary heating period), and the SST exceeded 30°C. The 

salinity showed the highest value (35.89 PSU) in August due to the presence of the Arabian Sea high 

saline water mass (Kumar and Prasad 1999). While during the winter monsoon, the salinity was 

minimum (33.9 PSU) in the Lakshadweep Sea region, which may be due to the intrusion of low salinity 

water from the Bay of Bengal (Rao et al. 2014) . According to(Guan et al. 2015)the thermohaline 

tolerance limit of coral is 29.6°C and 28.7–40 PSU, respectively. In the Lakshadweep region, the inter-

annual variation of SST is from 27.5 to 30.6°C and exceeds 29.6°C during the primary heating period. 

In contrast, salinity variation is minimum (33.9–35.89 PSU) and within the tolerance limit. Therefore, 

warm temperature periods can strengthen coral bleaching events compared to the salinity variation.  

3.3      Effects of ENSO and IOD on SST and bleaching threshold    

El Niño and positive IOD events can have a significant impact on coral (Saji and Yamagata 2003; 

Claar et al. 2018). During El Niño events, there is a notable increase in SST across the equatorial 

Pacific, leading to above-average temperatures. This warming is associated with changes in 
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atmospheric circulation patterns, resulting in widespread effects on climate, including shifts in rainfall 

patterns and the occurrence of extreme weather events in various regions around the world (Lough 

1994; Risbey et al. 2009). Positive IOD leads to warmer SST in the western Indian Ocean, influencing 

atmospheric conditions and precipitation patterns in the surrounding regions. El Niño events are more 

common than IOD events, and they tend to be more severe. The 1997–98 El Niño event was one of 

the strongest on record, and it caused widespread coral bleaching and mortality around the world 

(Podestá and Glynn 2001; Vargas-Ángel et al. 2001). While positive IOD events are less common than 

El Niño, they can also cause severe coral bleaching.  Several previous studies in the Lakshadweep 

region have identified the association between elevated SST induced coral bleaching and the 

teleconnection of El Niño and positive IOD events (Arthur 2000; Ahmad et al. 2011; Jayakrishnan et 

al. 2014) . These studies have found that during these climate events, the SST in the region increases, 

which eventually leads to coral bleaching. During the last decade (2010–2022), there have been two 

El Niño events (2010, 2016) and one positive IOD event (2019) (Figure 5). Co-occurrences of IOD 

with El Niño are rare in observations (Meyers et al. 2007; Santoso et al. 2012). 

Intense warming of the sea surface can cause coral bleaching, leading to coral death and reducing coral 

cover (Kumagai and Yamano 2018). The bleaching threshold approach estimates the number of days 

corals exceed a specific temperature limit. The term ‘bleaching threshold’ has been calculated as SST 

being 1°C higher than the maximum monthly mean SST for that location 

(https://coralreefwatch.noaa.gov/), which is widely used to detect heat stress in coral reefs and acts as 

a proxy for coral bleaching (Glynn and D’croz 1990). The results (Figure 6 upper panel) showed the 

persistence of warm waters above the coral bleaching threshold during the fall inter-monsoon (primary 

heating period) compared to the rest of the year. Further analysis revealed that during the years 2010, 

2016, and 2019, the study area experienced the maximum durations with SST above the bleaching 

threshold. It also showed an increasing trend, indicating that the ocean temperature is increasing 

rapidly compared to the previous decades.  In addition to that, the number of days exceeding the 

bleaching threshold in these years was significantly higher than in other years (Figure 6 lower panel). 

In the year 2016he corals around the Lakshadweep islands were exposed to temperatures above the 

bleaching threshold limit for 78 days, and showed intense bleaching. Similarly, in 2010, the water 

temperature in this region was above the bleaching threshold for more than two months (63 days), and 

in 2019, it was for 56 days. During 2012 and 2013, warm waters persisted in the coral environment for 

less than two weeks (10 and 13 days, respectively). Since 2014, the study area has consistently 

encountered warm water exceeding the bleaching threshold for more than 30 days annually, which 

would exert significant stress on the resident corals. 
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Unprecedented warming of waters with decreased wind speed and precipitation (Figure 7) was noticed 

during 2010, 2016 and 2019. The year 2010 was considered an El Niño year, Figure 7(a–b) depicts 

how where intense warming above the bleaching threshold (0.5 to 2.8 °C) persisted for 63 days (The 

third week of March to the first week of June). Throughout this period, there was a noticeable decrease 

in wind speed (<1.37 ms-1 on average). Moreover, the rate of precipitation was exceptionally low (< 

0.2 mm). The cooling of the water column by 2°C was noticed during the summer monsoon, and a 

marginal increase in wind speed and precipitation was noticed. This was followed by the fall inter-

monsoon, when warming was noticed but SST did not reach the coral bleaching threshold. The year 

2016 is considered the strongest El Niño year of the decade and witnessed the third mass coral 

bleaching in the 21th century (Idrees Babu and Kumar 2016; Head et al. 2019). A maximum of 3°C 

exceeded the bleaching threshold and lasted for more than 60 days at 2°C during the primary heating 

period (Figure 7c–d). The wind speed and precipitation rate also showed conditions favourable for the 

elevation of SST. The year 2019 stands out as the strongest IOD ever recorded in history (Ratna et al. 

2021; Shi and Wang 2021), and it negatively affected the coral environment. During this year, a 

variation of 0.5–1.5°C of stress level was observed, which lasted for more than 40 days. After the last 

week of May, the temperature decreased below the bleaching threshold, coinciding with the onset of 

summer monsoon conditions over this region, as noticed in the higher wind speed (>15 ms-1) and 

rainfall (> 25 mm) (Fig 7 e–f). 

The SST and SSS satellite products are typically suitable for monitoring offshore, and broad 

geographic regions; these may not always be accurate for coral reef ecosystems which occur in 

relatively shallow water (McClanahan et al. 2007; Castillo and Lima 2010; Stobart et al. 2015). Earlier 

comparisons of remote sensing SST datasets with in-situ temperature measurements in various 

geographical regions showed considerable discordance (Lathlean et al. 2011; Wu et al. 2016; Thakur 

et al. 2018). However, our study reveals a significant positive relationship between SST satellite 

products and in-situ measurements. Over the last 100 years, the SST in tropical regions has increased 

by nearly 1°C, and it is now increasing at rates of 1–2℃ per century and also If the present rate of 

global warming continues, the coral reefs may diminish totally over the next 20 to 50 years (Hoegh-

Guldberg 1999). Since 1989, 29 widespread bleaching events have occurred in Indian coral reefs 

(Vivekanandan et al. 2008, 2009). A 30-year SST record (1966–1995) concluded that the association 

between threshold SST and bleaching is area-specific (Winter et al. 1998). The Lakshadweep Islands 

are the only atoll reefs in India, and they are home to highly diverse coral reefs. Increase in SST poses 

a severe threat to these fragile ecosystems. Climatological variations in the salinity were found to be 

within the tolerance range (28.7––40 PSU) of corals. In a global warming scenario, SST over this 
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region during the primary heating period exceed the coral bleach limit (29.6°C), but the temperature 

remained below the ‘bleaching threshold’ during the secondary heating period. We also found that 

whenever the occurrence of ENSO or positive IOD induced an increase in SST, it resulted in intense 

coral bleaching events. Various studies have associated bleaching incidents with global warming and 

climate change (Glynn 1991; Sebens 1994; Hoegh-Guldberg 1999; Hughes et al. 2003; Sheppard 2003; 

Donner et al. 2005; Hoegh-Guldberg et al. 2007). The present study showed that since 2014, the warm 

waters above the bleaching threshold has persisted for more than 30 days per year in the primary 

heating period in the Lakshadweep atolls. This trend will be expected to continue in the coming years 

due to the combined effect of global warming and climate change, and this may cause the SST 

variability, and more bleaching events may also occur during the secondary warming period. 

4.Conclusion 

The present study illustrates that remote sensing data on SST and SSS, correlate well with in-situ 

measurements and can be used for future research. The SST variations are one of the factors 

influencing coral reef ecosystems, including the physical and chemical properties of the coral 

environment, as well as the distribution of flora and fauna. Coral bleaching events occur when surface 

waters temperatures surpass the threshold for bleaching and temperatures remain elevated above this 

threshold for more than 28 consecutive days. Our analysis indicates that the years 2010, 2016, and 

2019 witnessed the prolonged prevalence of warm water around the reefs, with 63, 78, and 56 days 

respectively, leading to severe coral bleaching. Upon examining the decadal variability SST from 2010 

to 2021, we found that since 2014, the SST exceeded the coral bleaching threshold for an average of 

30 days per year during the primary heating period (March–May). The maximum duration with 

persistent temperatures above bleaching threshold was observed during ENSO/PIOD years. 

Additionally, we identified a significant increase in the duration with temperatures above bleaching 

threshold during the primary heating period in recent years, suggesting substantial warming of SST in 

the Lakshadweep region compared to the previous decade. This warming trend may be attributed to 

global warming, further exacerbating the seasonal warming in the Lakshadweep region. If the trend of 

increasing SST persists, the prolonged prevalence of high SST can result in extreme coral bleaching 

events and severe impacts on coral reef ecosystems. This study also surmises that during the secondary 

heating period, the temperature remained below bleaching threshold for coral reefs, while it also 

detected an increasing is SST during this season in recent years. Coral bleaching is a significant threat 

to coral reefs worldwide, and the increasing trend in SST due to climate change poses a significant risk 

to these ecologically and economically important ecosystems. It is essential to monitor and understand 
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bleaching thresholds and their implications for coral reefs in order to develop effective management 

strategies to protect these valuable ecosystems.  
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Figure 1. Map of the Lakshadweep islands (Perumal Par, Bangaram, Agatti and Kavaratti) 

showing the observation stations 

 

Figure 2. (a) Scatterplots of Satellite SST/SSS and In-situ SST/SSS, and (b) Monte Carlo 

Distribution of SST and SSS 
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Figure 3. (a-c) Surface plot of SMAP SSS for November 2021-January 2022, (d) Annual 

Variation of SSS in the Lakshadweep region, and (e) T-S Diagram of January 2022 Survey. 
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Figure 4. Daily climatology of SST (°C) and salinity(PSU) in the Lakshadweep region (Latitude 

9–12°N and Longitude: 71.5–74°E) 

 

Figure 5. Niño 3.4 Index and Dipole Mode Index (DMI) (2010–2022) 
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Figure 6. Decadal variation of SST (upper panel), total number of days corals spent above the 

threshold temperature (lower panel) from 2010 to 2021 
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Figure 7. (a-f) Variation of SST, wind speed and precipitation in  ENSO and IOD years (2010, 

2016 and 2019) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



22 
 

List of Tables 

Table 1. Results of statistical analyses between in-situ and satellite data in the study area 

 SST SSS 

Mean 29.17 35.8 

Minimum 27.14 33.83 

Maximum 31.6 36.87 

Pearson correlation coefficient(r) 0.94 0.81 

RMSE 0.29 0.38 

SD Bias 0.28  0.3 

Index of Agreement 0.96 0.84 
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Figure S1 (a-d) variation of temperature along stations in Lakshadweep Island in January 2022 

Figure S1 (e-h) variation of salinity along stations in Lakshadweep Islands in January 2022 
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Figure S2 (a-d) variation of Temperature along stations in Lakshadweep Islands in December 2022 

Figure S2 (e-h) variation of salinity along stations in Lakshadweep Islands in December 2022 
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Figure S3 (a-h) Vertical variation of Temperature and Salinity along stations in Kavaratti 

Islands in July 2021 
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Figure S4 (a-h) Vertical variation of Temperature and Salinity along Four stations in Agatti 

Islands in November 2022 
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List of Supplementary Tables 

Table S.T1 – Details of sampling Locations at Lakshadweep waters 

  

Survey 

Type 

Locations Stations Latitude(N) Longitude(E) 

Lagoon Agatti 1 10.845 72.1839 

2 10.8489 72.1718 

3 10.8505 72.16 

Kavaratti 1 10.56119 72.63114 

2 10.56315 72.62742 

3 10.54848 72.61683 

Bangaram 1 10.94225 72.28905 

2 10.92709 72.28996 

3 10.92175 72.29358 

Perumal Par 1 11.20169 72.09487 

2 11.15421 72.086 

Off Shore Kavaratti 1 10.576823 72.664238 

2 10.570325 72.606155 

3 10.518648 72.612061 

4 10.590944 72.660133 

Agatti 1 10.79438 72.15553 

2 10.79542 72.15274 

3 10.87158 72.13668 

4 10.91565 72.1765 

 

 

 


