4. SYSTEMATICS AND LIFE CYCLES/ DEVELOPMENTAL STAGES

4.1 Species described

1. Parabothus polylepis
2. Crossorhombus valde-rostratus
3. Crossorhombus azureus
4. Engyprosopon cocosensis
5. E. latifrons
6. E. mogkii
7. E. grandisquamis
8. E. sechellensis
9. E. multisquama
10. E. xenandrus
11. Bothus myriaster
12. B. pantherinus
13. B. mancus
14. Bothus sp.
15. Asterorhombus intermedius
16. Psettina brevirictis
17. P. iijimae
18. Arnoglossus tapeinosoma
19. A. aspilos
20. A. elongatus
21. A. intermedius
22. A. imperialis
23. Laeops macrophthalmus
24. Chascanopsetta lugubris

4.2 Synonyms

ACTUAL NAME		SYNONYMS
PARABOTHUS POLYLEPIS	Arnoglossus polylepis	Alcock, 1889
	Rhomboidichthys polylepis	Alcock, 1890, 1898
	Bothus polylepsis	Norman, 1927
	Parabothus polylepis	Norman ,1931, 1934; Nielsen, 1984 Larvae : Lalithambika Devi, 1986, 99a, b.
		Alcock, 1890, 1898
CROSSORHOMBUS VALDE ROSTRATUS	Rhomboidichthys valde-rostratus	Gilchrist, 1905; Gilchrist and Thompson, 1917
	Platophrys dimorphus	Jordan and Starks, 1906; Franz, 1910; Jordan and Thompson, 1914
	Scaeops kobensis	Gilchrist, 1908

4.2 continued

E. MOGKII	Rhombus mogkii	Bleeker, 1854
	Achirus mogki	Bleeker, 1860
	Rhomboidichthys (Engyprosopon) mogkii	Gunther, 1862
	Pseudorhombus mogkii	Bleeker, 1863
	Platophrys (Arnoglossus) mogki	Bleeker, 1866-72
	Engyprosopon mogki	Weber, 1913 ; Norman 1927
	Bothus (Arnoglossus) mogki	Weber and Beaufort, 1929.
	Engyprosopon mogkii	Norman,1934; Larvae: Lalithambika Devi, 1986, 99a, b.
E. GRANDISQUAMIS	Rhombus grandisquama	Temminck and Schlegel, 1846
	Rhombus poecilurus	Bleeker, 1852
	Rhomboidichthys grandisquama	Gunther, 1862
	Pseudorhombus poecilurus	Bleeker, 1865
	Platophrys (Arnoglossus) poecilurus	Bleeker, 1866-72
	Rhomboidichthys spilurus	Gunther, 1880
	Rhomboidichthys spiniceps	Macleay, 1882 ; Ogilby, 1887
	Rhomboidichthys poecilurus	Regan, 1902, 1905
	Arnoglossus spilurus	Johnstone, 1904
	Scaeops grandisquama	Jordan and Starks, 1904, 1906 ; Fowler and Bean 1922; Von Bonde, 1925 ; Barnard, 1925
	Scaeops poecilurus	Jordan and Starks, 1905; Regan, 1908 ; Weber, 1913 ; Fowler,1928
	Scaeops spilura	Jordan and Seale, 1906, Fowler, 1928.
	Scaeops orbicularis	Jordan and Seale, 1907 ; Jordan and Richardson, 1909, Oshima, 1927 ; Wu, 1932
	Rhomboidichthys valderostratus	Jerkins, 1910
	Platophrys grandisquama	Gilchrist and Thompson, 1917
	Platophrys spiniceps	Mc Culloch, 1921
	Engyprosopon (Scaeops) grandisquama	Mc Culloch and Whitley, 1925
	Engyprosopon grandisquama	Norman, 1926, 1927,1934, 1939 ; Mc Culloch, 1929 ; Kamohara, 1936, 38,50, 58, 64; Okada and Matsubara, 1938 ; Kuronuma,1939, 1940 ; Blegrad, 1944; Liang, 1948 ; Smith, 1949; Munro, 1955, 58 ; Kuroda, 1951; Okada, 1955 ; Mori, 1956 ; Amaoka, 1963, 69; Punpoka, 1964 ; Larvae: Lalithambika Devi, 1986 ; Ozawa and Fukui, 1986., Fukui, 1997.

4.2 continued		
	Bothus (Arnoglossus) poecilurus	Weber and Beaufort, 1929 ; Suratti, 1936
	Engyprosopon grandisquamis	Nielsen, 1984 ; Larvae : Lalithambika Devi, 1999a, b.
E. SECHELLENSIS	Scaeops sechellensis	Regan, 1908
	Engyprosopon sechellensis	Norman, 1934 ; Nielsen, 1984 ; Larvae : Lalithambika Devi, 1986, 99a, b.
E. MULTISQUAMA	Engyprosopon multisquama	Amaoka, 1963, 69 ; Kamohara, 1964 ; Larvae : Lalithambika Devi, 1986, 99 a, b; Ozawa and Fukui, 1986, Fukui, 1997.
E. XENANDRUS	Engyprosopon xenandrus	Gilbert, 1905 ; Norman, 1934 ; Larvae : Lalithambika Devi, 1986, 99 a, b.
	Scaeops xenandrus	Fowler, 1928
BOTHUS MYRIASTER	Rhombus myriaster	Temminck and Schlegel, 1846
	Platophrys myriaster	Jordan and Evermann, 1902 ; Jordan and Starks, 1906 ; Snyder, 1912 ; Jordan, Tanaka and Snyder, 1913 ; Hubbs, 1915; Izuka and Matsuura, 1920 ; Kamohara, 1931 ; Kamohara, 1938
	Platophrys ovalis	Regan, 1908
	Platophrys circularis	Regan, 1908
	Bothus ovalis	Norman, 1927, 34 ; Okada and Matsubara, 1938 ; Kuronuma, 1942 ; Kamohara, 1950 ; Kuroda, 1951, 62; Matsubara, 1955.
	Bothus myriaster	Chabanaud, 1929 ; Wu, 1932; Norman, 1934 ; Okada and Matsubara, 1938 ; Smith, 1949 ; Kamohara, 1950, 58, 64 ; Mori, 1952, 56; Matsubara, 1955 ; Amaoka, 1964, 69 ; Nielsen, 1984 ; Larvae Lalithambika Devi, 1986, 99 a, b ; Ozawa and Fukui, 1986; Fukui, 1997.
B. MANCUS	Pleuronectes mancus Pleuronectes spinosus Rhombus macropterus Pleuronectes pictus Rhombus pavo Pleuronectes rhombus Rhomboidichthys pavo Platophrys (Platophrys) pavo	Broussonet, 1782 Schneider, 1801 Quoy and Gaimard, 1824 Forster, 1844 Bleeker, 1855 Jouan, 1861 Gunther, 1862 Bleeker, 1866-72
	Platophrys mancus	Smith and Swain, 1883 ; Jordan and Snyder, 1904 ; Jordan and Evermann, 1905 ; Gilbert, 1905 ; Jordan and Seale, 1906 ; Kendall and Goldsborough, 1911 ; Rendahl, 1921 ; Jordan and Jordan, 1922 ; Fowler, 1928 1931 ; Munro, 1958

4.2 Continued

	Platophrys leopardinus Platophrys pavo Rhomboidichthys mancus Platophrys smithi	Jordan and Mc Gregor, 1899 Steindachner, 1901 ; Seale, 1901 Gunther, 1909 Rendahl, 1921
	Bothus mancus	Norman, 1927, 1931, 1934 ; Roxas and Martin, 1937 ; Fowler, 1938, 1949 ; Smith, 1949 ; Marshal, 1950 ; Herre, 1953 ; Kamohara, 1954 ; Matsubara, 1955 ; Matsubara and Ochiai, 1963 ; Amaoka,1969 ; Nielsen, 1984 ; Larvae : Lalithambika Devi, 1986, 99 a, b ; Ozawa and Fukui, 1986 ; Fukui, 1997.
	Bothus (Platophrys) mancus	Weber and Beaufort, 1929
	Parabothus mancus	Wu ,1932
BOTHUS PANTHERINUS	Rhombus pantherinus	Ruppell, 1830-31
	Rhombus parvimanus	Bennett, 1832
	Rhombus sumatranus	Bleeker, 1851
	Psetta pantherina	Ruppell, 1852
	Passer marchionessarum	Valenciennes, 1855
	Pleuronectes lunulatus	Jouan, 1861
	Rhomboidichthys marchionessarum	Gunther, 1862
	Rhomboidichthys pantherinus	Gunther, 1862, 1909 ; Playfair and Gunther, 1866 ,1909. Klunzinger, 1871
	Pseudorhombus pantherinus	Bleeker, 1862
	Platophrys (Platophrys) pantherinus	Bleeker, 1866-72
	Citharichthys aureus	Day, 1877
	Platophrys pantherinus	Day, 1877 ; Steindachner, 1901 ; Jordan and Evermann, 1905 ; Jordan and Seale, 1906, Jordan and Richardson, 1908 ; Regan, 1908 ; Kendall and Goldsborough, 1911 ; Ogilby, 1913 ; Weber, 1913 ; Gilchrist and Thompson, 1917, Jordan and Jordan, 1922 ; Mc Culloch, 1922 ; Von Bonde, 1925 ; Fowler, 1926, 28, 31 ; Schmidt, 1930 ; Herre, 1934, Munro, 1958.
	Platophrys mancus	Jordan and Snyder, 1904

4.2 continued

	Pseudocitharichthys aureus	Weber, 1913
	Bothus pantherinus	Regan, 1920 ; Barnad, 1925 ; Norman, 1926, 1927, 34, 39; Mc Culloch, 1929 ; Borodin, 1932 ; Roxas and Martin, 1937; Fowler, 1938, 1949 ; Okada and Matsubara, 1938, 1955, Herre, 1941, 53 ; Schultz, 1943; Smith, 1949; Marshall, 1950 ; Matsubara, 1955 ; Munro, 1955 ; Nielsen, 1961, 84 ; Matsubara and Ochiai, 1963; Amaoka, 1969 ; Larvae : Lalithambika Devi, 1986, 99a, b Ozawa \& Fukui, 1986 ; Fukui, 1997
	Bothus (Platophrys) Pantherinus	Weber and Beaufort, 1929
ASTERORHOMBUS INTERMEDIUS	Platophrys (Arnoglossus) intermedius	Bleeker, 1866-72
	Engyprosopon intermedius	Regan, 1908
	Asterorhombus stellifer Arnoglossus intermedius	Tanaka, 1915 ; Okada and Matsubara, 1938, Matsubara, 1955. Norman, 1926, 27 ; Fowler, 1928, Mc Culloch, 1929 ; Herre, 1931 ; Roxas and Martin, 1937 ; Munro, 1958 ; Kamohara, 1959, 1964 ; Shih-Chieh, 1966 ; Larvae : Lalithambika Devi, 1986, 99a, b ; Ozawa and Fukui, 1986 ; Fukui, 1997.
PSETTINA BREVIRICTIS	Arnoglossus brevirictis	Alcock, 1890, 1896, 98 ; Weber, 1913;
	Crossolepis brevirictis	Norman, 1927
	Bothus (Arnoglossus) brevirictis	Weber and Beaufort, 1929
	Psettina brevirictis	Norman, 1934 ; Nielsen, 1984 ; Larvae : Lalithambika Devi, 1981, 1986, 1999 b.
P. IIJIMAE	Engyprosopon ijijmae	Jordan and Starks, 1904, 1906 ; Franz, 1910; Jordan, Tanaka and Synder, 1913.
	Psettina ijijmae	Hubbs, 1915 ; Jordan and Hubbs, 1925 ; Norman, 1931, 34 ; Kamohara, 1936, 38, 50, 58, 64 ; Okada and Matsubara, 1938 ; Kuronuma, 1940 ; Kuroda, 1951 ; Mori, 1952 ; Matsubara, 1955; Amaoka, 1963, 69 ; Larvae : Pertseva-Ostroumova, 1965; Lalithambika Devi, 1981, 89, 99 a, b ; Ozawa and Fukui, 1986 ; Fukui, 1997.

		4.2 continued
ARNOGLOSSUS TAPEINOSOMA	Platophrys(Arnoglossus)tapeinosoma	Bleeker,1866,1866-72
	Arnoglossus macrolophus	Alcock, 1889,90,98; Johnstone, 1904; Weber, 1913; Norman, 1927; Fowler, 1928
	Bothus (Arnoglossus) tapeinosoma	Weber and Beaufort, 1929
	Arnoglossus tapeinosoma	Norman, 1934; Nielsen, 1984; Larvae : Lalithambika Devi, 1986, 91, 99.
	Arnoglossus tapeinosomus	Arai and Amaoka, 1996.
	Rhombus aspilos	Bleeker, 1851, 52
	Arnoglossus aspilus	Gunther, 1862
	Platophrys(Arnoglossus)aspilus	Bleeker, 1866-72
	Bothus(Arnoglossus) aspilus	Weber and Beaufort, 1929
	Arnoglossus aspilos	Fowler,1928; Norman, 1934; Larvae : Lalithambika Devi, 1986, 91.
	Arnoglossus aspilos aspilos	Larvae : Lalithambika Devi, 1991, 99b.
A. ELONGATUS	Arnoglossus elongatus	Weber, 1913; Norman, 1934; ; Larvae : Lalithambika Devi, 1986, 99.
	Bothus(Arnoglossus) elongatus	Weber and Beaufort, 1929
		Bleeker, 1866, 1866-72
A. INTERMEDIUS	Platophrys(Arnoglossus)intermedius	Regan, 1902
	Rhomboidichthys intermedius	Regan, 1908
	Engyprosopon intermedius	Weber, 1913
	Anticitharus annulatus	Weber and Beaufort, 1929.
	Bothus (Arnoglossus)intermedius	Norman, 1926; 27, 34; Fowler, 1928; Mc Culloch,1929;
Larvae: Lalithambika Devi,1986, 99.		

4.2 Continued

	Arnoglossus imperialis	Kyle, 1913; Bertin, 1929; Chabanaud, 1930, 31; Bertin, 1932; Norman, 1930, 34
		Larve: Facciola, 1885; Petersen, 1909; Kyle, 1913; Bowman, 1923; Lalithambika Devi, 1986; 99a, b; Lalithambika \& Rosamma Stephen, 1998;
	Arnoglossu(Arnoglossu)imperialis	Chabanaud, 1933

with centrum (Amaoka, 1969) spine absent ; urostyle fused with hypural ; last neural and haemal spines fused present ; eyes on left side (except in reversed specimens).. The first neura
 optic chiasma monomorphic, the nerve of the right eye in sinistral forms always
 lower jaw generally prominent. Lower edge of the urohyal deeply emarginate so caudal vertebrae with well developed apophyses ; preopercular margin free ;
 anterior rays well in advance of the first ray of the blind side. Mouth terminal
 ocular side longer than that of the blind side and extending forward to the
 dorsal fin extending forward on to the head at least above the eye, none of the
 (Norman, 1934). with arches ; posterior caudal vertebra with downwardly directed parapophyses temporal ; mesocoracoid absent ; vertebral column with solid centra co-ossified frontal of the ocular side ; pectoral arch attached to the skull by a forked post-

 (ventral) fins generally with six or fewer number of rays, thoracic or jugular in fin with generally 17 or less principal rays, of which 15 are branched ; pelvic

 bothids from other flat fishes. singly or in combination with other characters help to distinguish larvae of
 full length ; the spines may or may not be present in cleithra, urohyal or posterior or get curved dorsalwards and may bear spines either in the proximal portion or opening or before that. The terminal portion of the processes either end straight posteriorwards along the midventral line of the body wall reaching up to the anal bar, Kyle, 1913) continue as extension from the dorsal basipterygial processes radials and the fins and the posterior basipterygial processes (cartilaginous pubic the cleithra, the anterior basipterygial processes differentiate into the pelvic fin

 rays in advance of the first ray of the right fin ; pelvic fin radials attached to the
 rays, of which 15 are branched and borne on hypural plates ; pelvic fin with six articulated through a system of pterygiophores and baseosts ; caudal fin with 17 forward extension of the dorsal fin over the skull to the level of the eye ; all rays compressed body ; continuous median fin folds without spinous rays ; the

is in the rear of the yolk mass (Ahlstrom, et al., 1984). yolk. In late stage eggs and newly hatched larvae the single oil globule usually pelagic, round, have a narrow to moderate perivitelline space, and homogenous

present account. Arnoglossus, Laeops and Chascanopsetta are described and discussed in the
 Indian Ocean Expedition and Naga Expedition. Larvae belonging to the genera representatives were not found in the collections taken during International subfamily Bothinae because, the other subfamily Taeniopsettinae
 basipterygial spines only. Others do not have spines. projection on the lower jaw. Crossorhombus and Lophonectes have

> and basipterygials. The second dorsal ray is moderately or slightly elongate. Bothinae. All Taeinopsettinae genera have spines on epiotics urohyal, cleithra
 size before metamorphosis. Early larval stages are often poorly represented in urohyal, basipterygia, cleithra and epiotics. Bothid larvae reach relatively large

 portion of intestinal coil in 23.4 mm SL. Median fin rays well developed and vertebra, distal portion of pteyrgiophore is pushed forwards along with the recta

səanłonıłs bu!podans pue u!〕
processes.

occupies posterior dorsal aspect of abdomen above intestinal loop. middle. Anus lies at the level of the sixth vertebral segment and swim bladder
 mm SL, rectal portion pushed forwards whereas the dorsal half remains
 vertebral segment forms an elliptical coil placed at the posterior end of teeth. Alimentary canal runs parallel to notochord to the level of seventh
 black, the right one has started shifting and has reached the dorsal profile. towards the caudal region. In 14.6 mm SL larvae, eyes are symmetrical and

 mm SL are available in the zooplankton collected during the International Indian

 head a little notched in front of eyes. Diameter of eye 3 to 4 in length of head,

ఫnpe әu। 29-31 vertebrae including urostyle. is cartilaginous in 14.6 mm but ossification is visible in 23.4 mm ; There are $10+$

 level of ascending loop of intestinal coil in 23.4 mm SL
 pelvic fin lie in advance of right fin, fourth ray lies opposite the cleithral tip, 23.4 mm SL pelvic fin rays are well differentiated. Three anterior rays of the left
 fin radial. In 14.6 mm SL the anterior basipterygial processes (pelvic fin radials) extension, the anterior basipterygial processes which in turn becomes the pelvic At a little distance below the cleithra basipterygial processes give out a forward continue as posterior basipterygial processes lying along the ventral body wall. cleithral tips run obliquely down, which on reaching the level of cleithral tip cartilaginous rods (dorsal basipterygial processes) between pectoral fin and

superior hypural upper and does not bear any ray directly on it.
85 scales in lateral line. Dorsal 83. Anal 63-66. Pectoral of ocular side with 11

Table 1 a - Parabothus polylepis - morphometrics, in mm (Larval stages).

Stations	Body Length	Right Eye	Stage	Snout to Anus	Head Length	Snout Length	Eye		Body depth at		Caudal Peduncle		Snout to origin of pelvic fin
							Width	Height	Pectoral fin base	Anus	Depth	Length	
Ki 707	14.6 SL	Symm etrical	Post flexion	5.40	3.50	0.85	0.62	0.65	3.74	4.97	1.47	0.66	2.86
AB 22	23.4 "	Migra ting	"	6.90	5.80	1.44	1.15	1.32	8.48	9.41	3.32	1.22	2.74

Table 1 b. Parabothus polylepis - meristics (Larval stages).

Stations	$\begin{aligned} & \hline \text { Size } \\ & (\mathrm{mm}) \end{aligned}$	Stage	Notochord	$\begin{gathered} \text { Right } \\ \text { Eye } \end{gathered}$	Fin Rays				Vertebrae		
					Dorsal	Anal	Caudal	Left Pelvic	Precaudal	Caudal	Total
Ki 707	14.6 SL	Post flexion	Flexed	Symm etrical	92	72	17	--	10	31	41
AB 22	23.4 "	"	"	Migra ting	94	73	17	3+3	10	29	39

 occur and are distributed on hypural plates as follows: inferior hypural lower 3,

 is discernible in 6.0 mm SL in which the full complement of the median rays,

'sə!̣əдds əmos u! uәәs s! se umop
and $10^{\text {th }}$ vertebral segments, and does not appear to push the alimentary canal
 twice the anteroposterior axis along the greatest width, ventral portion tapers and Engyprosopon, Bothus, Psettina and Arnoglossus spp., its dorsoventral axis is opens at the level of the $5^{\text {th }}$ vertebral segment, liver not massive as in a single elliptical coil. In the largest specimen available in the collection, anus

Kбоᅵoyd.an

available in these collections (Figs. 2 A, B ; Tables 2 a, b). and Naga Expedition zooplankton collections. Only postflexion stages are

Crossorhombus valde - rostratus (Alcock, 1890)

darker; hinder part of caudal with a broad blackish band (Norman, 1934) or bluish spots on head in front of interorbital space; median fins spotted with ones on lateral line are usually most prominent; male sometimes with small dark
 times () or $3 / 4$ to $7 / 8(\quad)$ that of head. Greyish brown, with darker spots and
 Dorsal 79-89. Anal (61) 63-74. Pectoral of ocualr side with 10 or 11 rays, the 5 to 7 gill-rakers on lower part of anterior arch. 48 to 61 scales in lateral line extending to below anterior edge of eye, length $32 / 3$ to nearly 4 in that of head. spine on the snout and some smaller spines on orbital margins. Maxillary
 width $11 / 3$ to $12 / 5$ times () or $3 / 5$ to $11 / 6$ times () diameter of eye; anterior

ㅍnpe әप।

collection. The number of vertebrae ranges from 10+24-26 including urostyle. neural arch remains cartilaginous even in the largest specimen of the present last three, fairly well developed in the preceding three, absent in others. First
 are clearly marked, neural processes are bony, haemal processes of the caudal

 tip of the liver. end of the left ramus curves dorsalwards and forwards and stops in front of the intestinal loop, while that of the right ramus before reaching the level of the distal basipterygial processes lie along the ventral aspect of the abdominal wall, distal larvae, fourth pelvic fin ray lies opposite the tip of the cleithra. Posterior right and three left pelvic fin rays occur in advance of the right fin. In 8.9 mm SL
valde-rostratus, from the Indian Ocean and adjacent waters. described and reported for the first time the post larval stages of Crossorhombus
 portion). The meristics and morphometrics agree with those of adults. The

Table 2 a - Crossorhombus valde-rostratus - morphometrics, in mm (Larval stages).

Stations	Body Length	$\begin{aligned} & \text { Right } \\ & \text { Eye } \end{aligned}$	Stage	Snout to Anus	Head Length	Snout Length	Eye		Body depth at		Caudal Peduncle		Snout to origin of pelvic fin
							Width	Height	Pectoral fin base	Anus	Depth	Length	
S8-23B	6.0 SL	Symm etrical	Post flexion	2.10	2.00	0.63	0.35	0.35	3.80	3.80	0.84	0.32	1.00
"	6.9		"	2.30	2.40	1.29	0.39	0.40	4.10	4.20	1.06	0.43	1.30
Ki 407	8.0	"	"	2.50	2.20	0.97	0.50	0.55	4.50	4.40	1.00	0.42	0.80
S10-7	8.9	"	"	2.40	2.40	1.09	0.45	0.48	5.90	5.90	1.70	0.68	0.80
S11C-100	9.8	"	"	2.50	2.50	1.16	0.45	0.48	6.20	6.20	2.00	0.64	0.80
Di 5514	10.2	"	"	2.50	2.20	1.09	0.48	0.53	6.70	6.50	2.10	0.68	0.80
S11C-34	12.2 "	"	"	3.10	3.30	1.29	0.58	0.64	8.10	7.90	2.50	1.09	0.90
S11C-53	12.9	"	"	3.10	3.20	1.29	0.58	0.61	8.80	8.30	2.80	1.00	1.00

Table 2 b - Crossorhombus valde-rostratus - meristics (Larval stages).

Stations	Size (mm)	Stage	Notochord	Right Eye	Fin Rays				Vertebrae			Spines		
					Dorsal	Anal	Caudal	Left Pelvic	Precaudal	Caudal	Total	Urohyal	Cleithra	Posterior basipterygial
S8-23B	6.0 SL	Post flexion	Flexed	Symm etrical	85	66	17	$3+3$	10	26	36	0	0	3
"	6.9 "	"	"	"	89	66	17	"	10	26	36	0	0	4
Di-5505	8.1 "	"	"	"	86	68	17	"	10	26	36	0	0	3
Di-5543	9.2 "	"	"	"	85	66	17	"	10	26	36	0	0	6
S11C-80	10.8 "	"	"	"	86	64	17	"	10	24	34	0	0	6
S11C-34	12.2 "	"	"	"	82	62	17	"	10	24	34	0	0	6
S11C-53	12.9 "	"	"	"	84	64	17	"	10	25	35	0	0	8

inferior hypural middle, five on superior hypural middle, three on superior hypural
 fin rays found in 7.5 mm SL larvae and above. 82-92 dorsal and 61-73 anal even in the smallest larvae (7.5 mm SL). Full complement of median and caudal

anterior end, near the notch up to which the left ventral fin radial extends.

 intestinal loop. tenth vertebral segments and does not seem to interfere with the orientation of anterio-posterior axis. Swim bladder occupies the space between eighth and

 rectal portion pushed forwards and anus opens at the level of fifth vertebral
 notochord only for a very short distance and then runs down obliquely, intestinal

samples contained only postflexion stages (Figs. 3 A, B; Tables 3 a, b).

Larval forms ranging from 7.5 mm SL to 18.8 mm SL are found in the

Larval forms ranging from 7.5 mm
blotched with paler, and darker; generally one, two or more dark blotches on male ; length $2 / 3$ to $3 / 4$ that of head. Greyish or brownish, variously spotted and

 eye or a little beyond, length $33 / 5$ to $34 / 5$ in that of head. 5 or 6 gill- rakers on
 times () or $1 / 6$ to $4 / 5$ () diameter of eye; anterior edge of upper eye above
 length, length of head $31 / 2$ to 4 . Diameter of eye $31 / 5$ to $32 / 3$ in length of

मीре әप।

 though commenced in 11.0 mm SL , is not completed even in 18.8 mm SL. First

 and fifth, but in advanced stages haemal spines are of the same size, but not precaudal region are small in last three vertebrae, fairly large in seventh, sixth caudal region are distinguishable in 7.5 mm SL larvae, haemal processes of processes of precaudal and caudal region and the haemal processes of the
 the notochord gets segmented into vertebrae are not described. 10 precaudal

 the liver. before reaching terminal portion of left, curves like a tendril and stops in front of processes extend up to middle level of intestinal loop where it tapers, right ramus pelvic fin ray lies opposite cleithral tip. Left ramus of posterior basipterygial
 differentiated in 7.5 mm SL larvae, left pelvic fin radial longer than the right and

Pelvic fin radials, rays and posterior basipterygial processes are well processes of vertebrae just in front of urostyle

$$
\text { Indian Ocean and adjacent waters by Lalithambika Devi (} 1989 \text { b). }
$$ postlarval stages of C. azureus are described and reported for the first time from

 rostratus in the presence of a tiny spinuous processes on the urohyal at its Neverthless, that larvae of C. azureus can be distinguished from C. valde-valde-rostratus in almost all aspects including the meristics and general shape. flexion stages. The larvae of C. azureus resemble very closely with those C. various structures could not be studied because of the absence of preflexion and

Remarks
part and a similar but less distinct band at its base (Norman, 1934). spots and blotches, caudal often with a broad blackish band across its hinder on head in front of interorbital space; median fins with dark brown or blackish
lateral line; male sometimes with two or more series of dark spots (blue in life)

Table 3 a-Crossorhombus azureus - morphometrics, in mm (Larval stages).

Stations	Body Length	Right Eye	Stage	Snout to Anus	Head Length	Snout Length	Eye		Body depth at		Caudal Peduncle		Snout to origin of pelvic fin
							Width	Height	Pectoral fin base	Anus	Depth	Length	
S4-8	7.5 SL	$\begin{aligned} & \text { Symmet } \\ & \text { rical } \end{aligned}$	$\begin{aligned} & \text { Post } \\ & \text { flexion } \end{aligned}$	2.20	2.20	0.90	0.48	0.53	4.90	4.90	1.60	0.67	0.64
Ki 363	9.2	崖		2.50	2.70	1.19	0.48	0.58	6.20	6.10	1.70	0.68	0.80
OS 4	10.4	"	"	2.70	2.90	1.14	0.55	0.61	6.90	6.70	2.20	0.81	1.00
S1IC-46	11.2 "	"	"	2.60	2.90	1.24	0.52	0.55	7.80	7.40	2.50	0.93	1.10
S11C-80	12.3 "	"	"	2.80	2.90	1.19	0.55	0.55	8.30	8.10	2.50	0.97	1.10
SIIC-53	13.5 "	"	"	2.70	2.80	1.13	0.58	0.61	8.80	8.90	2.80	1.01	0.80
NH-40	14.8	"	"	3.60	3.40	1.40	0.58	0.62	11.10	11.10		1.32	0.90
DMI/57A/64	15.8 "	"	"	3.10	3.80	1.29	0.61	0.71	9.80	9.30	3.40	1.21	0.70
Di 5508	17.0 "	"	"	3.90	4.50	1.70	0.64	0.64	10.50	11.00	3.70	1.21	0.90
Pi 20	18.0 "	"	"	4.70	4.30	1.60	0.87	0.87	9.80	9.90	3.50	1.33	1.30

Table 3 b- Crossorhombus azureus - meristics (Larval stages).

Stations	$\begin{aligned} & \text { Size } \\ & (m m) \end{aligned}$	Stage	Notochord	Right Eye	Fin Rays				Vertebrae			Spines		
					Dorsal	Anal	Caudal	Left Pelvic	Precaudal	Caudal	Total	Urohyal	Cleithra	Posterior basipterygial
S4-8	7.5 SL	Post flexion	Flexed	Symme tical	86	63	17	$3+3$	10	26	36	1	0	6
S4-6	8.9 "		"	碞	87	68	17	"	10	27	37	1	0	6
Ki-363	9.2 "	"	"	"	85	67	17	"	10	26	36	1	0	5
S11C-90	9.8 "	"	"	"	86	61	17	"	10	26	36	1	0	7
S11C-53	11.0 "	"	"	"	82	63	17	"	10	25	35	1	0	10
S4-6	12.6 "	"	"	"	90	70	17	"	10	26	36	1	0	9
"	13.5 "	"	"	"	92	72	17	"	10	26	36	1	0	7
Dm1/57A/64	15.8 "	"	"	"	86	68	17	"	10	25	35	1	0	6
Di - 6608	17.0 "	"	"	"	92	73	17	"	10	26	36	1	0	4+
$\mathrm{Pi}-20$	18.0 "	"	"	"	90	67	17	"	10	26	36	1	0	7
$\mathrm{Na}-143$	18.8 "	"	"	"	89	67	17	"	10	26	36	1	0	7

-dds snqшочиоssoıכ оъ łои pue 'dds uodosoıdКбиヨ (1963) as well as Pertseva-Ostruoumova (1965) may therefore be referable to larval materials critically. The larval forms described by Ochiai and Amaoka
 from the Indian Ocean, South China Sea and Gulf of Thailand have been
 spines are present on urohyal, cleithra and posterior basipterygial processes.

 posterior basipterygial processes. Pertseva-Ostroumova (1965) has described description it is seen that spines are present on the urohyal, cleithra and rostratus ranging from 16.0 to 17.5 mm from Japanese waters. From their
 some clue to distinguish them from C. valde-rostratus.

 Crossorhombus. postlarval body help to place the larval stages described here under the genus anterior end of the dorsal in, the meristics as well as general shape of the on cleithra and urohyal, the short length of the elongated dorsal ray at the
 details of characters useful in identifying early larval forms. However, the

length in post-larval stages (Table 4 a)

 eighth and tenth vertebral segments as the larvae grow. Liver massive, the

 moved a distance equal to half the diameter of the eye towards the dorsal side.
 Right eye shows signs of migration to left side in larvae measuring 11.1 mm SL
 sұиәшК!

: तбоᅵOपवdow
Tables 4 a, b, c\&25). preflexion to postflexion stages (3.5 mm NL to 13.7 mm SL (Figs. $4 \mathrm{~A}, \mathrm{~B}, \mathrm{C}, \mathrm{D}$;

 referred to as "early caudal formation" (ECF) which is characteristic of E.

 the neural and haemal arches (processes) are stout and long and reach up to

 discernible even in 4.7 mm NL larvae. They appear at the anterior end of the found when larvae measure 3.5 mm NL whereas pterygiophores are not along median fin folds differentiate earlier than pterygiophores. Thus, rays are pterygiophores differentiate earlier to fin rays. But in E. cocosensis the rays face of haemal arch of first caudal vertebrae. In many species the First long, stout anal pterygiophore is seen in 4.7 mm NL articulated to anterior

 tiny dorsal ray is also differentiated. Tiny dorsal ray is articulated to a small complement of median fin rays is seen in larvae of about 6.5 mm SL when first fin folds. Pterygiophores, however, are not differentiated in 3.5 mm NL. Full elongated dorsal ray, a few more rays are discernible in middle portion of median earliest stage available in the collections. In this stage, besides the anterior

: səın! post-flexion stages. head length, eye-height and eye width however, decrease gradually towards
 Relative body depth at pectoral fin base and depth at anus decrease from 25). Decrease is marginal in snout length, but considerable in the other two.

basipterygial processes extend posterior-wards as larval life advances and mm NL which later becomes the anterior basipterygial processes. Posterior

 rays wherever they are present differentiate only after metamorphosis. Pectoral

 NL and 5.6 mm SL.
notochord induced by the hypural cartilages which takes place between 5.0 mm

 superior hypural upper. Terminal portion of the notochord projecting out beyond of the caudal rays. In postflexion stages, epural is seen fused distally to
 discernible as a patch of cells in early flexion stages (5.0 mm NL) is pterygiophores to the neural and haemal processes. Epural component

[^0]urostyle). Dorsal most ray associated with neural arch is the last to develope. (Processes) of the penultimate vertebra (the vertebra just anterior to the

 hypural lower and three rays on superior hypural upper. Full complement of fin larvae five rays are seen in the superior hypural middle, 3 rays on inferior 5.4 mm NL larvae are articulated to the superior hypural middle. In 5.6 mm SL
 seen, the former is more distinct and the four caudal rays differentiated by this
 hypural middle is the first to differentiate. In 5.0 mm NL (early flexion, EFL) 5.0 mm NL (ECF). Ural cartilages start differentiating at this stage, inferior

 arches and no spines even in the latest stages, of these the last one supports a

 рәdoןəләр ॥әм Кпииеэ!! ии!
 complement is formed in the flexion stages. Haemal arches of the first vertebra

 dorsal pterygiophore is very well developed, grows forwards over the skull and
 the body (the arches and spines together constitute the processes), first neural

UO!†Ә|ӘХХ |E!XV

 reached up to level of the fifth spine of urohyal near its posterior end. radial reaches upto the level of posterior-most spine of urohyal, the forward
 forwards and in 8.1 mm SL, the pelvic fin of left side becomes asymmetrical and margin. Anterior portion of basipterygial process of the left side extends further
 stage, pelvic fin ray rudiments are also differentiated. In 6.5 mm SL larvae, the
 Pelvic fin proper is seen as a rudiment in 5.0 mm NL and in 5.6 mm SL it gets intestinal coil and curve dorsalwards and stop just near the ventral tip of the liver.
border the ventral body wall and reach upto the level of the ascending loop of the
species are reported and described for the first time.
adults. The adults are reported from the Indian Ocean. But the larvae of this
 Hence an "early caudal formation" stage prior to the flexion stage is
 along the roof of the skull carrying the elongated dorsal ray. In the caudal fin fold differentiated even in 4.7 mm NL except the first long pterygiophore situated median fin rays appear in 3.5 mm larvae but the pterygiophores are not well basipterygial processes of the genus Engyprosopon. In this species, the of the liver. Ahlstrom has suggested that this is the typical posterior the loops and the tips lie embedded in the abdominal wall near to the ventral tip the ascending loop of the intestinal coil, then get curved dorsal-wards, beneath in the posterior basipterygial processes. This processes reach up to the level of under the genus. In the larvae so far examined more than 20 spines were found on the urohyal and posterior basipterygial processes than in any other species
 ‘ן
syxemoy cross-bars (Norman, 1934) black spots and blotches; median fins with small dark spots; pectoral with dusky to $4 / 5$ that of head. Brownish, with traces of some paler areas, and with some
 About 45 scales in lateral line. Dorsal 77-84. Anal 56-63 (Fig. 4 D). Pectoral
 as far, length $21 / 5$ to $22 / 5$ in that of head. Teeth uniserial; some enlarged on the snout in the male. Maxillary extending to below middle of eye or not quite
 interorbital space concave, width $1 / 5$ to $1 / 3$ () or $1 / 8$ to $1 / 4$ () diameter of eye;

ग̄npe әप।

Table 4 a - Engyprosopon cocosensis - morphometrics, in mm (Larval stages within broken lines indicate notochord flexion).

Stations	Body Length	Right Eye	Stage	Snout to Anus	Head Length	Snout Length	Eye		Body depth at		Caudal Peduncle		Snout to origin of pelvic fin
							Width	Height	Pectoral fin base	anus	Depth	Length	
SIIB-91	4.5 NL	Symm	Preflexion	2.0	1.3	0.45	0.35	0.42	2.3	2.0	-	-	1.0
S6-34	4.7"	"	Early caudal formation	2.4	1.4	0.45	0.39	0.42	2.1	2.0	-	-	1.1
SIIB-91	4.9 "		Early flexion	2.4	1.4	0.52	0.31	0.37	2.1	1.9	-	-	1.3
S6-39	5.0 "	"	通	2.5	1.4	0.47	0.39	0.45	2.0	2.0	-	-	1.3
S6-15	5.3 "	"	Mid flexion	2.6	1.6	0.60	0.42	0.45	2.6	2.4	-	-	1.4
S6-8	5.5 "	"	Late flexion	2.7	1.5	0.48	0.48	0.50	2.6	2.4	-	-	1.4
S6-38	5.6 SL		Post flexion	2.6	1.7	0.61	0.52	0.58	3.4	3.2	0.68	0.42	1.2
S6-15	5.8 "	"	"	2.6	1.7	0.68	0.45	0.52	3.3	3.4	0.84	0.47	1.4
S6-5A	6.0 "	"	"	2.7	1.9	0.68	0.48	0.58	3.4	3.4	0.71	0.38	1.7
S6-5A	6.5 "	"	"	2.9	2.0	0.60	0.53	0.64	3.6	3.7	0.84	0.39	1.6
SIIB-91	6.9 "	"	"	3.2	2.0	0.71	0.42	0.48	3.2	3.1	0.64	0.35	1.6
S8-20B	7.2 "	"	"	3.2	2.1	0.77	0.50	0.52	4.1	4.1	1.26	0.55	1.7
S8-20B	8.1 "	"	"	3.1	2.3	0.87	0.55	0.58	4.4	4.3	1.42	0.58	1.7
S6-38	8.6 "	"	"	3.4	2.6	0.90	0.61	0.68	4.5	4.9	1.42	0.61	2.0
S4-19	9.5 "	"	"	3.0	2.4	1.00	0.64	0.68	5.9	6.3	1.50	0.81	1.8
S8-41	9.9 "	"	"	3.6	2.6	0.90	0.61	0.74	5.0	5.2	1.60	0.64	1.8
S4-6	10.3"	"	"	3.8	2.8	0.81	0.84	0.90	4.7	5.2	1.60	0.64	1.9
S3-16	10.6"	"	"	4.0	2.7	0.84	0.81	0.81	5.1	5.2	1.80	0.68	2.1
S4-6	11.1"	Migrating	"	3.7	2.9	0.90	0.71	0.74	5.9	6.3	2.50	0.83	1.5
S6-39	12.2"	"	"	4.1	3.2	0.97	0.84	0.90	6.0	6.3	2.00	0.79	2.1
S8-20B	12.6"	"	"	4.3	3.3	1.00	0.72	0.81	6.9	7.0	2.60	0.90	2.0
S6-38	13.3"	"	"	4.1	3.3	1.10	0.82	0.81	6.5	6.7	2.30	0.90	1.9
S4-6	13.7"	"	"	3.7	3.3	1.10	0.93	0.87	8.6	8.9	3.50	1.13	1.3

Table 4 b - Engyprosopon cocosensis -meristics (Larval stages within broken lines indicate notochord flexion).

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{Stations} \& \multirow[t]{2}{*}{$$
\begin{aligned}
& \text { Size } \\
& (\mathrm{mm})
\end{aligned}
$$} \& \multirow[t]{2}{*}{Stage} \& \multirow[t]{2}{*}{Notochord} \& \multirow[t]{2}{*}{Right Eye} \& \multicolumn{4}{|c|}{Fin Rays} \& \multicolumn{3}{|c|}{Vertebrae} \& \multicolumn{3}{|c|}{Spines}

\hline \& \& \& \& \& Dorsal \& Anal \& Caudal \& Left Pelvic \& Precaudal \& Caudal \& Total \& Urohyal \& Cleithra \& Posterior basipterygial processes

\hline S6-34
BF26Cr. 2 \& 4.7 NL

5.0 \& Early caudal formation \& Straight \& Symm etrical \& 61
64 \& 36
32 \& 3
4 \& 0
0 \& \& \& \& 24
24 \& 4
4 \& 25
26

\hline S 6 -39 ${ }^{\text {a }}$ \& $5.0{ }^{-1}$ \& Early \& Flexing \& " \& 59 \& 38 \& 4 \& 0 \& \& \& \& 24 \& 4 \& 24

\hline BF26Cr. 2 \& 5.4 " \& flexion \& " \& " \& 68 \& 49 \& 7 \& 0 \& \& \& \& 25 \& 4 \& 24

\hline S6-15 \& 5.3 " \& Mid flexion \& " \& " \& 68 \& 50 \& 8 \& 0 \& \& \& \& 20 \& 4 \& 20

\hline S6-8 \& 5.5" \& Late flexion \& " \& " \& 75 \& 52 \& 11 \& 0 \& \& \& \& 24 \& 4 \& 24

\hline S $6-38$ \& 5.6 S \& Post flexion \& Flexed \& \& 69 \& 52^{-1} \& 15 \& 0 \& 10 \& 23 \& 33 \& 33 \& 3 \& 34

\hline S6-5A \& 6.0 " \& " \& " \& " \& 78 \& 54 \& 17 \& 0 \& 10 \& 26 \& 36 \& 33 \& 5 \& 23

\hline BF27B \& 6.5 " \& " \& " \& " \& 75 \& 57 \& 17 \& Forming \& 10 \& 24 \& 34 \& 33 \& 6 \& 30

\hline Cr. 2
BF 25 Cr .2 \& 7.3 " \& " \& " \& " \& 81 \& 61 \& 17 \& " \& 10 \& 24 \& 34 \& 28 \& 5 \& 33

\hline S8-17 \& 8.1 " \& " \& " \& " \& 85 \& 59 \& 17 \& 3+3 \& 10 \& 25 \& 35 \& 30 \& 3 \& 29

\hline S6-38 \& 8.6 " \& " \& " \& " \& 83 \& 61 \& 17 \& 3+3 \& 10 \& 24 \& 34 \& 42 \& 4 \& 38

\hline BF-16 \& 9.3 " \& " \& " \& " \& 79 \& 61 \& 17 \& 3+3 \& 10 \& 24 \& 34 \& 26 \& 6 \& 38

\hline S4-19 \& 9.5" \& " \& " \& " \& 74 \& 61 \& 17 \& 3+3 \& 10 \& 23 \& 33 \& 31 \& 6 \& 34

\hline S8-41 \& 9.9 " \& " \& " \& " \& 88 \& 62 \& 17 \& 3+3 \& 10 \& 25 \& 35 \& 36 \& 7 \& 34

\hline S6-38 \& 10.4" \& " \& " \& " \& 85 \& 65 \& 17 \& $3+3$ \& 10 \& 24 \& 34 \& 36 \& 6 \& 26

\hline Ki 397 \& 11.2" \& " \& " \& " \& 86 \& 65 \& 17 \& 3+3 \& 10 \& 24 \& 34 \& 40 \& 9 \& 39

\hline S6-39 \& 12.2 " \& " \& " \& " \& 83 \& 63 \& 17 \& 3+3 \& 10 \& 25 \& 35 \& 40 \& 6 \& 28

\hline Ki 649 \& 12.9 " \& " \& " \& " \& 79 \& 59 \& 17 \& 3+3 \& 10 \& 24 \& 34 \& 35 \& 8 \& 49

\hline S6-38 \& 13.3" \& " \& " \& " \& 87 \& 65 \& 17 \& 3+3 \& 10 \& 26 \& 36 \& 38 \& 5 \& 16 +

\hline S4-6 \& 13.7" \& " \& " \& " \& 80 \& 59 \& 17 \& 3+3 \& 10 \& 25 \& 35 \& 32 \& 6 \& 26

\hline
\end{tabular}

Table 4 c-E. cocosensis - development of vertebral column, caudal fin rays and caudal fin supporting structures.

Stations	$\begin{aligned} & \hline \text { Body } \\ & \text { Length } \end{aligned}$	Stage	NotoChord	$\begin{aligned} & \hline \text { Right } \\ & \text { Eye } \end{aligned}$	Precaudal vertebrae				Centra	Caudal vertebrae				Centra	$\begin{gathered} \hline \text { Ural } \\ \text { Centra } \end{gathered}$	$\begin{gathered} \hline \text { Total } \\ \text { Vertebrae } \end{gathered}$	Caudal Fin rays	Ural components				Epural
					Neural		Haemal			Neural		Haemal						Sup.	Hyp.	Inf.	Hyp.	
					Process	Arch	Process	Arch		Process	Arch	Process	Arch					Upp.	Mid.	Mid.	Low.	
S8-20B	3.5 NL	Pre	Straight	Symme	9	0	0	8	0	18	5	18	5	0	0	32	0	0	0	0	0	0
S6-34	$47 \times$	flexion	"	${ }_{\text {trical }}$	9	0	0	8	0	18	5	18	5	0	0	32	3	0	0	0	0	0
		caudal										18	5	0	0	32	3	0	0	0	0	0
		forma																				
BF-26	5.0 "		"	"	9	0	4	5	0	16	5	16	5	0	0	30	4	0	x	x	0	0
S6-39	5.0 "	Early	Flexing	"	9	1	4	5	0	17	5	17	5	0	0	32	4	0	x	x	0	Forming
		${ }_{4}$ flexion	.	"																		"
BF 26 S6-15	5.4×1 5.3		"	"	9	1	4	5	0	23	2	23	2	0	0	34	7	0	x	x \times	0 \times	
S6-15	5.3 "	$\begin{aligned} & \text { flexion } \\ & \text { nex } \end{aligned}$				1				23						34	8	0	x	x	x	x
S6-8	5.5 "	Late	*	"	9	1	4	5	0	20	2	20	2	0	0	30	11	0	x	x	x	x
S6-38	5.6SL	flexion Post	Flexed	"	9	1	3	6	0	20	2	20	2	0	1	33	15	x	X	x	X	x
		flexion																				
S6-5A	6.0 "	"	"	"	9	1	3	6	10	23	2	23	2	25	1	36	17	X	X	X	X	x
BF 27B	6.5 "	"	"	"	9	1	4	5	10	21	2	21	2	23	1	34	17	x	x	x	x	x
BF-25	7.3 "	"	"	"	9	1	4	5	10	21	2	21	2	23	1	34	17	x	x	x	x	x
S8-17	8.1 "	"	"	"	9	1	4	5	10	22	2	22	2	24	1	35	17	x	x	x	x	x
S6-38	8.6 "	"	"	"	9	1	4	5	10	21	2	21	2	23	1	34	17	x	x	x	x	x
BF 16	9.3 "	"	"	"	9	1	4	5	10	21	2	21	2	23	1	34	17	x	x	x	x	x
S4-19	9.5 "	"	"	"	9	1	4	5	10	20	2	20	2	22	1	33	17	x	x	x	x	x
S8-41	9.9 "	"	"	"	9	1	4	5	10	22	2	22	2	24	1	35	17	x	x	x	x	x
S6-38	10.4 "	"	"	"	9	1	4	5	10	21	2	21	2	23	1	34	17	x	x	x	x	x
Ki 397	11.2 "	"	"	Migra t ting	9	1	4	5	10	21	2	22	1	23	1	34	17	x	x	x	x	x
S6-39	12.2 "	"	"		9	1	6	3	10	22	2	22	2	24	1	35	17	X	x	X	x	x
Ki 649	12.9 "	"	"	"	9	1	4	5	10	21	2	21	2	23	1	34	17	x	x	x	x	x
S6-38	13.3 "	"	"	"	9	1	6	3	10	23	2	23	2	25	1	36	17	x	x	x	x	x
S-4-6	13.7 "	"	"	"	9	1	6	3	10	22	2	22	2	24	1	35	17	x	x	x	x	x

gradually decreases (Table 25). then increases gradually unlike in E. cocosensis, and eye height and width increases. Relative head length decreases from preflexion to flexion stages and pectoral base decreases, but unlike in E. cocosensis the depth at anus

however, less than that of E. cocosensis.
posterior basipterygial processes in all stages. The number of spines is Spines are well developed and are found distributed on the urohyal, cleithra and
 situated dorsal to the straight portion of the alimentary canal in early stages, its stages, dorso-ventral axis becomes longer than the other. Swim bladder is posterior axis of the liver becomes shorter from 4.2 mm SL and in advanced drawn into a finger-like process lying ventrally to the intestinal loop. Antero-
 axis longer than the dorso-ventral axis in early stages. Occupying the space the level of the eighth vertebral segment. Liver massive with its anteroposterior larvae of 3.1 mm NL. It is gradually pushed forwards and in 6.6 mm SL opens at intestinal loop becomes elliptical and the terminal portion runs down vertically in forms a single circular coil, anus lies on the $10^{\text {th }}$ myotome in early stages, parallel to notochord upto the posterior end of the abdominal cavity where it early stages. Teeth found on both jaws from 3.1 mm NL. Alimentary canal runs early stages. Eyes are oval with black pigments and symmetrically placed in

: KচоןOपवıOW
Sea (Figs. 5 A,B, C, D, E ; Tables 5 a, b, c \& 25). samples of the IIOE, Naga Expedition and random collections from Laccadive preflexion, flexion and postflexion stages were collected from the plankton

Engyprosopon latifrons (Regan, 1908)

embedded in the abdominal wall ventrally. anteriorwards stopping short in front of the ventral tip of the liver and lie level of the ascending loop of the intestine and then curve dorsalwards and

 rays are not differentiated even in 6.7 mm larva (Table 5b), the largest specimen in 5.2 mm NL and fin rudiments are discernible in 6.6 mm SL larva. Pelvic fin
 along the posterior face of the lower middle portion of the cleithra in 4.7 mm NL

the superior hypural upper and loses its identity in later stages. NL, the midflexion stage. It does not support any caudal ray but gets fused with 5.7 mm SL larvae. the epural component is differentiated in larvae of 5.4 mm 5.7 mm SL larvae (Table 5c). Full complement of the caudal fin rays occurs in mm NL. Flexion of the notochord is initiated in 4.8 mm NL and is completed in body, a short distance anterior to the caudal extremity of the notochord in 4.7
 There are 81-83 dorsal and 53-59 anal rays (Table 5 b) pterygiophores differentiate earlier than fin rays unlike those of E. cocosensis. curved first dorsal pterygiophere in 5.7 mm SL. In this species, the
 complement of median rays are found in 5.7 mm SL, the first tiny ray in front of

 anterior and posterior ends of the fin folds. First anal pterygiophore is stout and
 the first dorsal pterygiophore is seen in the earliest larvae (2.6 mm NL)

 cocosensis, but the development of pelvic fin rays is late. The first neural arch

: syरeməप्र
and markings on body and median fins (Norman, 1934). upper ray scarcely prolonged in male. Pale brownish, with traces of dark spots
 lower part of anterior arch. About 40 scales in lateral line. Dorsal 80-90. Anal

 spine present in the male, but no orbital spines. Maxillary extending to below diameter of eye; anterior edge of upper eye above middle of lower. Rostral head; interorbital space concave, width 1 to $11 / 2$ times () or $1 / 2$ to $2 / 3$ (F)

ఛПрヲ әपІ

cocosensis these spines are differentiated in flexion stages. largest specimens (6.7 mm SL) but not the haemal spines whereas in E . the haemal arches are only discernible in the precaudal region even in the

 stages. Segmentation of notochord into centra is found differentiating from 3.8 complement of the neural and haemal processes appear in larvae of flexion not seen caping the arch, and remains cartilaginous in 6.7 mm SL larvae. Full
 mm NL, but in 3.6 mm larvae small spines are seen, caping the neural and

(1986).
this species are reported and described for the first time by Lalihtambika Devi, (Norman, 1934). The adults are reported from the Indian Ocean. The larvae of cocosensis. The numerical counts agree with those of the adult E. latifrons
 occurs only when the larvae are around 6.5 mm SL. The spines on the urohyal, differentiated when the larvae attains 5.7 mm SL whereas in E. cocosensis this

Table 5 a - Engyprosopon latifrons - morphometrics, in mm (Larval stages within broken lines indicate notochord flexion).

Stations	Body Length	Right Eye	Stage	Snout to Anus	Head Length	$\begin{aligned} & \text { Snout } \\ & \text { Length } \end{aligned}$	Eye		Body depth at		Caudal Peduncle		Snout to origin of pelvic fin
							Width	Height	Pectoral base	anus	Depth	Length	
S6-15	2.6 NL	Symm etrical	Preflexion	1.6	0.7	0.21	0.29	0.27	0.90	0.72	-	-	-
S6-39	2.7 "	崖	"	1.5	0.8	0.19	0.29	0.29	0.95	0.68	-	-	-
S6-39	3.0 "	"	"	1.9	0.9	0.29	0.29	0.31	1.16	0.81	-	-	0.80
S6-39	3.4 "	"	"	1.8	1.0	0.31	0.31	0.35	1.09	0.85	-	-	0.90
S6-34	3.6 "	"	"	2.0	1.0	0.32	0.35	0.35	1.40	1.10	-	-	1.00
S6-31	3.8 "	"	"	2.1	1.1	0.32	0.39	0.39	1.58	1.35	-	-	1.00
S6-31	4.3 "	"	"	2.4	1.4	0.45	0.42	0.45	2.30	2.00	-	-	1.00
S6-31	4.5 "	"	"	2.3	1.4	0.40	0.42	0.42	2.30	2.00	-	-	1.00
S5-5	4.6"	"	"	2.5	1.5	0.52	0.41	0.45	2.60	2.10	-	-	1.10
S8-20B	4.8		Early flexion	2.2	1.5	0.60	0.39	0.45	2.40	2.10	-	-	1.40
S5-9B	5.5 "	"	Mid flexion	2.8	1.5	0.52	0.39	0.45	2.40	2.20	-	-	1.50
S5-4A	5.4 "	"	Late flexion	2.7	1.6	0.55	0.48	0.55	2.90	2.70	-	-	1.40
S6-35A	5.7 SL		Post flexion	2.5	1.6	0.58	0.43	0.48	2.90	2.80	0.53	0.35	1.40
S6-15	6.6 "	"		2.9	2.1	0.69	0.52	0.53	3.50	3.60	0.90	0.43	1.80
S6-29	6.7 "	"	"	3.2	2.1	0.61	0.52	0.58	3.00	2.80	0.71	0.38	1.60

Table 5 b-Engyprosopon latifrons -meristics (Larval stages within broken lines indicate notochord flexion).

Stations	$\begin{aligned} & \text { Size } \\ & (m m) \end{aligned}$	Stage	Notochord	Right Eye	Fin Rays				Vertebrae			Spines		
					Dorsal	Anal	Caudal	Left pelvic	Precaudal	Caudal	Total	Urohyal	Cleithra	Posterior basipterygial processes
S6-39	2.6 NL	Pre flexion	Straight	Symme trical	1	0	0	0	-	-	-	10	1	13
"	2.7 "		"	速	1	0	0	0	-	-	-	13	1	13
"	3.1 "	"	"	"	1	0	0	0	-	-	-	12	2	12
"	3.5 "	"	"	"	1	0	0	0	-	-	-	13	2	16
S6-31	3.6 "	"	"	"	1	0	0	0	-	-	-	17	2	18
"	3.8 "	"	"	"	1	0	0	0	-	-	-	18	3	27
S6-39	4.1 "	"	"	"	1	0	0	0	-	-	-	18	3	23
S6-31	4.2 "	"	"	"	1	Forming	0	0	-	-	-	19	4	22
S1-23	4.4 "	"	"	"	1	"	0	0	-	-	-	11	3	9
S5-5	4.6 "	"	"	"	Forming	"	0	0	-	-	-	14	3	19
S1-23	4.7 "	"	"	"	Ca. 28	Ca. 11	0	0	-	-	-	9	3	8
Ki-518	4.9"	"	"	"	30+	14+	0	0	-	-	-	12	3	9
S8-20B	4.8 "	Early flexion	Flexing		68	52	8	0	-	-	-	18	2	9
BF25Cr. 2.	5.2 "	Mid flexion	"	"	73	50	9	0	-	-	-	15	3	12
S9A-18A	5.4"	"	"	"	75	48	9	0	-	-	-	14	6	10
S5-4A	5.4 "	Late flexion	"	"	78	46	14	0	-	-	-	17	5	14
S6-35A	$5.75{ }^{-7}$	Post flexion	Flexed		83	53	17	0	10	24	34	12	2	14
S6-15	6.6"	fexion	"	"	81	56	17	Form	10	26	36	13	5	15
S6-29	6.7 "	"	"	"	82*	59	17	"	10	25	35	18	6	10 +

Table 5 c - Engyprosopon latifrons - development of vertebral column, caudal fin rays and caudal fin supporting structures.

Stations	$\begin{aligned} & \hline \text { Body } \\ & \text { length } \end{aligned}$	Stage	Notochord	$\begin{aligned} & \text { Right } \\ & \text { Eye } \end{aligned}$	Precaudal vertebrae				Centra	Caudal vertebrae				Centra	UralCentra		$\begin{gathered} \text { Caudal } \\ \text { fin } \\ \text { rays } \end{gathered}$	Ural components				Epural
					Neural		Haemal			Neural		Haemal						Sup	Hyp	Inf	Hyp	
					Process	Arch	Process	Arch		Process	Arch	Process	Arch					Upp	Mid	Mid	Low	
S6-39	2.6 NL	Pre flexion	Straight	Symme rtrical	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
S6-39	2.7	"	"		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
S6-39	3.1	"	"	"	0	9	0	0	0	0	0	0	0	0	0	9	0	0	0	0	0	0
S6-39	3.5	"	"	"	0	9	0	0	0	0	11	0	11	0	0	21	0	0	0	0	0	0
S6-31	3.6	"	"	"	9	1	0	7	0	4	10	7	8	0	0	25	0	0	0	0	0	0
S6-31	3.8	"	"	"	9	1	0	8	0	9	10	11	8	0	0	29	0	0	0	0	0	0
S6-39	4.1	"	"	"	9		0	8	0	5	11	6	10	0	0	26	0	0	0	0	0	0
S6-31	4.2	"	"	"	9	1	0	8	0	12	12	12	12	0	0	34	0	0	0	0	0	0
Ki-518	4.9	${ }^{\prime \prime}$	" ${ }^{\text {c }}$	"	9	1	0	8	0	17	4	17	4	0	0	31	0	0	-	-	0 \times	0
S8-20B	4.8	Early flexion	Flexing	"	9	1	0	8	0	21	2	21	2	0	0	33	8	0	x	x	x	0
BF-25	5.2	Mid flexion	"	"	9	1	0	8	0	21	2	21	2	0	0	33	9	0	x	x	x	0
S9-59 A	5.4	"	"	"	9	1	0	8	0	20	3	20	3		0	33	9	0	x	x	x	x
55-4A	5.4	Late flexion	"	"	9	1	0	8	0	21	2	21	2	0	0	33	14	x	x	x	x	x
S6-35A	5.7 SL	Post	Flexed	"	9	1	0	8	10	21	2	21	2	23	1	34	17	x	x	x	x	x
S6-15	6.6	flexion	"	"	9	1	0	8	10	23	2	23	2	25	1	36	17	x	x	X	x	x
S6-29	6.7	*	"	"	9	1	0	8	10	22	2	22	2	24	1	35	17	-	X	x	x	X

(っ ‘‘ ‘ $\forall 9$ rays, on the swim bladder and on the caudal portion of the vertebral column (Fig.

 grow, but is less than that found in E. cocosensis
 cleithra and posterior basipterygial processes only from 1.4 mm NL larvae. Spines are found on the urohyal from very early stages but they appear on the
 its distal portion drawn into a diverticula which lies below the intestinal loop. massive, the dorso-ventral axis of which is about twice the anteroposterior axis, level of the ninth vertebral segment in the latest stage available. Liver is posterior end of the abdominal cavity in advanced stages. Anus opens at the
 simple circular loop and opens ventrally at the level of $10^{\text {th }}$ myotome. Intestinal almost parallel to the notochord to the seventh myotome where it makes a larva 9 pairs occur on upper jaw and four pairs on lower. Alimentary canal runs mm NL, one pair present in upper and two pairs in lower, but in 10.7 mm SL
 even in the largest larvae (10.7 mm SL) in the collection. Teeth which fall off

:KচO|OपवJOW
D; Tables 6 a, b, c \& 25). Naga Expedition materials were studied in detail and reported (Figs. 6 A, B, C belonging to preflexion, flexion and postflexion stages contained in the IIOE and

 occur in 7.2 mm SL. Pelvic fin radials are asymmetrical as in other species but

 cleithra and distal portion continue as posterior basipterygial processes. into dorsal basipterygial processes, proximal ends of which are attached to

 complement of rays appearing in 5.8 mm SL. Caudal fin development takes place between 3.8 and 5.8 mm NL , with full and middle and superior hypural middle are discernible supporting caudal rays. larvae. When larval body attains a length of 4.0 mm NL inferior hypural lower the body, a short distance anterior to terminal potion of notochord in 3.8 mm NL
 58-62 anal rays (Table 6 b) anterior ramus of the $1^{\text {st }}$ dorsal pterygiophore. There are (78) 80-87 dorsal and
 4.0 mm NL , full complement of the median rays are seen in the larvae of 7.0 mm
 pterygiophores are differentiated in dorsal and anal fin folds in 3.8 mm NL and
 elongated dorsal ray is differentiated in 2.8 mm NL, supported by a long stout the earliest larva of the collection. At the anterior end of the dorsal fin fold, an

: səınłכnגłs bu!̣odans pue u!ヨ and pelvic fin base gradually decreases. increases markedly as the larvae grew older, while relative length between snout
 latifrons. Relative eye height and width decrease from preflexion stage upwards relative snout length gradually decreases unlike in E. cocosensis and E.
Brownish, with numerous small dark spots on head, body and fins (Norman,
 part of anterior arch. 51 to 53 scales in lateral line. Dorsal (78) 83-86. Anal (58)
 little beyond anterior edge of eye, length $24 / 5$ to 3 in that of head. Upper jaw little in advance of upper. No rostral or orbital spines. Maxillary extending to a head; interorbital space concave, width $1 / 4$ to $1 / 2$ diameter of eye; lower eye a 4. Snout a little shorter than eye, diameter of which is $33 / 5$ to $32 / 3$ in length of
иецł әлои әן

भnpe әप।

even in 10.7 mm SL larvae. There are 10+24-25 vertebrae including urostyle. get ossified in 9.8 mm SL, first neural arch is flimsy and remain cartilagenous
 pterygiophore and pectoral girdle from very early stages, neural and haemal

 NL. Neural processes of the precaudal region and caudal region are

 region of the earliest larvae collected. In caudal region 16-19 neural and 11 -

loop and curves back as in other species. of the posterior basipterygial processes extend to the midlevel of the intestinal left fin radial reaching just up to the posterior margin of the urohyal. Distal ends

so far. the Indian Ocean, but the larvae of this species are not reported and described of median fin rays agree with those of the adults. The adults are reported from
 are developed at a later stage. The caudal fins are differentiated earlier than E. and E. latifrons. The spines on cleithra and posterior basipterygial processes between snout and pelvic fin base gradually decreases unlike in E. cocosensis The eyes become black at later stage than in E . latifrons. The relative length well as on the swim bladder and on the caudal portion of the vertebral column. except a few blotches along the base of the dorsal, anal and caudal fin rays as pigments. These pigments fade away on clearing the specimens in alcohol

Table 6 a - Engyprosopon mogkii- morphometrics, in mm (Larval stages within broken lines indicate notochord flexion).

Stations	Body Length	$\begin{gathered} \text { Right } \\ \text { Eye } \end{gathered}$	Stage	Snout to Anus	Head Length	Snout Length	Eye		Body depth at		Caudal Peduncle		Snout to origin of pelvic fin	
							Width	Height	$\begin{gathered} \text { Pectoral fin } \\ \text { base } \\ \hline \end{gathered}$	Anus	Depth	Length		
S11B-63	2.8 NL	Symm etrical	Pre flexion	1.60	0.80	0.26	0.27	0.26	1.13	0.84	--	--	0.80	
	2.9	"	"	1.60	0.80	0.26	0.26	0.29	1.13	0.93	--	--	0.77	
		"	"	1.70	1.00	0.35	0.26	0.32	1.44	1.14	--	--	0.80	
S9A-13A	3.7 "	"	Early 2.00 flexion		1.20	0.35	0.26	0.29	1.90	1.70	--	--	0.90	
	4.0 "	"	Mid	2.10	1.40	0.50	0.34	0.39	2.40	2.30	--	--	1.00	
			flexion											
	5.3 "	"	Late	2.30	1.60	0.50	0.43	0.48	2.70	2.50	--	--	1.40	
			flexion											
"	5.8 SL	"	Post flexion	2.10	1.80	0.61	0.48	0.52	3.20	3.00	0.61	0.29	1.60	
"	7.0	"		3.40	2.10	0.68	0.52	0.58	4.00	3.90	1.10	0.42	1.60	
S9A-18A	7.2 "	"	"	3.50	2.10	0.61	0.48	0.55	3.50	3.50	0.71	0.43	1.70	
S9A-13A	8.8 "	"	"	3.80	2.50	0.74	0.64	0.69	4.80	5.00	1.40	0.56	2.10	
"	9.8 "	"	"	3.80	2.70	0.82	0.64	0.64	5.30	5.50	1.70	0.61	2.10	

Table 6 b-Engyprosopon mogkii - meristics (Larval stages within broken lines indicate notochord flexion).

Stations	$\begin{aligned} & \text { Size } \\ & (\mathrm{mm}) \end{aligned}$		Stage	Notochord	$\begin{aligned} & \text { Right } \\ & \text { Eye } \end{aligned}$	Fin rays				Vertebrae			Spines			
			Dorsal			Anal	Caudal	$\begin{aligned} & \text { Left } \\ & \text { pelvic } \end{aligned}$	Precaudal	Caudal	Total	Urohyal	Cleithra	Posterior besipterygial processes		
S11B-63	2.8	NL		Pre flexion	Straight	Sym metri	1	0	0	0				6	0	0
"	2.9		"	"	cal	1	0	0	0				6	0	0	
"	2.4 3.4 3.8		"	"	"	1	0	0	0				9 9	1	5	
S11B-63	4.0	"	Mid flexion	Flexing	"	70	44	10	0				13	3	11	
S9A-13A	5.3		Late flexion	"	"	77	52	12	0				19	6	19	
"	5.8		flexion	"	"	82	57	13	0				23	5	22	
S9A-13A	7.0	SL	Post flexion	Flexed	"	Ca. 81	Ca 59	17	Form ing	10	25	35	20	9	20	
S9A-18A	7.2		"	"	"	87	61	17	3+3	10	25	35	26	6	26	
S9A-13A	8.8		"	"	"	85	59	17	"	10	24	34	29	10	23	
Di-5251	9.4		"	"	"	80	61	17	"	10	24	34	29	7	25	
S9A-13A	9.8		"	"	"	83	62	17	+	10	24	34	23	10	21	
Vi-5227	10.7		"	"	"	80	60	17	2+4	10	24	34	29	7	24	

Table 6 c - Engyprosopon mogkii - development of vertebral column, caudal fin rays and caudal fin supporting structures.

Stations	Body Length	Stage	Notochord	$\begin{aligned} & \text { Right } \\ & \text { Eye } \end{aligned}$	Precaudal vertebrae				Centra	Caudal vertebrae				Centra	$\begin{aligned} & \text { Ural } \\ & \text { Centra } \end{aligned}$	$\begin{gathered} \text { Total } \\ \text { vertebrae } \end{gathered}$	Caudal fin rays	Ural Bcomponents				Epural
					Neural		Haemal			Neural		Haemal						Sup	Hyp	Inf	Hyp	
					Process	Arch	Process	Arch		Process	Arch	Process	Arch					Upp	Mid	Mid	Low	
S11B-63	2.8 NL	Pre fi.	Straight	Symme	0	9	0	3	0	0	16	5	11	0	0	25	0	0	0	0	0	0
"	2.9 "	"	"		0	9	0	3	0	0	19	5	14	0	0	28	0	0	0	0	0	0
"	3.4 "	"	"	"	9	1	0	6	0	10	9	10	9	0	0	29	0	0	0	0	0	0
"	3.8 "	"	"	"	9	1	0	6	0	14	7	14	7	0	0	31	0	0	0	0	0	0
*"	4.0 "	Mid flexion	Flexing	"	9	1	0	9	10	22	2	22	2	22	0	34	10	0	x	x	x	x
S9A-13A	5.3 "	Late flexion		"	9	1	0	9	10	20	2	20	2	22	0	32	12	0	x	x	x	x
S9A-18A	6.8 "	"	"	"	9	1	0	9	10	21	2	21	2	23	0	33	13	0	x	x	x	x
S9A-13A	5.8 "	Post flexion	Flexed		9	1	0	9	10	22	2	22	2	24	1	35	17	x	x	x	x	x
"	7.0 "	flex	"	"	9	1	3	6	10	22	2	22	2	24	1	35	17	X	X	X	X	X
S9A-18A	7.2 "	"	"	"	9	1	2	7	10	22	2	22	2	24	1	35	17	x	x	x	x	x
S9A-13A	$\begin{aligned} & 8.8 \\ & 9.8 \end{aligned}$	" ${ }^{\prime}$	"		9 9	1	6 6	3 3	10 10	21 21	2	21 21	2	23 23	1	34 34	17	\times \times \times	x	x	x x	x

- ppoq appendage up to 5.5 mm NL . The pigments are not seen any where else on the

 between the cleithra and the intestinal loop, its antero-posterior axis is more than

 opening on $10^{\text {th }}$ myotome. The circular intestinal coil turns elliptical in 2.5 mm
 almost parallel to notochord and bends down at posterior end of the abdominal
 larvae in the collections. At this stage right eye has migrated dorsalwards by in 11.9 mm SL, but shifting is not completed even in 16.4 mm SL, the largest

KচO|OYवлOW

D, E, F ; Tables $7 \mathrm{a}, \mathrm{b}, \mathrm{c} \& 25$).

 middle are demarcated in 4.6 mm (early flexion) NL, inferior hypural lower and ןeגndKч ıо!əәdns pue әрр!

$$
\text { (Table } 7 \text { b). }
$$

and anal fin rays are found. There are 78 to 95 dorsal and 57 to 73 anal rays is discernible only in 7.8 mm SL larvae when full complement of the dorsal fin larvae which supports the first tiny dorsal ray in later stages. First tiny dorsal ray first dorsal pterygiophore a forward extension is differentiated in 5.8 mm SL baseosts are discernible from 4.6 mm NL onwards. From the anterior end of the posterior end except above the head region and in the region of the anus, stage. In 4.1 mm NL the median fin is differentiated from the anterior to the Along the dorsal fin fold, however, the pterygiophores are not distinct at this a few more pterygiophores are seen at anterior end of anal fin fold in 3.8 mm NL. larvae. First long and stout anal pterygiophore gets differentiated in 3.6 mm NL, pterygiophore is seen at the anterior end of the dorsal fin fold in all stages of

səanłonıłs bu!podans pue u!̣

 is characteristic of the species. from preflexion to flexion stages gradually but thereafter suddenly. This feature and E. latifrons. Relative depth between snout and pelvic fin base decreases at anus increases as the larvae grow as in E. mogkii but not as in E. cocosensis postflexion as in E. latifrons whereas E. mogkii resembles only with the former snout - anus length as well as eye height and width decreases from preflexion to length in which respect it resembles E. cocosensis and E. latifrons. Relative to that met with in E. mogkii as far as head length is concerned but not snout «е!

 that too only two or three in number, those on the left ramus of the posterior

 reached the level of the urohyal end in 15.3 mm between the last two spines of

 side being longer than those of right and two of the anterior rays of the left fin

 loop of the intestine in 5.0 mm NL larvae and remain like that even in 16.4 mm
 әЧł !

 uo!̣od ןem!

 and haemal arches of the penultiamte vertebra.
 three, inferior hypural middle four, superior hypural middle five and superior caudal rays, 15 are borne on hypural plates as follows: inferior hypural lower
 caudal fin rays (17) are seen in 5.8 mm SL. The epural does not support any ray 4.6 mm NL larvae and is completed in 5.8 mm SL . The full complement of the
 processes. The spines on the posterior basipterygial processes are peculiar in
 early preflexion stages as in Psettina brevirictis and P. iijimae but disappears

syІешәप्ठ
1934).
 and other markings; median fins usually with small brown spots ; a pair of large
 10 to 12 rays, the upper ray some times a little prolonged in the male, length in lateral line. Dorsal 79-89. Anal 59-68 (Fig. 7 F). Pectoral of ocular side with posteriorly. 5 to 7 short gill- rakers on lower part of anterior arch. 36 to 45 scales adults), uniserial laterally; those of lower jaw uniserial, sometimes in two rows 3 to $31 / 2$ in that of head. Teeth of upper jaw biserial anteriority (at least in female. Maxillary extending to, nearly to, or beyond anterior edge of eye, length
 diameter of eye ; anterior edge of upper eye above middle or posterior part of interorbital space concave, width $2 / 3$ to $13 / 4$ times (M) or $1 / 3$ to $7 / 8$ (F)

झnpe әपІ
$10+24$ (25) vertebrae including urostyle. noticed in 12.4 mm SL. Vertebral centra are bony in 15.0 mm SL. There are except the first neural arch. Ossification of centra along its margin is also mm SL (Table 8c). Neural and haemal arches show ossification in 12.4 mm SL, mm NL. Development of neural and haemal processes are completed in 10.0

 becomes ossified in 15.0 mm SL. In 2.3 and 2.5 mm NL larvae, only the first

tally with those of the adults. The adults are reported from the Indian Ocean. processes which is straight and ends in spine. The fin ray counts of the larvae urohyal appendage or the peculiar character of the posterior basipterygial Ostroumova in many respects. However, she has not mentioned about the specimen of 14.3 mm . The present description agrees with that of Pertseva-

 also gets differentiated much early. grandisquamis the eyes become black earlier than in E. mogkii. The pelvic fin
 straight in a spine. Ahlstrom suggests that such a character is helpful to assign turning back, a typical Engyprosopon characteristic according to Ahlstrom, ends

Table 7 a - Engyprosopon grandisquamis - morphometrics, in mm
(Larval stages within broken lines indicate notochord flexion).

Stations	Body Length	Right Eye	Stage	Snout to Anus	Head Length	Snout Length	Eye		Body depth at		Caudal Peduncle		Snout to origin of pelvic fin
							Width	Height	Pectoral fin base	Anus	Depth	Length	
S7-13	2.3 NL	Symmet rical	Pre flexion	1.60	0.71	0.16	0.24	0.26	0.93	0.68	-	-	-
S5-16	2.7 "	real	"	1.40	0.71	0.19	0.27	0.29	0.79	0.60	-	-	-
S7-18G	3.2 "	"	"	1.70	0.90	0.24	0.27	0.29	1.37	1.09	-	-	-
S6-30	3.8 "	"	"	1.90	1.00	0.29	0.32	0.39	1.51	1.24	-	-	-
S6-30	4.2 "	"	"	2.30	1.10	0.31	0.34	0.37	1.48	1.29	-	-	1.10
S10-U-1	4.5 "	"	"	2.30	1.30	0.39	0.30	0.35	2.00	1.70	-	-	1.20
S10-U-1	4.6		Early flexion	2.30	1.50	0.47	0.32	0.39	2.30	1.90	-	-	1.30
S5-5	5.0 "	"	Mid flexion	2.30	1.50	0.47	0.45	0.47	2.90	2.70	-	-	1.20
S9A-18A	5.5 "	"	Late flexion	2.50	1.70	0.43	0.43	0.45	2.70	2.60	-	-	1.40
"	5.6"	"	"	2.50	1.70	0.56	0.40	0.40	2.50	2.30	-	-	1.50
S9A-18A	5.8 SL	"	Post flexion	2.70	1.80	0.58	0.42	0.45	2.90	2.80	0.62	0.34	1.60
"	6.4"	"	fexion	3.30	1.90	0.58	0.45	0.53	3.10	3.00	0.64	0.35	1.70
S6-30	7.0 "	"	"	3.10	2.10	0.68	0.52	0.58	3.80	3.70	0.97	0.50	1.50
S9A-18A	7.6 "	"	"	3.10	2.10	0.60	0.46	0.46	3.90	3.90	1.03	0.48	1.50
"	8.2"	"	"	3.20	2.20	0.60	0.58	0.58	3.90	4.20	1.06	0.47	1.70
"	9.2 "	"	"	3.70	2.60	0.81	0.64	0.68	5.00	5.40	1.70	0.61	1.60
"	10.1"	"	"	3.80	2.90	0.84	0.69	0.69	5.50	5.90	2.00	0.71	1.70
S3-31	11.1 "	"	"	3.80	3.00	0.84	0.77	0.79	6.30	6.40	2.10	0.77	1.60
S8-41	12.4"	Migra ting	"	3.80	3.30	0.87	0.74	0.77	6.30	6.80	2.40	0.79	1.70
S9A-18A	13.7 "	ting	"	4.00	3.90	0.84	0.97	0.99	6.40	6.60	2.40	0.97	2.00
S11A-34	14.5"	"	"	4.60	3.90	0.81	0.94	0.99	6.90	7.20	2.50	1.01	2.30
S3-16	16.4"	"	"	4.40	3.60	0.85	0.97	1.00	7.50	8.60	3.10	1.06	2.20

Table 7 b - Engyprosopon grandisquamis -meristics (Larval stages within broken lines indicate notochord flexion).

Stations	$\begin{aligned} & \text { Size } \\ & (m m) \end{aligned}$	Stage	Notochord	Right Eye	Fin Rays				Vertebrae			Spines		
					Dorsal	Anal	Caudal	Left pelvic	Precaudal	Caudal	Total	Urohyal	Cleithra	Posterior basipterygial processes
Ki-527	2.3 NL	Pre flexion	Straight	Symme trical	1	0	0	0				2	0	0
"	2.5"	,	"		1	0	0	0				3	0	0
"	3.3 "	"	"	"	1	0	0	0				6	1	2/2
Me-53	3.6 "	"	"	"	1	0	0	0				7	1	2/2
S5-16	3.8 "	"	"	"	1	0	0	0				12	2	2/2
S10-U1	4.1 "	"	"	"	52	42	0	0				16	4	6/5
S6-31	4.5"	Early caudal formation	"	"	48	39	4	0				14	4	6/5
S10-U1	4.6"	Early	Flexing	"	56	49	6	0				14	4	6/6
		flexion												
S5-5	5.0"	Mid	"	"	64	59	8	Forming				17	4	6/5
		flexion												
S9A-18A	5.5"	Late	"	"	58	49	11	"				15	4	6/6
		flexion												
S11A-85	5.8 SL	Post	Flexed	"	81	60	17	2+4				20	5	7/7
		flexion												
S5-4A	6.1 "	"	"	"	78	58	17	"				21	6	7/7
"	6.5 "	"	"	"	85	61	17	"				20	6	7/6
S5-16	7.3 "	"	"	"	84	57	17	"				18	5	7/7
Ki-727	7.8 "	"	"	"	89	59	17	2+4	10	24	34	23	5	9/8
VA-1801	8.0 "	"	"	"	84	59	17	3+3	10	24	34	17	8	10/9
Ki-666	8.8 "	"	"	"	83	61	17	$3+3$	10	24	34	22	6	11/11
Ki-103	10.0"	"	"	"	90	63	17	"	10	24	34	22	8	10/9
S3-20	12.4 "	"	"	Migrating	87	63	17	"	10	24	34	23	9	7/7
S11A-34	15.0"	"	"	"	84	64	17	"	10	24	34	16	4	7/7
AB-16	15.3"	"	"	"	79	56	17	"	10	25	35	24	7	8/8
S3-16	16.4"	"	"		95	73	17	"	10	24	34	24	6	8/8

Table 7 c - Engyprosopon grandisquamis - development of vertebral column, caudal fin rays and caudal fin supporting structures.

Stations	Body Length	Stage	Notochord	$\begin{aligned} & \text { Right } \\ & \text { Eye } \end{aligned}$	Precaudal vertebrae				Centra	Caudal vertebrae				Centra	$\begin{gathered} \hline \text { Ural } \\ \text { Centra } \end{gathered}$	$\begin{gathered} \text { Total } \\ \text { vertebrae } \end{gathered}$	Caudal fin rays	Ural components				Epural
					Neural		Haemal			Neural		Haemal						Sup	Hyp	Inf	Hyp	
					Process	Arch	Process	Arch		Process	Arch	Process	Arch					Upp	Mid	Mid	Low	
Kl-527	2.3 NL	Pre flexion	Straight	Symme trical	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
"	2.5 "		"		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
"	3.3 "	"	"	"	0	9	0	0	0	0	16	1	15	0	0	25	0	0	0	0	0	0
S5-16	3.8 "	"	"	"	9	0	0	7	0	7	11	8	10	0	0	27	0	0	0	0	0	0
S10-U-1	4.1 "	"	"	"	9	1	0	7	+	21	0	21	0	0	0	30	+	0	0	0	0	0
S6-31	4.5 "	"	"	"	9	1	0	8	9	19	4	19	4	+	0	32	+	0	0	0	0	0
S10-U-1	4.6 "	Early flexion	Flexion	"	9	1	0	8	9	20	2	20	2	+	0	31	6	0	x	x	0	0
S5-5	5.0 "	Mid flexion	"	"	9	1	0	8	9	21	2	21	2	12	0	32	8	0	x	x	x	x
S9A-18A	5.1 "	$\begin{aligned} & \text { Late } \\ & \text { flexion } \end{aligned}$	"	"	9	1	0	8	9	22	2	22	2	24	1	34	11	0	x	x	x	x
"	5.5 "		"	"	9	1	0	8	9	21	2	21	2	23	1	33	11	0	X	x	x	X
S11A-85	5.8 SL	Post flexion	Flexed	"	9	1	3	5	10	21	2	21	2	23	1	34	17	x	x	x	x	x
S5-4A	6.1 "	"	"	"	9	1	3	5	10	21	2	21	2	23	1	34	17	x	x	x	x	x
"	6.5 "	"	"	"	9	1	3	6	10	21	2	21	2	23	1	34	17	x	x	x	x	x
S5-16	7.3 "	"	"	"	9	1	3	6	10	21	2	21	2	23	1	34	17	x	x	x	x	x
Ki-727	7.8 "	"	"	"	9	1	3	6					2	23	1	34		x	x	x	x	
Va-1801	8.0 "	"	"	"	9		3	6	10	21	2	21	2	23	1	34	17	x	x	x	x	x
Ki-666	8.8 "	"	"	"	9	1	3	6	10	21	2	21	2	23	1	34	17	X	x	x	x	X
Ki-103	10.0"	"	"	Migr	9	1	6	3	10	21	2	21	2	23	1	34	17	x	x	x	x	x
S3-20	12.4 "	"	"	Migra ting	9	1	6	3	10	21	2	21	2	23	1	34	17	x	x	x	x	x
S11A-34	15.0"	"	"	"	9	1	6	3	10	21	2	21	2	23	1	34	17	x	x	x	x	x
AB-16	15.3"	"	"	${ }^{\prime \prime}$	9	1	6	3	10	22	2	22	2	24	1	35	17	x	x	x	\times	x
S3-16	16.4 "	"	"	"	9	1	6	3	10	21	2	21	2	23	1	34	17	x	x	x	x	x

 81－91 dorsal and 57－70 anal rays． dorsal ray in front of the elongated dorsal ray is also differentiated．There are complement of the median fin rays is seen in 6.3 mm SL in which the tiny first posterior caudal region in 5.2 mm NL larvae（the earliest in the collections）．Full

：sə⿰nłonגłs 反u！̣odans pue u！コ
analysis for morphometric data is not discussed． as well as scarcity of the specimens belonging to flexion stages，the statistical larvae grow older．Because of the absence of preflexion stages in the collection

 midflexion stage，but in advanced stages becoming oval and lies above the
 pectoral girdle and intestinal loop as in other spp．with the anteroposterior axis

 abdominal cavity．Rectal portion of the alimentary canal vertical in midflexion
 moving dorsalwards preparatory to its migration to the left side in 12.1 mm SL postflexion stages．Eyes symmetrical and black，the right one has started

：кбооочवıоW

 Naga Expeditions（Fig． 8 A，B，C ；Table 8 a，b，c \＆25）．

Z6

$\overline{\text { ఫ|npe әч। }}$ vertebrae including urostyle. largest larvae (12.1 mm SL) available in the collection. There are $10+24-26$

 developed in caudal portion. In the precaudal region haemal arches are

reached the middle level of the intestinal loop. recurved on reaching the level of the ascending loop of the intestine but never larvae of the collection (5.2 mm NL). Distal end of the posterior basipterygial Posterior basipterygial processes beset with spines are present in the youngest right. Fin rays are short and left two rays are seen in advance of the right fin.
 posterior end in 12.1 mm SL. Fin ray rudiment is seen in 6.3 mm SL , in 7.7 mm forwards to the urohyal and reaches up to the level of the second spine from the

> differentiated in 6.3 mm SL larvae. side of the caudal fin by the processes of the penultimate vertebra are also differentiated and bears three rays in 5.5 mm SL. Two rays borne on either differentiated but rays are found only in 5.5 mm SL, the superior hypural upper is larvae available in the collection (5.2 mm NL). Inferior hypural lower is
The larvae is described and reported for the first time. agree with those of the adult. The adults are reported from the Indian Ocean. sұunoэ ןеэ!иәunи әчц !!! cocosensis. The posterior basipterygial processes are typical of Engyprosopon posterior basipterygial processes are more or less equal to those of E. absence of spines on the cleithra. The number of spines on urohyal and
The larvae of E. sechellensis are distinguished from other species in the
ड्राeயә्प
(Norman, 1939).
head (in the male). Pale brownish ; dark spots or marking on body and fins 8 C). Pectoral of ocular side with 12 rays, upper ray produced and longer than on lower part of anterior arch. 40 scales in lateral line. Dorsal 82. Anal 63 (Fig. $1 / 4$ of eye, length about $22 / 3$ in that of head. 6 gill-rakers of moderate length
in front of and one below the upper eye.. Maxillary extending to below anterior

Table 8 a - Engyprosopon sechellensis - morphometrics, in mm (larval stages).

Stations	Body	Right	Stage	Snout to	Head	Snout	Eye		Body depth at		Caudal Peduncle		Snout to origin of pelvic fin
	Length	Eye		Anus	Length	Length	Width	Height	Pectoral fin base	Anus	Depth	Length	
S11B-91	5.2 NL	Symmet rical	Mid flexion	2.40	1.40	0.52	0.35	0.39	2.40	2.10	-	-	1.40
S8-26A	5.5 SL		Post flexion	2.40	1.60	0.58	0.45	0.56	2.90	2.70	0.61	0.35	1.50
"	6.3 "	"	迷	2.80	1.80	0.68	0.52	0.48	3.20	3.10	0.79	0.35	1.80
S11B-81	6.9 "	"	"	3.50	2.00	0.71	0.45	0.52	4.00	3.90	0.97	0.47	1.50
S8-26A	7.7 "	"	"	3.30	2.40	0.81	0.53	0.63	4.10	3.90	1.38	0.56	2.20
,	7.9 "	"	"	3.30	2.20	0.71	0.58	0.68	4.00	4.10	1.32	0.55	1.60
S4-32	8.3 "	"	"	3.60	2.50	0.70	0.64	0.71	4.90	4.90	1.60	0.63	1.70
S6-34	8.7 "	"	"	3.50	2.50	0.90	0.58	0.64	4.80	4.90	1.55	0.64	1.70
S6-31	10.1 "	"	"	4.20	2.70	0.97	0.61	0.68	5.30	5.50	1.61	0.64	1.80
Di-52928	12.1 "	"	"	4.20	3.00	0.90	0.63	0.67	5.70	6.20	1.45	0.84	2.00

Table 8 b-Engyprosopon sechellensis - meristics (Larval stages).

Stations	$\begin{aligned} & \text { Size } \\ & (m m) \end{aligned}$	Stage	Notochord	Right Eye	Fin Rays				Vertebrae			Spines		
					Dorsal	Anal	Caudal	Left pelvic	Precaudal	Caudal	Total	Urohyal	Cleithra	Posterior basipterygial processes
S11B-91	5.2 NL	Mid flexion	Flexing	Symmet rical	69	39	6	0				22	0	15
S8-26A	5.5 SL	Post flexion	Flexed	"	83	57	15	0	10	25	35	21	0	11+
"	6.3 "	"	"	"	89	60	17	FR	10	26	36	20	0	14
S11B-81	6.9 "	"	"	"	84	58	17	"	10	24	34	27	0	22
S8-26A	7.7 "	"	"	"	89	70	17	2+4	10	26	36	23	0	14
"	7.8 "	"	"	"	88	66	17	"	10	26	36	22	0	17
S4-32	8.3 "	"	"	"	87	61	17	3+3	10	25	35	21	0	24
S6-34	8.7 "	"	"	"	87	62	17	2+4	10	25	35	23	0	19
0S-4	9.3 "	"	"	"	82	60	17	3+3	10	24	34	32	0	26
S6-31	10.1"	"	"	"	88	68	17	2+4	10	26	36	21	0	15
S6-38	10.9 "	"	"	"	81	61	17	3+3	10	24	34	36	0	18
Di-5292B	12.1"	"	"	Migra ting	91	70	17	$3+3$	10	25	35	32	0	26

Table 8 c - Engyprosopon sechellensis - development of vertebral column, caudal fin rays and caudal fin supporting structures.

Stations	Body Length	Stage	Notochord	$\begin{aligned} & \text { Right } \\ & \text { Eye } \end{aligned}$	Precaudal vertebrae				Centra	Caudal vertebrae				Centra	$\begin{aligned} & \text { Ural } \\ & \text { Centra } \end{aligned}$	$\begin{gathered} \hline \text { Total } \\ \text { vertebrae } \end{gathered}$	Caudal fin rays		Ural com	onen		Epural
					Neural		Haemal			Neural		Haemal						Sup	Hyp	Inf	Hyp	
					Process	Arch	Process	Arch		Process	Arch	Process	Arch					Upp	Mid	Mid	Low	
S11B-91	5.2 NL	$\begin{gathered} \text { Mid } \\ \text { flexion } \end{gathered}$	Flexion	Symme trical	9	1	0	8	0	21	2	21	2	0	0	33	6	0	x	X	x	x
S8-26A	5.5 SL	Post flexion	Flexed		9	1	0	9	0	21	3	21	3	0	0	34	15	x	x	x	x	x
"18	6.3"	"	"	"	9	1	4	5	0	23	2	23	2	0	0	35	17	x	${ }^{\mathrm{x}}$	x	x	x
S11B-81	6.9 "	"	"	"	9	1	4	5	10	21	2	21	2	23	1	34	17	x	X	x	X	X
S8-26A	7.7 "	"	"	"	9	1	4	5	10	23	2	23	2	25	1	36	17	x	x	x \times \times	x	x
	7.8 "	"	"	"	9	1		5	10	23	2	23	2	25	1	36	17	x	x	x	x	x
S6-34	8.7 "	"	"	"	9	1	4	5	10	22	2	22	2	24	1	35	17	x	x	x \times \times	x	x
OS-4	9.3 "	"	"	"	9	1	4	5	10	21	2	21	2	23	1	34	17	x	x	x	x	x
S6-31	10.1 "	"	"	"	9	1	4	5	10	23	2	23		25	1	36	17	x	x	x	x	x
Di-5292B	12.1 "	"	"	Migra ting	9	1	4	5	10	22	2	22	2	24	1	35	17	x	x	x	x	x

increment is gradual afterwards, as in E. grandisquamis. Depth at anus
increases as in E. latifrons, E. mogkii and E. grandisquamis. pectoral base shows sudden increase from preflexion to flexion stages but the cocosensis, E. latifrons, E. mogkii and E. grandisquamis. Relative depth at the eye height decreases from preflexion to postflexion stages as in E.
 mogkii and E. grandisqumis. Eye width increases from preflexion to flexion
 stages, thereafter decreases as in E. cocosensis, E. latifrons and E. studied. Relative snout length shows an increase from preflexion to flexion
 әseq u! (5.9 mm SL) specimens in the present collections increases as the larvae grow. Spines are not seen on cleithra even in the largest

 occupies the space between eighth and tenth vertebral segment. space between the pectoral girdle and intestinal loop. Swim bladder small and
 as the larvae grow and in 5.9 mm SL (the largest specimen in the collection) the
 cavity and the rectal portion dips vertically down, the anus at the level of the $10^{\text {th }}$ 3.7 mm NL becomes elliptical and placed at the posterior end of the abdominal runs parallel to the notochord, the intestinal coil is circular in early stages but in

: KбоןочdдоW

Tables $9 \mathrm{a}, \mathrm{b}, \mathrm{c}, 25$).
plankton collected during IIOE and Naga Expeditions (Figs. 9 A, B, C, D ;

Engyprosopon multisquama Amaoka, 1963
 \section*{63}

There are $10+26$ vertebrae including urostyle.
 processes are differentiated in 3.7 mm NL , but in the precaudal region, only neural arch, which is differentiated in 4.5 mm NL larva. Neural and haemal Neural and haemal arches begin to differentiate in 3.5 mm NL except the first

NL). Rays are not differentiated even in the largest specimens. pelvic fin is seen in 4.2 mm NL, radial is differentiated in late flexion $(5.2 \mathrm{~mm}$
 along the ventral aspect of the body wall and reach up to the intestinal loop,

 seen in 5.8 mm SL . between 4.2 mm NL and 5.8 mm SL larvae. Full complement of caudal rays are
 two caudal rays articulated to inferior hypural middle. Epural is differentiated hypural middle and superior hypural middle are differentiated in 4.2 mm NL with

 to develop. There are 84-85 dorsal and 52-53 anal rays. from the first elongated dorsal pterygiophore in 5.9 mm SL but the first ray is yet the collection (5.9 mm SL). Ramus of the supporting first dorsal ray grows out region. First dorsal ray is not differentiated even in the largest larvae available in
 3.0 mm NL. In 3.7 mm NL larvae, median fin rays are differentiated from anterior

time from Indian Ocean. this species from South China Sea but is reported and described for the first

 least in E. multisquama. The number of dorsal and anal rays agree with those of stages unlike in other species studied so far. The depth across the anus is the

sभर्यәәप्ன

 fins. A pair of large jet-black blotches on caudal fin (Amaoka, 1969). greyish green ; with irregularly scattered blackish spots paler than body on all with $9-11$ rays, length 0.5 to 0.9 in head ; produced and filamentous. Pale scales in lateral line. Dorsal 83-96, anal 62-73 (Fig. 9 C). Pectoral of ocular side in shape on both sides, rather long, developing on lower limb of arch. 45-50 jaw biserial with largest teeth anteriorly. 5 to 8 gill - rackers on first arch similar extending slightly beyond anterior edge of pupil of lower eye. Teeth on upper above middle of the lower. Rostral spine present and rather strong. Maxillary inter orbital space concave, width $1 / 2$ diameter of eye ; anterior edge of upper eye

Table 9 a- Engyprosopon multisquama-morphometrics, in mm (Larval stages within broken lines indicate notochord flexion).

Stations	Body Length	Right Eye	Notochord	Snout to Anus	Head Length	Snout Length	Eye		Body depth at		Caudal Peduncle		Snout to origin of pelvic fin
							Width	Height	Pectoral fin base	Anus	Depth	Length	
S6-34	2.6 NL	Symmet rical	Straight	1.40	0.70	0.16	0.23	0.23	0.71	0.64	-	-	-
S6-28	2.8 "	"	"	1.60	0.70	0.15	0.29	0.29	0.81	0.58	-	-	-
S5-9B	3.0 "	"	"	1.70	0.70	0.18	0.23	0.26	0.64	0.58	-	-	-
S6-39	3.1 "	"	"	1.50	0.80	0.21	0.24	0.29	0.90	0.72	-	-	0.80
S5-10	3.5 "	"	"	1.80	0.90	0.26	0.29	0.31	1.10	0.90	-	-	0.90
S8-20B	3.7...	"	"	1.90	1.00	0.35	0.32	0.34	1.70	1.20	-	-	1.10
S8-20B	4.2 "	"	Early flexion	2.10	1.30	0.50	0.35	0.37	1.80	1.50	-	-	1.20
S8-20B	4.6 "	"	"	1.90	1.30	0.48	0.32	0.32	2.00	1.60	-	-	1.40
S8-26A	4.8 "	"	Mid flexion	2.30	1.30	0.45	0.39	0.42	2.20	2.10	-	-	1.20
S8-20B	5.2 "	"	Late flexion	2.40	1.60	0.50	0.35	0.43	2.40	2.30	-	-	1.70
S8-26A	5.6."	"	,	2.40	1.60	0.58	0.45	0.56	2.90	2.70	-	-	1.50
S8-20B	5.8 SL	"	Flexed	2.60	1.80	0.60	0.45	0.40	2.70	2.40	0.55	0.29	1.90
S8-26A	5.9 "	"	"	2.60	1.80	0.58	0.45	0.41	2.70	2.80	0.64	0.37	1.70

Table 9b-Engyprosopon multisquama - meristics (Larval stages within broken lines indicate notochord flexion).

Stations	Size (mm)	Stage	Notochord	Right Eye	Fin Rays				Vertebrae			Spines		
					Dorsal	Anal	Caudal	Left pelvic	Precaudal	Caudal	Total	Urohyal	Cleithra	Posterior basipterygial processes
S6-34	2.6 NL	Pre flexion	Straight	Symmetri cal	1	0	0	0				5	0	4
S6-28	2.8 "	迷	"	cal	1	0	0	0				8	0	4
S5-9B	3.0 "	"	"	"	1	1	0	0				9		4
S5-10	3.5 "	"	"	"	1	1	0	0				9		6
S8-20B			"		57	36	0	0				11	0	9
S8-20B	4.2 "	Early	Flexing	"	65	43	2	0				9	0	10
		flexion												
S8-26A	4.5 "	"	"	"	67	42	7	0				16	0	11
S8-20B	4.6 "	"	"	"	64	49	5	0				14	0	14
S8-26A	4.8 "	Mid	"	"	78	48	9	0				14	0	14
S8-20B	5.1 "	flexion	"	"	76	50	8	0				14	0	12
	5.2 "	Late	"	"	80	48	10	0				19	0	16
S8-26A	5.6 "	flexion	"	"	80	48	12	0				16	0	14
S8-20B	5.8 SL	Post	Flexed	"	84	52	17	0	10	26	36	16	0	11
S8-26A	5.9 "	flexion	"	"	85	53	17	0	10	26	36	18	0	11

Table 9 c-Engyprosopon multisquama-development of vertebral column, caudal fin rays and caudal fin supporting structures.

Station	Body Length	Stage	Notochord	$\begin{aligned} & \text { Right } \\ & \text { Eye } \end{aligned}$	Precaudal vertebrae				Centra	Caudal vertebrae				Centra	$\begin{aligned} & \text { Ural } \\ & \text { Centra } \end{aligned}$	$\begin{gathered} \hline \text { Total } \\ \text { vertebrae } \end{gathered}$	Caudal fin rays	Ural components				Epural
					Neural		Haemal			Neural		Haemal						Sup	Hyp	Inf	Hyp	
					Process	Arch	Process	Arch		Process	Arch	Process	Arch					Upp	Mid	Mid	Low	
S6-34	2.6 NL	$\begin{aligned} & \text { Pre } \\ & \text { flexion } \end{aligned}$	Straight	Symme trical	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
S6-28	2.8 "		"		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
S8-20B	3.7 "	${ }^{*}$,	"	9	0	0	8	0	19	5	19	5	0	0	34	0	0	0	0	0	0
	4.2 "	Early	Flexing	"	9	0	0	8	0	19	5	19	5	0	0	34	2	0	x	x	0	0
S8-26A	4.5 "	${ }^{*}$	"	"	9	1	0	8	0	21	3	21	3	0	0	34	7	0	x	x	x	0
S8-20B	4.6 "	"	"	"	9	1	0	8	0	20	3	20	3	0	0	33	5	0	x	x	x	0
S8-26A	4.8 "	Mid flexion	"	"	9	1	0	8	10	23	2	23	2	25	1	36	9	0	x	x	x	0
S8-20B	5.1 "	"	"	"	9	1	0	8	10	21	3	21	3	24	1	35	8	0	x	x	x	x
	5.2 "	Late flexion	"	"	9	1	0	8	10	23	2	23	2	25	1	36	10	0	X	x	X	X
S8-26A	5.6 "	"	"	"	9	1	0	8	10	20	3	20	3	23	1	34	12	x	x	x	x	x
S8-20B	5.8 SL	Post flexion	Flexed	"	9	1	0	8	10	23	2	23	2	25	1	36	17	x	x	x	x	x
S8-26A	5.9 "	"	"	"	9	1	0	8	10	23	2	23	2	25	1	36	17	x	x	x	x	x

The first tiny dorsal ray is discernible in 7.2 mm SL larvae in which full pterygiophores and fin rays are seen differentiated except at caudal extremity.

urohyal and posterior basipterygial processes but not on the cleithra

 15.8 mm SL anus comes to lie at the level of eighth vertebral segment. Liver is segment. In later stages, intestinal coil gets gradually pushed forwards and in
 one and the coil is pushed to posterior end of abdominal cavity with the rectal
 rectal portion lies horizontally and is directed posteriorwards, but in 6.1 mm NL coil being more than dorso-ventral in earliest stages of larvae. At this stage
 alimentary canal runs parallel to notochord up to middle of the abdominal cavity larvae, the largest specimen available in the collections. Jaws carry small teeth, to left side in 12.6 mm SL larvae, but the shifting is not completed in 15.8 mm SL right eye has started shifting from symmetrical position, preparatory to migration

: Kboloyddow collections (Figs. 10 A, B, C, D ; Tables 10a, b) preflexion and postflexion stages are found in the IIOE and Naga Expedition

$$
\text { anterior arch. } 50 \text { scales in lateral line. Dorsal 79-91. Anal 61-69 (Fig. } 10 \text { D). }
$$

 Maxillary nearly reaching middle of eye, length $21 / 3$ to $21 / 2$ in head. Teeth

माnpe әप।

 26 including urostyle. posterior three processes are smaller. Number of vertebrae range from 10+25haemal processes and two arches occur in the precaudal region of which larvae. In 11.7 mm SL larvae, vertebrae dumb bell-shaped and ossified. Six retaining the consistency even in the largest specimens measuring 15.8 mm SL at its tip, second neural arch also cartilaginous but broad and spinous at its tip only faintly visible posteriorly. First neural arch cartilaginous, very thin and blunt

 up in spines as in E. grandisquamis. abdominal wall, the distal ends reach up to ascending loop of intestine and end
 three of the anterior rays of the left are in advance of those of right fin. Pelvic fin radials are asymmetrical, those of left side longer than the right and processes) discernible in 6.1 mm larvae and rays are found in 7.2 mm SL larva. processes) is seen in 4.8 mm NL larvae. Pelvic fin radial (anterior basipterygial

Pelvic fin complex represented by cartilaginous bars (basipterygial

 complement of 17 caudal rays occur in 7.1 mm SL larvae.available, so the sequence of formation of caudal rays is not described. Full

traces of small dark spots on median fins (Norman, 1934).
Pectoral of ocular side with 12 rays, length $4 / 5$ that of head. Yellowish brown ;

Table 10 a-Engyprosopon xenandrus - morphometrics, in mm (Larval stages).

Stations	Body Length	Right Eye	Notochord	Snout to Anus	Head Length	Snout Length	Eye		Body depth at		Caudal Peduncle		Snout to origin of pelvic fin
							Width	Height	Pectoral fin base	Anus	Depth	Length	
Ar Dodo 25	4.8 NL	Symm etrical	Straight	2.00	1.20	0.34	0.31	0.34	1.16	0.81	-	-	-
Dm 132	6.1 "	"	"	3.00	1.70	0.52	0.46	0.41	2.40	2.30	-	-	-
S8-20 B	7.1 SL	"	Flexed	3.20	1.80	0.55	0.48	0.45	3.00	3.00	0.77	0.39	1.80
S8-26 A	7.2 "	"	"	3.30	1.90	0.71	0.61	0.61	3.80	3.60	1.30	0.58	1.30
S4-32	9.0 "	"	"	3.70	2.60	1.00	0.64	0.66	5.20	5.20	1.80	0.68	1.70
"	10.1 "	"	"	3.70	2.80	1.00	0.68	0.68	5.30	5.30	1.80	0.74	1.60
"	11.1 "	"	"	4.40	3.10	0.98	0.74	0.71	5.60	6.10	2.20	0.81	2.10
"	12.5 "	"	"	4.40	3.20	1.00	0.74	0.64	6.60	6.80	2.20	0.81	1.80
"	12.8 "	Migra ting	"	4.30	3.50	0.87	0.84	0.87	6.10	6.10	2.20	0.90	2.60
"	13.6 "	"	"	3.90	3.80	0.90	0.90	0.80	6.30	6.30	2.40	1.00	2.10
"	14.0 "	"	"	4.20	3.90	1.30	0.93	0.90	6.90	7.00	2.70	1.01	2.00

Table 10 b-Engyprosopon xenandrus - meristics (Larval stages).

Stations	$\begin{aligned} & \hline \text { Size } \\ & (m m) \end{aligned}$	Stage	Notochord	Right Eye	Fin Rays				Vertebrae			Spines		
					Dorsal	Anal	Caudal	Left pelvic	Precaudal	Caudal	Total	Urohyal	Cleithra	Posterior besipterygial processes
Ar Dodo 25	4.8 NL	Pre flexion	Straight	Symmet rical	1	0	0	0				9	0	6
Dm 132	6.1 "	x	"		Ca74	ca49	0	0				19	0	12
S8-20 B	6.1 SL	Post flexion	Flexed	"	Ca75	ca54	17	Forming	10	26	36	19	0	15
S8-26 A	7.2 "	"	"	"	81	62	17	3+3	10	25	35	25	0	16
S4-32	9.0 "	"	"	"	78	62	17		10	25	35	24	0	18
"	9.5 "	"	"	"	90	65	17	"	10	26	36	18	0	16
"	10.1 "	"	"	"	91	64	17	"	10	25	35	25	0	16
"	10.6 "	"	"	"	86	66	17	"	10	26	36	23	0	20
"	11.1 "	"	"	"	88	70	17	"	10	26	36	26	0	16
"	11.3 "	"	"	"	89	65	17	"	10	25	35	23	0	15
"	12.5 "	"	"	"	93	66	17	"	10	26	36	28	0	14
"	12.8 "	"	"	"	94	68	17	"	10	26	36	17	0	10+
"	13.0 "	"	"	"	93	69	17	"	10	26	36	19	0	18
S4-32	13.6 "	"	"	"	86	66	17	"	10	26	36	10+	0	10+
"	14.0 "	"	"	"	79	67	17	"	10	26	36	17	0	10+
Ki-322	15.8 "	"	"	"	93	66	17	"	10	25	35	28	0	13

Oレレ

 latter．In the former group，the spines are more in number in E．cocosensis than
 grandisqumis can be distinguished from E ．sechellensis，E ．multisquama and E ．

dorsal ray．

 median pterygiophores．E．latifrons come first in the early differentiation of first while E．multisquama has the minimum depth at anus and early differentiation of length and early differentiation and development of first neural arch and hypurals minimum length at postflexion stage，E．mogkii has the shortest snout to anus recognise the shortest species among the genus．E．sechellensis has the grandisquamis and E．mogkii respectively．Nevertheless，it is difficult to radials，the position occupied by E ．xenandrus is shared by E ．cocosensis，E ． anus and late development and differentiation of first dorsal ray and pelvic fin commencement of migration of the eye（Table 11）．But in the maximum depth at
 largest．It has the maximum length at postflexion stage，maximum snout to anus
 Engyprosopon larvae studied so far（Table 10）．Among the different species of
 and supporting structures，first neural arch，first tiny dorsal ray as well as the across anus，length at which differentiation of median，caudal and pelvic fin rays

uodosoudК6иヨ

morphometrics help in identifying the larvae of different species，of

 in E．multisquama systems．The depth across anus is more pronounced in E ．cocosensis and least
 mogkii and late in E．sechellensis．In general，it could be assumed that E ．

 larvae of the latter species belonging to flexion stages are not available in the
 and early in E．cocosensis．The caudal fin ray differentiates earlier in E．mogkii，

 difficult to asses the length of the larvae at which median fins are differentiated in latifrons，E．mogkii and E．sechellensis．In the absence of earlier stages it is condition of the posterior basipterygial processes is found in E．cocosensis，E ． basipterygial processes get reflected backwards and ends curved．A similar grandisquamis，while in E．multisquama the distal end of the posterior The posterior basipterygial processes in E ．xenandrus end in spine as in E ．

separately
positions on the right and left rami do not juxtapose and can be counted basipterygial processes in E．grandisquamis is also peculiar in that their covered over by brownish black stellate pigments．The spines on the posterior having a urohyal appendage in the former and the larval body of E．mogkii is early larvae of E ．grandisquamis can be distinguished from those of E ．mogkii in basipterygial processes which get differentiated only in 3.3 mm NL．However，the
 basipterygial processes develop only in 3.4 mm NL．In E．grandisquama also are seen in the larvae of 3.4 mm NL and above．In E．mogkii even the posterior

 sıәңем ןеэ！

 presence of spines on the otic bones in the head in the larvae of Engyophrys
 ventral fin radial is strongly asymmetrical being longer than that of the right and

 shape，meristic characters and in the presence of spines on urohyal，cleithra and

 um 0Z pleuronectiform larvae have included a figure of E ．xenandrus measuring about

 materials of the present description and also not mentioned about the peculiar

 forms agree with those described by Pertseva－Ostroumova as Crossorhombus difference in vertebral counts，pigmentation and median fin rays．The present
 have been collected from Gulf of Tonkin ranging in length from 2.8 to 8.9 mm

E. xenandrus are described and reported for the first time.

considering
basipterygial processes ending in spine. Ahlstrom has also suggested to provide
a separate status to these two species on the above ground which is worth

Table 11. Difference in morphometrics at the commencement of postflexion and length of larvae when meristic characters differentiate in Engyprosopon species (in mm).

pecies	Standard length	Snout to anus length	Body depth across anus	Median fin rays	Pelvic fin rays	First neural arch	First tiny dorsal ray	Hypural Commencement of eye migration	
E. cocosensis	5.6	2.6	3.2	3.5	5.0	5.0	6.5	5.0	
E. latifrons	5.7	2.5	2.8	4.7	6.6	3.6	5.7	4.8	
E. mogkii	5.8	2.1	3.0	4.0	7.2	3.4	7.0	4.0	
E. grandisquamis	5.8	2.7	2.8	4.1	5.0	4.1	7.8	4.6	-
E. sechellensis	5.5	2.4	2.7	5.2	6.3	5.2	6.3	5.2	
E. multisquama	5.8	2.6	2.4	3.7	-	4.5	-	4.1	
E. xenandrus	7.1	3.2	3.0	6.1	7.1	6.1	7.2	6.1	

 thereafter decreases（Table 25），but relative snout length decreases from

absent． ninth vertebral segments but in advanced stages it gets reduced．Spines totally

 ventral portion with a smooth curature the space between ascending and

 the level of sixth vertebral segment in 33.5 mm SL larva．A pair of caecal portion of intestinal loop pushed obliquely forwards and the anus comes to lie at anus opening at the level of ninth vertebral segment．In later stages，ventral
 notochord for a short distance，then runs obliquely downwards，makes an collection．Jaws carry small teeth，alimentary canal runs parallel to the
 and squarish in early stages，becoming spherical later．Right eye has not started cerebral hemispheres have truncate anterior margin．Eyes black，symmetrical

：KচоᅵOपवगOW
（Gて 8 ○ ‘q ‘ e 乙レ preflexion，flexion and postflexion stages are present（Figs． $11 \mathrm{~A}, \mathrm{~B}, \mathrm{C}$ ；Tables

 Bothus myriaster（Temminck and Schlegel，1846）

notochord is completed complement of caudal fin rays is noticed in 5.2 mm larvae when flexion of the notochord evident in larvae ranging between 4.1 and 5.2 mm NL ．Full each，in 4.5 mm ，a ray is seen on inferior hypural lower．Flexion of the
 inferior hypural lower and epural are differentiated with no rays，the inferior
 lies opposite the tip of pterygiophore in largest specimen of the collection fin fold grows beyond the tip of the first dorsal pterygiophore and fifth dorsal ray from 86 to 92 in the dorsal and 62 to 70 in the anal．Forward extension of dorsal SL in which 87 dorsal and 62 anal rays can be counted．Median fin ray vary posterior caudal portion．Full complement of median fin rays occurs in 7.9 mm tiny ray is discernible in $4.2 \mathrm{~mm} N L$ ，but median fin rays not differentiated in the extension of the first dorsal pteyrgiophore noticeable in 4.1 mm NL larva．First 14.4 mm SL and thereafter it is not discernible from rest of the rays．Forward

səınłフnıłs 6u！̣，

 stages．pectoral fin base and across anus increases from preflexion to postflexion
wavy, dark transverse bars (blue in life) just in front of the posterior dark portion yellowish-white anteriorly becoming dark brown posteriorly ; a number of narrow, across the middle ; pectoral with traces of faint cross-bars ; blind side of fish row of larger dusky spots ; caudal dark at base and at tip of rays, a pale band its straight portion ; dorsal and anal fins with small brown dots, and each with a
 blue spots ringed with dark brown ; a diffuse dark blotch at junction of straight
 head. Caudal obtusely pointed. Pale brownish; head and body with numerous rays prolonged and filamentous in the male, longest more than twice as long as 93-95. Anal 67-71 (Fig. 11 C). Pectoral of ocular side with 8 or 9 rays, upper they are ctenoid ; those of blind side cycloid; 104 scales in lateral line. Dorsal cycloid on ocular side, except at extreme upper and lower edges of body, where blind side of jaws. 6 short gill-rakers on lower part of a interior arch. Scales all edge of eye, length $34 / 5$ in that of head. Teeth more strongly developed on some smaller spines around round orbits. Axillary extending to below anterior
 lower ; each eye with a large membranous flap on its hinder part in the male. than twice diameter of eye ; anterior edge of upper eye above posterior part of above lower eye; diameter of eye $33 / 4$ in length of head; interorbital width more

\#npe әपІ

 on the surface. forwards, the cartilaginous part sculptured with minute tubercle - like outgrowths process. Long stout and cartilaginous, it extends obliquely downwards and anal fin. First anal pterygiophore arises from middle of this large haemal

myriaster from Japanese waters and Porto Novo coast do not belong to this described and reported for the first time, since the larval forms designated as B.
 larval forms tally with the adults of B. myriaster. The adull fishes belonging to B. possession of deeply ovate body. The meristics and morphometrics of the

 elongated and asymmetrical left pelvic fin radial, with elongated rays, the anterior larval forms can be placed under the genus Bothus in the presence of an
 because the eye migration has not yet started in 33.5 mm SL larva eventhough early postflexion stages. This species appears to have protracted larval life only in postflexion stages. The elongated anterior dorsal ray shrivels up in the differentiated in flexion stages but full complement of median fin rays are seen descending loop of the alimentary canal. The first tiny dorsal ray is material. The posterior basipterygial processes extend beyond the level of the interspace between the ascending and descending loops are filled with glandular posterior basipterygial processes. The intestinal coil is not compact. The postflexion stages. Spines are totally absent on the cleithra, urohyal and

Table 12 a - Bothus myriaster-morphometrics, in mm (Larval stages within broken lines indicate notochord flexion).

Stations	Body Length	Right Eye	Notochord	Snout to Anus	Head Length	Snout Length	Eye		Body depth at		Caudal Peduncle		Snout to origin of pelvic fin
							Width	Height	Pectoral fin base	Anus	Depth	Length	
S8-20B	4.1 NL	Symmet rical	Straight	1.60	1.10	0.52	Missing		2.00	1.90	-	-	0.90
"	4.2 "	"	Mid flexion	1.50	1.30	0.60	0.32	0.35	2.70	2.60	-	-	0.50
"	4.5 "	"		1.70	1.50	0.64	0.32	0.35	2.70	2.70	-	-	0.70
S8-23B	4.8 "	"	Late flexion	1.80	1.60	0.70	Missing		2.80	2.70	-	-	1.20
S8-20B	5.2 SL	"	Post	1.90	1.60	0.87	0.35	0.37	3.20	3.10	0.61	0.29	0.64
S8-23 B	5.7 "	"	"	2.40	2.00	1.30	0.33	0.35	2.90	2.90	0.53	0.24	1.40
	7.9 "	"	"	2.80	2.50	1.30	0.48	0.48	5.50	5.10	1.00	0.32	1.10
"	8.5 "	"	"	3.10	2.50	1.50	0.37	0.39	6.50	6.30	1.60	0.60	1.50
Di - 5010	9.5 "	"	"	2.80	2.60	1.00	0.42	0.52	6.50	6.40	1.00	0.32	1.10
S8-20B	10.4 "	"	"	3.40	3.40	1.40	0.40	0.50	8.30	8.30	2.30	0.59	1.20
S4-17	10.9 "	"	"	2.70	3.00	1.09	0.48	0.55	8.00	8.10	2.20	0.64	0.90
Di-5508	11.4 "	"	"	2.60	3.00	1.10	0.39	0.47	7.60	7.70	2.30	0.77	0.50
S8-20B	12.1 SL	"	"	3.00	3.10	1.40	0.45	0.48	11.00	11.00	4.20	0.98	0.80
Di - 5355	12.3 "	"	"	3.00	3.10	1.50	0.52	0.52	9.10	9.00	2.70	0.92	0.90
Di - 5010	14.4 "	"	"	4.00	4.10	1.50	0.55	0.61	10.90	10.90	3.30	0.90	1.00
Me-178	17.0 "	"	"	4.40	4.50	1.60	0.56	0.61	13.70	14.40	4.30	1.20	0.80
NH-40	20.6 "	"	"	4.90	4.90	2.30	Missing		17.60	17.60	7.60	1.80	0.60
"	21.5 "	"	"	4.00	5.00	2.00			17.80	16.90	7.40	1.90	0.60
Dm1/29/65	33.5 "	"	"	5.00	5.50	2.50	0.77	0.85	28.3	28.20	10.60	2.30	0.30

Table 12 b-Bothus myriaster-meristics (Larval stages within broken lines indicate notochord flexion).

Stations	$\begin{aligned} & \text { Size } \\ & (\mathrm{mm}) \end{aligned}$	Stage	Notochord	Right Eye	Fin Rays				Vertebrae		
					Dorsal	Anal	Caudal	Left pelvic	Precaudal	Caudal	Total
S8-20B	4.1 NL	Pre flexion	Straight	Symm etrical	ca64	ca44	0	2+4			
S8-23B	4.2 " 4.8 "	Mid flexion Late flexion	Flexing	"	ca74 ca84	ca54 ca54	8 11	$2+4$ $2+4$			
S8-20B	5.2 SL	Post flexion	Flexed	"	88	65	17	3+3	10	26	36
S8-23B		"	"	"	87	62	17	3+3	10	29	39
Di-5010	9.5 "	"	"	"	89	67	17	3+3	10	28	38
Di - 5508	11.4 "	"	"	"	92	70	17	3+3	10	28	38
Di - 5010	14.4 "	"	"	"	86	65	17	3+3	10	28	38
$\mathrm{Me}-178$	17.0 "	"	"	"	89	65	17	3+3	10	28	38
Dm1/29/65	33.5 "	"	"	"	91	67	17	3+3	10	28	38

Table 12 c - Bothus myriaster - development of vertebral column, caudal fin rays and caudal fin supporting structures.

Stations	Body Length	Stage	Notochord	$\begin{aligned} & \hline \text { Right } \\ & \text { Eye } \end{aligned}$	Precaudal vertebrae				Centra	Caudal vertebrae				Centra	Ural Centra	$\begin{gathered} \text { Total } \\ \text { vertebrae } \end{gathered}$	Caudal fin rays	Ural components				Epural
					Neural		Haemal			Neural		Haemal						Sup	Hyp	Inf	Hyp	
					Process	Arch	Process	Arch		Process	Arch	Process	Arch					Upp	Mid	Mid	Low	
S8-20B	4.1 NL	Pre	Straight	Symme	9	1	0	4+4*	+	20	6	20	6	+	0	36	0	0	0	0	0	0
"	4.2 "	$\begin{aligned} & \text { Mid } \\ & \text { Mlexion } \end{aligned}$	Flexing		9	1	0	4+4*	+	23	2	23	2	+	0	35	8	0	x	x	x	x
"	4.5 "	,	"	"	9	1	0	4+4*	+	23	2	23	2	+	0	35	9	0	x	x	x	x
S8-23B	4.8 "	Late flexion	"	"	9	1	0	4+4*	10	23	2	23	2	25	0	35	11	0	x	x	x	x
S8-20B	5.2 SL	Post flexion	Flexed	"	9	1	0	7+2*	10	23	2	23	2	25	1	36	17	x	x	x	x	x
S8-23B	5.7 "	-	"	"	9	1	Not c		10	24	2	24	2	26	1	37	17	x	x	x	x	x
		"	"	"	9	1			10	26	2	26	2	28	1	39	17	X	X	x	X	x
Di-5010	9.5 "	"	"	"	9	1	6 "		10	25	2	25	2	27	1	38	17	x	x	x	x	x
S4-17	10.9 "	"	"	"	9	1	6	3^{*}	10	25	2	25	2	27	1	38	17	x	x	x	x	x
Di-5508	11.4 "	"	"	"	9	1		3	10	25	2	25	2	27	1	38	17	x	x	x	x	
Di-5355	12.3 "	"	"	" ${ }^{\text {c }}$	9	1	6 6	3 3	10 10	25 25	2	25 25	2	27 27	1	38 38	17	x	x x ¢	x	x x ¢	x
AB-198	14.2 14.4	"	"	"	9 9	1	6	3 3 3	10 10	25 25	2	25 25	2	27 27	1	38 38	17 17	X x x	X x x	x x 1	x x x	X X x
Me-178	17.0 "	"	"	"	9	1	6	3	10	25	2	25	2	27	1	38	17	x	+	+	¢	x
Dm1/29/65	33.5 "	"	"	"	9	1	6	3	10	25	2	25	2	27	1	38	17	x	x	x	x	x

* Rudiments

 processes or on the body．Cleithra remains more less cartilaginous with a pitted advanced stages．Spines absent on the urohyal，cleithra，posterior basipterygial the intestinal loop，dorsoventral axis more than twice the anteroposterior axis in ventral posterior portion tapers to form a finger－shaped diverticulum，lying under
 bladder present between eighth and tenth vertebral segments in early stages， directed dorsalwards at the junction of the oesophagus and intestine．Swim loops being filled with gladular tissue．A pair of caecal outgrowths occur portion，loop is not compact，the space between the ascending and descending
 the sixth vertebral segment in 34.9 mm SL specimen，the largest in collections． obliquely forwards and the anus which opens posteriorwards lies at the level of vertebral segment．In later stages，ventral portion of intestinal loop is pushed abdominal cavity in 3.3 mm NL larva and the anus opens at the level of ninth
 completed in 29.3 mm SL specimens．Jaws carry small teeth，alimentary canal

 examined unlike in many other species，eyes black，symmetrical，small and

：KচоןOчवјоW

 E ；Tables 13 a，b，c，\＆25）． juveniles are available in the samples and are reported here（Figs． $12 \mathrm{~A}, \mathrm{~B}, \mathrm{C}, \mathrm{D}$ The larvae belonging to preflexion，flexion and postflexion stages as well as

 from 85 to 92 in the dorsal and 66 to 77 in the anal． 9.3 mm SL，by differentiation of rays at the caudal region．Median fin rays range

 larvae．At the anterior end of dorsal fin fold two more rays are differentiated，

 stages and decreases thereafter． relative length from snout the pelvic fin base increases from preflexion to flexion
 decreases slightly to postflexion and thereafter increases significantly，body body depth at pectoral fin base increases from preflexion to flexion，then

 wanting in female. Maxillary extending to below anterior edge or anterior $1 / 2$ of

 anterior edge of upper eye above, or a little behind middle of lower; male a little less than diameter of eye in the male, rather narrower in the female
 Upper profile of head convex, or with a slight notch in front of lower eye.

: $\overline{\text { пnpe } ә \mathrm{~L}}$
follow the sequence of ossification in detail. SL. Absence of larval stages between 16.0 and 29.3 mm SL makes it difficult to to be completed in postflexion stages ranging between 16.0 mm and 29.3 mm of centra along the margins is also noticed in 16.0 mm SL, ossification appears anus. Neural and haemal arches show ossification in 16.0 mm SL, ossification anal pterygiophore long and stout, placed vertically down reaching the level of caudal vertebrae long, broad, leaf like and extends to base of anal fin fold. First
 arches are seen in the precaudal portion. Neural and haemal processes of the vertebral segments are seen well differentiated in 3.3 mm NL but only haemal 4.3 mm NL which is cartilaginous, neural processes of the remaining precaudal which prevailed in the early postflexion stages. First neural arch discernible in

 tubercle -like processes.
 only up to this point. and third ray of the left in lies opposite the cleithral tip and the right fin extends specimens, pelvic fin has reached only a little below the middle level of urohyal appears to be slower than that noticed in Bothus myriaster. In 34.9 mm SL

Ocean. The larvae are described and reported for the first time. meristics agree with those of adult. The adults are reported from the Indian pantherinus than in B. myriaster except the migration of the right eye. The development of fin rays, pelvic fin, flexion of notochord take place late in B. myriaster. It may be noted that the differentiation of characters such as

Remarks:
irregular dark cross bars (Norman, 1934). fins similarly coloured and marked ; pectoral spotted with brown, with or without generally a large dark blotch on middle of straight portion of lateral line ; median Brownish, covered with paler and darker spots, blotches, rings or ocelli ; reaching base of caudal. Caudal obtusely pointed. Vertebrae $10+29$. with 9 to 11 rays, upper rays greatly prolonged in the mature male, sometimes 92 in lateral line. Dorsal 85-95. Anal 64-71 (Fig. 12 E). Pectoral of ocular side
part of anterior arch. Scales ctenoid on ocular side, cycloid on blind side ; 80 to

Table 13 a-Bothus pantherinus - morphometrics, in mm (Larval stages within broken lines indicate notochord flexion).

Stations	Body Length	Right Eye	Notochord	Snout to Anus	Head Length	Snout Length	Eye		Body depth at		Caudal Peduncle		Snout to origin of pelvic fin
							Width	Height	Pectoral fin base	Anus	Depth	Length	
S6-15	3.3 NL	Symme	Pre flexion	1.70	0.80	0.26	0.31	0.26	0.81	0.71	-	-	-
"	4.3 "	"	Early caudal formation	2.40	1.30	0.47	0.31	0.39	2.00	1.80	-	-	1.20
S8-23B	4.6"	"		1.70	1.30	0.40	0.32	0.32	2.60	2.40	-	-	0.80
S8-23 B	5.6 "	"	Early flexion	2.10	1.80	0.89	0.34	0.37	3.10	3.10	-	-	1.20
S8-20 B	6.4 "	"		2.40	2.10	0.79	0.39	0.35	3.90	3.40	-	-	1.30
S6-15	6.8	"	Late flexion	2.70	2.20	1.09	0.42	0.48	3.40	3.20	-	-	1.30
"	7.4 SL	"	Post flexion	3.00	2.00	0.68	0.52	0.48	3.70	3.60	0.84	0.48	1.70
"	9.3 "	"		2.70	2.40	0.81	0.53	0.58	4.50	4.50	1.26	0.52	1.00
S6-28	11.0 "	Migrating	"	4.00	3.30	1.01	0.58	0.68	6.00	6.10	1.60	0.58	1.50
S6-15	11.3 "		"	3.90	3.00	0.81	0.64	0.68	6.70	6.40	1.80	0.71	1.00
	11.6 "	"	"	4.00	3.00	1.03	0.64	0.68	6.30	6.20	2.00	0.81	1.00
S6-28	12.4 "	"	"	4.50	3.70	1.00	0.61	0.68	6.70	7.00	2.00	0.74	1.40
S4-32	16.0 "	"	"	4.70	4.00	1.10	0.64	0.68	9.00	9.20	3.50	1.00	2.10
S10- U31	29.3 "	Migrated	Metamor phosed	3.30	7.00	1.80	1.06	0.87	21.50	16.10	6.00	2.00	1.20
UM1-3	34.9 "	"	"	4.50	7.10	2.00	1.06	0.90	25.20	22.80	8.40	1.90	1.10

Table 13 b - Bothus pantherinus - meristics (Larval stages within broken lines indicate notochord flexion).

Stations	$\begin{aligned} & \text { Size } \\ & (m m) \end{aligned}$	Stage	Notochord	Right Eye	Fin Rays				Vertebrae		
					Dorsal	Anal	Caudal	Left pelvic	Precaudal	Caudal	Total
S6-15	3.3 NL	Pre flexion	Straight	Symm	1	0	0	0			
S6-15	4.3 "	Early caudal formation	"	"	Ca. 59	Ca. 35	3	+			
S8-23B	4.6 "	"	"	"	Ca. 81	Ca. 59	3	$1+5$			
SB - 23B	5.6 "	Early	Flexiing	"	79	51	6	$2+4$			
S6-15	6.8 "	Late flexion	"	"	81	61	12	2+4			
"	7.4 SL	Post flexion	Flexed	"	88	67	17	$2+4$	10	29	39
"	9.3 "		"	"	85	67	17	2+4	10	27	37
S6-28	11.0"	"	"	Migra ting	92	72	17	2+4	10	29	39
S6-15	11.6"	"	"	"	85	69	17	2+4	10	29	39
S6-28	12.4 "	"	"	"	86	68	17	2+4	10	27	37
NH-40	16.0"	"	"	"	98	77	17	2+4	10	29	39
S10-U31	29.3 "	Metamor phosed	"	Migra ted	92	70	17	2+4	10	28	38
UM - 1-3	34.9"	"	"	"	92	66	17	$2+4$	10	28	38

Table 13 c. Bothus pantherinus - development of vertebral column, caudal fin rays and caudal fin supporting structures.

Stations	$\begin{aligned} & \text { Body } \\ & \text { Length } \end{aligned}$	Stage	Notochord	$\begin{aligned} & \text { Right } \\ & \text { Eye } \end{aligned}$	Precaudal vertebrae				Centra	Caudal vertebrae				Centra	$\begin{gathered} \hline \text { Ural } \\ \text { Centra } \end{gathered}$	$\begin{gathered} \text { Total } \\ \text { vertebrae } \end{gathered}$	$\begin{aligned} & \text { Caudal fin } \\ & \text { rays } \end{aligned}$	Ural components				Epural
					Neural		Haemal			Neural		Haemal						Sup	Hyp	Inf	Hyp	
					Process	Arch	Process	Arch		Process	Arch	Process	Arch					Upp	Mid	Mid	Low	
S6-15	3.3 NL	Pre fi.	Straight	Symm etrical	9	0	0	2+6*	+	15	7	15	7	0	0	32	0	0	0	0	0	0
S6-15	4.3 "		*		9	1	Not clear		+	26	2	26	2	0	0	38	3	0	0	x	0	0
S8-23B	4.6 "	formation	"	"	9	1	"		+	24	2	24	2	0	0	36	3	0	0	X	0	0
S8-20B	6.4 "	Early flexion	Flexing	"	9	1		6+2*	+	24	2	24	2	0	0	36	3	0	x	x	0	0
S8-23B	5.6 "	${ }^{\prime}$	"	"	9	1	0	$6+2^{*}$	+	23	2	23	2	0	0	35	6	0	x	x	x	0
S6-15	6.8 "	Late flexion			9	1		$6+2^{*}$	+	26	2	26	2	0	0	38	12	0	x	x	x	x
"	7.4 SL	Post flexion	Flexed	"	9	1	Not clear		10	26	2	26	2	28	1	39	17	x	x	x	x	x
"	9.3 "	*	"	"	9	1			10	24	2	24	2	26	1	37	17	X	X	X	X	X
S6-28	11.0"	"	"	Migra ing	9	1	6	2^{*}	10	26	2	26	2	28	1	39	17	x	x	x	x	x
S6-15	11.3 "	"	"	-	9	1	6	2^{*}	10	26	2	26	2	28	1	39	17	X	x	X	X	X
S6-15	11.6 "	"	"	${ }^{\prime}$	9	1	6	${ }^{2 *}$	10	26	2	26	2	28	1	39	17	x	x	x	x	x
S6-28	12.4"	"	"	"	9	1	6	${ }^{2 *}$	10	24	2	25	1	26	1	37	17	x	x	x	${ }^{\mathrm{x}}$	x
S4-32	16.0"	Mematm	"	${ }^{\prime \prime}$	9	1	6	${ }^{2^{*}}$	10	26	2	26	2	28	1	39	17	x	x	x	x	x
S10-U31	29.3 "	Mematm orphosed		Migra ted	9	1	6	${ }^{*}$	10	25	2	25	2	27	1	38	17	x	x	x	x	x
NE - 1 UM 1-3	34.9 " 34.9	"	" ${ }^{\prime}$		9 9	1	6 6	${ }^{2}{ }^{\text {* }}$	10 10	25 25	2	25 25	2	27 27	1	38 38	17 17	x x	x x	x x	x	x

* Rudiments
rays. Caudal fin rays well developed and articulated to hypural plates and also pterygiophore are well differentiated, so also the fin rays. 103 dorsal and 77 anal extension of dorsal fin remains separate from ethmoid region of cranium. All shriveled up in advanced forms, as in other species of Bothus. Forward larvae of this species might also had the elongated dorsal ray which might have pterygiophore supports the elongated anterior dorsal ray, suggesting that early extends up to the tip of the dorsal fin fold. In other bothid larvae this dorsal pterygiophore long and comparatively stout, bends over the skull and end of dorsal fin fold, characteristic of bothid larvae is absent, the anterior-most rays commence from the very tip of it, the elongated dorsal ray at the anterior

Fin and supporting structures

 up to the level of the descending portion of intestine.
 dorsoventral axis more than four times the antero-posterior axis and the distal axis of liver short unlike that in Engyprosopon, Psettina and others, its
 filling the intervening spaces, rectal portion lies vertically down, anus directed

KбоᅵочवдоW

(q ‘e tl sə

Bothus mancus (Broussonet, 1782)

 junction of straight and curved parts of lateral line, another on middle of straight and body with rounded bluish spots edged with darker ; a diffuse dark blotch at

 ocular side, all cycloid on blind side ; 85 to 90 in lateral line. Dorsal 98-103. length, 9 to 11 on lower part of anterior arch. Scales feebly ctenoid or cycloid on
 eye, length $24 / 5$ to 3 in head. Teeth mostly uniserial in both jaws, but with

 male each with some dermal appendages. Male with a strong spine on the

†npe әपІ
 region, whereas neural and other haemal spines are well differentiated. There

 spines. fin. Posterior basipterygial processes extend up to level of anus and bear no also well developed. Anterior three left pelvic rays lie in advance of that of right that of left side extending beyond tip of cleithra over to urohyal. Fin rays are (anterior basipterygial processes) well developed, elongated and asymmetrical,

(1984) on Pleuronectiformes: Development. P.struhsaker, which is included in the review work published by Ahlstrom et al. unpublished figure of metamorphosed specimen measuring about 30.0 mm of belonging to Bothus mancus are not described and reported so far except an Bothus mancus are reported from the Indian Ocean. But the larval stages number of fin rays tally with those of the adult Bothus mancus. The adult of
 body, which is thin, symmetrical and diaphanous as well as the less pronounced
 level of the anus and in the absence of spines anywhere on the body, particularly presence of well developed posterior basipterygial processes extending to the anterior three of which are placed in advance of that of the right fin ; in the an elongated and asymmetrical left pelvic fin radial with elongated rays, the

Table 14 a-Morphometrics, in mm, of isolated stages of bothid larvae.

Station	Body Length	Right Eye	Notochord	Snout to Anus	Head Length	Snout Length	Eye		Body depth at		Caudal Peduncle		Snout to origin of pelvic fin
							Width	Height	Pectoral fin base	Anus	Depth	Length	
Bothus mancus													
Ar - 40	18.9 SL	Symme trical	Flexed	3.70	3.50	1.60	0.71	0.81	15.70	15.90	5.80	1.27	0.70
Bothus species													
Ki - 354	21.8 SL	Migrated	Flexed	5.00	5.00	1.22	1.05	1.03	10.10	10.10	3.10	1.35	2.30
Asterorhombus intermedius													
Ki - 680	7.8 SL	Symmetri cal	Flexed	2.70	2.50	0.74	0.45	0.43	4.30	4.30	0.81	0.45	1.30
Laeops macrophthalmus													
$\begin{aligned} & \hline \mathrm{Di}-5548 \\ & \mathrm{~S} 4 \text { - None } \end{aligned}$	$\begin{gathered} \text { 4.3 NL } \\ \text { 19.0 SL } \end{gathered}$	Symmetri cal Migrating	Straight Flexed	2.20 6.10	1.00 4.20	0.13 0.80	0.29 0.74	$\begin{aligned} & \hline 0.35 \\ & 0.77 \end{aligned}$	0.92 7.40	0.77 6.30	1.70	0.85	2.80
Chascanopsetta lugubris													
AB-66	37.0 SL	Symmetri cal	Flexed	13.80	5.90	2.20	1.00	1.03	9.07	9.86	2.09	0.69	5.72

Table 14 b-Meristics of isolated stages of bothid larvae.

Stations	$\begin{aligned} & \hline \text { Size } \\ & (m m) \end{aligned}$	Stage	Notochord	Right Eye	Fin Rays				Vertebrae		
					Dorsal	Anal	Caudal	Left pelvic	Precaudal	Caudal	Total
Bothus mancus											
Ar - 40	18.9 SL	$\begin{aligned} & \text { Post } \\ & \text { Flexion } \end{aligned}$	Flexed	Symme trical	103	77	17	$3+3$	10	30	40
Bothus species											
$\mathrm{Ki}-354$	21.8 SL	Metamor phosed	Flexed	Migrated	98	76	17	$3+3$	10	not clear	10+
Asterorhombus intermedius											
$\mathrm{Ki}-680$	7.8 SL	Post flexion	Flexed	Symme trical	90	61	17	2+4	10	26	36
Laeops macrophthalmus											
$\begin{aligned} & \mathrm{Di}-5548 \\ & \mathrm{~S} 4-\text { None } \end{aligned}$	4.3 NL 19.0 SL	Pre flexion Post flexion	Straight Flexed	Symme trical Migrating	$\begin{gathered} 1 \\ 98 \end{gathered}$	0 75	$\begin{gathered} 0 \\ 17 \end{gathered}$	$\begin{gathered} \hline 0 \\ 3+3 \end{gathered}$	11	35	46
Chascanopsetta lugubris											
AB-66	37.0 SL	Post Flexed	Flexed	Symme trical	115	82	17	$2+4$	16	37	53

 едqәдәл әґеш!!! hypural lower, inferior hypural middle, superior hypural middle, superior hypural
 the main body of the pterygiophore. the first tiny dorsal ray on an anterior projection while second ray is supported on forwards over the skull roof to the anterior end of dorsal fin and articulate with
 developed, 98 along the dorsal and 76 along the anal, the first dorsal ray small

səanłonıłs bu!̣ioddns pue u!]

Spination is absent on the body

the abdominal cavity.
 its opening directed posteriorwards. Liver not massive, its dorso-ventral axis behind the pelvic fin radial, anus lies at the level of the sixth vertebral segment, abdominal cavity, ventral half of the intestinal coil is pushed forwards to a level runs obliquely down, intestinal coil elliptical and placed at posterior half of comparatively small and a little larger than diameter of the eye. Alimentary canal
 pair on premaxilla and another pair on maxilla are visible. Teeth fall out easily

तбоןOपवगOW

Bothus sp

Atlantic waters.
as B. mellissi for the reason that B. mellissi is reported from Mediterranean and
 is more than twice the diameter of the eye. Eventhough the metamorphosed There is some resemblance to B. mellissi and B. lunatus. In B. lunatus the mouth bigger than the diameter of the eye. The same also hold good for B. mancus. bleekeri does not conform to the shape of the body, the mouth is also slightly adults of Bothus mellissi, B. lunatus, B. mancus and B. bleekeri. Of these B. metamorphosed larva. In the fin ray count the present form aggress with the flexion stages in the collection, it is difficult to assign specific status to the bothids particularly to the genus Bothus sp . In the absence of preflexion and characters helpful to place the metamorphosed larva described here among processes beyond the level of the descending loop of the intestinal coil are all spination on any part of the body, extension of the posterior basipterygial with anterior three rays of the left fin in advance of the right fin, absence of u!! э!ィןəd ןеэ!
:s乡মешәप्व
anterior ones except the first. found only on the last six vertebrae, only arches are seen in the remaining and thin arch, which has no spine. In precaudal region, haemal processes are

to urohyal, fourth pelvic fin ray lies opposite the tip of the cleithra, anterior three fins well developed and strongly asymmetrical. Left fin radial longer and extends

pәsoydıошеұәш оұ ио!

 metamorphosed stages. No increase was noticed at any stages. The body B.pantherinus the relative snout length decreases from preflexion to

 differentiated earlier in B. myriaster than in B. pantherinus.

 to metamorphosis is seen when the larvae attain a length of 11.0 mm SL and get

also present in the collections. plankton collections. In the case of B. pantherinus metamorphosed stages were

 и! ınээо sпи!

 to the level beyond the middle of the intestinal loop, absence of spines on
 being much longer than the right and the anterior 2 to 3 rays of the left fin placed

 Ramanathan may not come under B．myriaster．Gopinath（1946）has reported a

 them under B．myriaster．The descriptions and figures reveal that the larvae
 Ramanathan，（1977－Ph．D．Thesis）and Ramanathan and Natarajan（1979）

 fourth one on the ocular side．The present larval materials differ from those of

 43 mm belonging to B ．myriaster from waters around Sumatra．Out of the 86
 details it is difficult to compare the present materials with that of Ochiai and

 has been synonymised as B．myriaster（Amaoka，1964，though Kamohara， 1958

the Indo-Pacific region waters, the present larva may be regarded as the counterpart of B. mellissi from general shape. Since B. mellissi is found only in the Mediterranean and Atlantic

> not described.
mm from an unpublished work of Struhsaker. Larval stages of B. mancus are has included the figure of a metamorphosed stage of B. mancus measuring 30.0 with the adult. Ahlstrom (1984) in reviewing the Pleuronectiformes development found in the larvae referred to as B. mancus. The number of fin rays also agrees plankton collected during IIOE. The general character of the genus Bothus are metamorphosed specimen belonging to Bothus sp. were contained in the
e pue snouew 'g of bu!̣uoןəq 7S mm 6.81 6u!̣nseəm enıeן łsod \forall

The larvae of B. pantherinus is described and reported for the first time

Table 15- Difference in morphometrics at the commencement of postflexion and length of larvae when meristic characters differentiate in Bothus species (in mm).

Species	Standard length	Snout to anus	Body depth across to anus	Median fin rays	Pelvic fin rays	First neural arch	First tiny dorsal ray	Hypural Commencement of eye migration	
B. myriaster	5.2	1.9	3.1	4.1	4.1		4.2	4.2	33.5
B. pantherinus	7.4	3.0	3.6	4.3	4.3	4.3	4.6	4.3	11.0

カーレ
әৈшıן

> developed．There are 90 dorsal and 61 anal rays．

long，stout and bent forwards．Median pterygiophores and fin rays well
 separated fairly widely when compared with remaining rays．First dorsal

sə⿰nłวnגıs bu！ıodans pue u！－

－дәрре｜q ш！мя әч

 than antero－posterior．Swim bladder present occupying the space between
 vertebral segment．Liver broad at its dorsal aspect，but ventrally tapers and lies pterygiophore got pushed forwards and anus come to lie at the level of fourth near the cleithra．The anus together with the anal fin and the first anal forwards，but does form a bend as in Parabothus．Front face of the loop comes vertebral segment，forms an elliptical coil，posterior half of which is pushed lower．Alimentary canal runs parallel to notochord up to level of the eight the upper，jaws carry villiform teeth，six pairs on the upper and five pairs on the
 maximum．Snout about one and a half times the diameter of eye．Mouth small

：Kচо｜OपवगOW

Asterorhombus intermedius（Bleeker，1866）

 ocular side feeble and short, a little more than half length of head; brownish
 'әи!! ןеләғеן u! səן anteriorly on upper jaw ; 8-9 gill - rakers on first arch, palmate, with five to eight
 әן

माnpe әप।

 urostyle has sunk in between the hypural plates.
 posterior part and are six in number, anterior ones are not marked, first neural
 haemal processes of caudal region are also well developed, first one is stout and

 spines over the urohyal, cleithra and posterior basipterygial processes basipterygial processes are comparatively shorter than in other species. No middle level of intestinal coil and distal portions bend slightly upwards. The ventral body wall as posterior basipterygial processes which reach as far as processes attached to lower third of cleithra and run down obliquely along the cleithra and second ray lies opposite the tips of cleithra. Normal basipterygial developed, anterior two rays of the left fin lie in advance of the right, left pelvic fin

description. preflexion and flexion stages in the present collection limit the detailed larval stages of the species are not yet described and reported. The absence of

vertebral count agree with the adults of Asterorhombus intermedius the present larva from Arnoglossus spp. The number of fin rays and the beyond the ascending loop of the intestine and shape of the body differentiate distinguish the larva from the Bothus spp. The fact that the processes extend extending to the level of the anus and short length of the pelvic fin radial intestinal coil help in distinguishing the species. Further the processes not posterior basipterygial processes consequent on the forward growth of the Arnoglossus spp. The small number of vertebrae, the short length of the are characters shared by the present larvae and the larvae of Bothus spp. and absence of spines on the urohyal, cleithra and posterior basipterygial processes

The lancet shape of the larval body is characteristic of the species. The
:syমeməप्ठ
the dorsal and anal (Amaoka, 1969) fins with numerous dark brown spots; a row of larger spots along basal parts of
defined blotches on lateral line; head with irregularly scattered blackish spots. All

 pəsoydıomeıəəu słəб
of any such spines, they tend to reduce in size and sharpness when the larvae basipterygial processes are confined only to the middle, distal half being devoid Spines are not found on cleithra even in 14.5 mm SL larva. Spines on posterior larvae of 5.4 mm NL and in posterior basipterygial processes from 7.0 mm SL .

 traceable up to 10.1 mm SL larvae. the earliest larva. This appendage shrivels up from 8.8 mm SL onwards and is

 posteriorly occupying space between seventh and tenth vertebral segments.

 leaving very little space between intestinal loops. Anus pushed forwards the $10^{\text {th }}$ myotome. In advanced stages, elliptical coil becomes more compact portion of intestine lies vertically down and in early stages opens at the level of and makes an elliptical coil at posterior end of abdominal cavity, the terminal

 eye has started shifting from its symmetrical position preparatory to migration to

: KচоןOपवјOW

 Larvae ranging from 2.1 mm NL to 17.5 mm SL occur in the collections of
Psettina brevirictis (Alcock, 1890)
 differentiated in 6.6 mm NL with rudiments of rays. Left pelvic fin radial becomes

 differentiated in 3.2 mm NL , which run along ventral border of body wall and

 complement of fin rays are seen in 7.0 mm SL. Flexion of notochord takes place between 5.2 mm NL and 7.0 mm SL and full Superior hypural upper, however, is differentiated only in postflexion larvae.
 middle are differentiated carrying four and three rays respectively in 5.2 mm NL differentiated from 5.2 mm NL. Inferior hypural middle and superior hypural

 dorsals and 58 to 64 anals. of 78 dorsal and 61 anal rays are found. Number of fin rays range from 76 to 82 the first tiny dorsal ray is differentiated only in 7.0 mm SL when full complement forwards beyond the articulation of elongated dorsal ray in 4.9 mm NL larvae but
 differentiate from 3.4 mm NL from the anterior end. First anal pterygiophore onwards. Pterygiophores are differentiated in 3.2 mm NL and the rays begin to reduced in size up to 12.7 mm SL and is absent in larvae of 14.5 mm SL

: səયnłכnגłs бu!̣ıodans pue u!コ
metamorphosed, the values being less than preflexion figures. between snout and pelvic fin base decreases till postflexion, then increases to metamorphosed stages to values less than those of preflexion. The length
 are less than those of preflexion. Depth at pectoral fin base and across anus slight increase from postflexion to metamorphosed stages. However, the values

 sł|npe әप। $+25-27$ vertebrae including urostyle. and equal from fifth to eight vertebra and short in ninth and tenth. There are 10
 two vertebrae. Tiny haemal processes are discernible in 5.6 mm NL which are 5.2 mm NL. But haemal arches started differentiating in 2.3 mm NL in the last 2.7 mm NL and neural processes in 3.2 mm in anterior half and are completed in and fourth arches. In caudal region the haemal processes are differentiated in

 the elongated dorsal ray is seen in earliest larvae of 2.1 mm NL , is bony and dorsal body wall like other neural spines. First dorsal pterygiophore supporting drawn out into a lancet-shaped portion which is short and never reaches the seen in 11.7 mm SL, the first vertebra has no neural process but the arch is

 late in 11.2 mm SL, whereas arches of the remaining neural and haemal as well
 arch is differentiated as a cartilaginous loop-like structure in front of the second segmentation has started differentiating from anterior to posterior, first neural

$\overline{\text { uotolars |e! } \times \text { V }}$

urohyal is discernible in 4.4 mm NL, spines appear only in 5.4 mm NL extends far forwards reaching in front of first spine on the urohyal. Even though of right side. In 16.1 mm SL the anterior rays super-impose the urohyal and spine on the urohyal, anterior three rays of left pelvic fin are in advance of those

China Sea. larval material of the present account have been from Gulf of Thailand and South

number of fin rays and vertebrae tally with adults but differ from P. iijimae. clearly visible in early larval stages but shrivels up in postflexion stages. The
 processes, but not on cleithra. The number of spines are few and restricted to

band (Norman, 1934). patch on distal part of pectoral hinder part of caudal fin with a broad blackish on bases of dorsal and anal fins: two or three blotches on lateral line ; a dark of rather indistinct dark blotches along upper and lower edges of body, continued of left pelvic about $22 / 3$ in length of head. Caudal rounded. Brownish, a series
 47 to 52 scales in lateral line. Dorsal (76) 78-82. Anal 60-66 (Fig. 16 E). lower jaw $22 / 5$ to $23 / 5$ in head. 7 or 8 gill-rakers on lower part of anterior arch.

Table 16. Difference in morphometrics at the commencement of postflexion and length of larvae when meristic characters differentiate in Psettina species (in mm).

Species	Standard length	Snout to anus	Body depth across to anus	Median fin rays	Pelvic fin rays	First neural arch	First tiny dorsal ray	Hypural	Commencement of eye migration
P. brevirictis	6.3	2.8	3.8	3.4	6.6	4.4	7.0	5.2	12.7
P. iijimae	6.5	2.8	3.4	4.3	6.3	4.3	6.5	4.6	13.5

 even before the formation of the fin rays and these are found distributed along
 unlike in Engyrposopon spp. This species also differs from others in that

the larva.
with the appendage. Pigments are not noticeable anywhere else on the body of black pigment is present at the base of the appendage which disappears along progresses and is traceable up to 12.7 mm SL in cleared specimens. Brownish

between seventh and tenth vertebral segments.
bladder is present in the posterior part of the abdominal cavity occupying space ventral axis in early stages but after metamorphosis the latter is more. Swim vertebral segment. The antero-posterior axis of liver is longer than the dorso-
 advanced stages, the alimentary canal becomes compactly packed with the vertically down and anus opens at the level of tenth myotome in early stages. In elliptical coil at posterior end of the abdominal cavity, terminal portion lies canal runs slightly slanting downwards towards ventral aspect and makes an Teeth not visible in the larvae up to 2.3 mm NL, anterior portion of the alimentary migration is completed in larvae ranging in length from 20.2 and 22.5 mm SL.
 symmetrical, black pigments are seen from 2.6 mm NL larvae, right eye starts

: तচоן04वıOW
 postflexion and metamorphosed stages are available for study (Figs. $17 \mathrm{~A}, \mathrm{~B}, \mathrm{C}$, the IIOE and Naga Expedition. The larvae belonging to preflexion, flexion and

 four and two rays respectively in 4.6 mm NL larva. In 5.5 mm NL larva, inferior inferior hypural middle and superior hypural middle get differentiated and carry

 respectively. anal rays are seen. The dorsal and anal rays ranged from 82-93 and 68-70 differentiated in 6.5 mm SL larva when full complements of 85 dorsal and 68 NL larvae which is indicated in 4.9 mm . First dorsal ray is very small and extends forwards beyond the articulation of the elongated dorsal ray in 5.8 mm pterygiophores differentiate from anterior to posterior. First dorsal pterygiophore pterygiophore is long and stout and differentiated in 3.7 mm NL. Fin rays and are differentiated in 3.8 mm NL but rays are not differentiated. First anal larvae from very early stages up to 20.2 mm SL. Pterygiophores and baseosts

Fin and supporting structures

> increase during flexion stages to decrease thereafter. postflexion stages but decreases again. Relative snout length shows slight anus decreases from preflexion to flexion stages and increases slightly during However, increment is less than the preflexion values. Relative depth across but the eye width shows a slight increase in the metamorphosed stages. depth at pectoral fin base as well as the eye width and height gradually decrease the increment is less than the preflexion values. Relative snout - anus length, stages and then show increase from postflexion to metamorphosed stages but increase from preflexion to flexion stages, decrease from flexion to postflexion
 place. urohyal reduce in size and disappear as soon as metamorphosis has taken found on the cleithra. The spines on the posterior basipterygial processes and proximal half, the distal half being devoid of any such spines. The spines are not larva of 5.1 mm NL and posterior basipterygial processes are confined to its even in the metamorphosed stage. Spines on urohyal get differentiated from

 completed in 5.8 NL. Haemal arches of the precaudal region have started neural and haemal processes are also differentiated in 3.7 mm NL and are neural processes are seen in 3.7 mm NL except the first. In caudal region, the
 ray and is seen in the earliest larvae 1.8 mm NL. The first dorsal pterygiophore earlier (in 6.5 mm SL). First dorsal pterygiophore carries the elongated dorsal It gets ossified in 10.8 mm SL, while the other processes get ossified much present which is short and never reaches the body wall like other neural spines.

 urohyal is differentiated in 4.3 mm NL urohyal and tip of the cleithra is seen between third and fourth rays. The

 fin rays are seen in advance of the right fin rays. The left fin radial continues to NL and the rays are discernible in 6.5 mm SL. At this stage, two of the left pelvic processes are also differentiated. Pelvic fin ray rudiments are seen in 6.3 mm

 middle five and upper three

 forms described by Pertseva-Ostroumova (1965) agree with the characters a higher side in P. iijimae. The number of fin rays tally with adults. The larval basipterygial processes are more than in P. brevirictis. The meristics are also on spinules on the fin rays. The number of spines on urohyal and posterior

Larvae of p. iijimae can be distinguished from P. brevirictis by the presence of
Remarks:
median fins spotted with darker (Norman, 1934). and rings, of which rows at upper and lower edges of body are most prominent ; in length of head. Caudal rounded Brownish, with a number of darker spots rays, length about $13 / 4$ in that of head. Longest ray of left pelvic $21 / 2$ to $24 / 5$ Dorsal (80-89) 95. Anal (69-73) 75 (Fig. 17 E). Pectoral of ocular side with 11 6 or 7 gill-rakers on lower part of the anterior arch. 55 scales in lateral line. of eye, length about 3 in that of head; lower jaw a little more than twice in head. lower very little in advance of upper. Maxillary extending to below anterior part which is 3 in length of head; eyes separated by a narrow bony ridge (), the

The adult

including urostyle

Vertebrae initiate ossification from 10.8 mm SL. There are $10+28-30$ vertebrae

Table 17 a - Psettina brevirictis - morphometrics, in mm (Larval stages within broken lines indicate notochord flexion).

Stations	Body Length	Right Eye	Notochord	Snout to Anus	Head Length	Snout Length	Eye		Body depth at		Caudal Peduncle		Snout to origin of pelvic fin
							Width	Height	Pectoral fin base	Anus	Depth	Length	
S7-18G	2.1 NL	Symme trical	Straight	1.14	0.47	0.10	0.16	0.18	0.58	0.45	-	-	-
S7-18A	2.4 "		"	1.40	0.64	0.12	0.23	0.24	0.77	0.45	-	-	-
S5-28A	3.0 "	"	"	1.55	0.77	0.24	0.26	0.31	1.09	0.90	-	-	-
S6-42	3.4 "	"	"	1.80	1.00	0.26	0.29	0.35	1.38	1.13	-	-	0.90
S5-10	3.8 "	"	"	1.80	1.15	0.31	0.29	0.34	1.60	1.35	-	-	0.90
S3-11	4.1 "	"	"	2.00	1.32	0.31	0.35	0.40	2.00	1.90	-	-	0.90
S7-8B	4.3 "	"	"	2.10	1.30	0.38	0.37	0.40	2.50	2.30	-	-	0.90
S7-8B	4.6 "	"	"	2.00	1.40	0.45	0.35	0.42	2.30	2.30	-	-	0.91
S7-8B	4.9.-.	"	"	2.10	1.40	0.39	0.39	0.43	2.60	2.60	-	-	0.93
S5-15	5.2 "	"	Early flexion	2.10	1.40	0.37	0.40	0.45	2.50	2.30	-	-	1.10
S7-8B	5.4 "	"	"	2.50	1.50	0.55	0.42	0.48	2.70	2.60	-	-	1.40
S7-8B	5.6 "	"	Mid flexion	2.50	1.60	0.42	0.42	0.48	3.10	3.00	-	-	1.30
S3-19	6.6 "	"	Late flexion	2.60	1.70	0.52	0.42	0.48	3.40	3.40	-	-	1.20
S7-8B	6.3 SL	"	Flexed	2.80	1.90	0.45	0.47	0.52	3.60	3.80	0.68	0.35	1.30
S7-8B	6.8 "	"	"	2.90	2.00	0.61	0.45	0.50	3.80	3.70	0.68	0.42	1.30
S7-8B	7.0 "	"	"	2.80	2.00	0.42	0.45	0.52	4.00	4.30	0.97	0.39	1.30
S7-17B	8.0 "	"	*	3.00	2.30	0.56	0.52	0.56	4.60	4.60	0.97	0.52	1.30
S3-19	8.7 "	"	"	3.40	2.30	0.60	0.53	0.60	5.00	5.00	1.03	0.52	1.40
S3-12	10.1 "	"	"	3.50	2.70	0.70	0.50	0.71	5.00	5.40	1.55	0.60	1.40
S5-28B	11.2 "	"	"	3.50	2.80	0.70	0.56	0.68	5.80	6.00	1.90	0.76	1.40
S3-23	12.7 "	Migra ting	"	3.90	3.20	0.93	0.60	0.68	6.90	7.10	2.20	0.77	1.80
S5-27	14.5 "	"	"	4.50	3.70	1.00	0.74	0.77	7.70	8.00	2.70	0.90	1.90
S11A-34	16.1 "	Migra ted	Metamor phosed	4.20	4.00	1.10	0.74	0.53	6.50	7.00	2.60	1.03	2.20
S9-10	17.5 "	"	"	5.30	4.90	1.22	1.26	0.81	5.71	5.60	1.90	0.97	3.20

Table 17 b-Psettina brevirictis - meristics (Larval stages within broken lines indicate notochord flexion).

Stations	$\begin{aligned} & \hline \text { Size } \\ & (m m) \end{aligned}$	Stage	Notochord	Right Eye	Fin Rays				Vertebrae			Spines		
					Dorsal	Anal	Caudal	Left Pelvic	Precaudal	Caudal	Total	Urohyal	Cleithra	Posterior basipterygial processes
												0	0	0
S5-28A	2.3 NL	Pre flexion	Straight	Symm etrical	1	0	0	0				0	0	0
"	2.7"	"	"	"	1	0	0	0				0	0	0
"	3.0 "	"	"	"	1	0	0	0				0	0	0
"	3.2 "	"	'	"	1	0	0	0				0	0	0
S6-42	3.4 "	"	"	"	1+	Forming	0	0				0	0	0
S5-10	3.8 "	"	"	"			0	0				0	0	0
S7-8B	4.3 "	"	"	"	ca. 48	ca. 40	0	0				0	0	0
"	4.6 "	"	"	"	68	61	0	0				0	0	0
"	4.9"	"	"	"	75	56	0	0				0	0	0
S7-8B	5.2 "	Early	Flexing	"	74	56	7	0				0	0	0
"		flexion	"	"										
"	5.4 "		"	"	72	50	11	0				2	0	0
"	5.6 "	Mid flexion	"	"	75	55	11	0				3	0	0
S3-19	6.6 "	Late	"	"	79	59	12	Form				4	0	0
		flexion						ing.						
S7-19A	7.0 SL	Post	Flexed	"	78	61	17	"	10	26	36	4	0	2
		flexion												
S7-42	7.7"	"	"	"	77	59	17	2+4	10	26	36	6	0	2
S7-17B	8.0 "	"	"	"	78	58	17	2+4	10	27	37	5	0	2
S3-19	9.6 "	"	‘	'	78	59	17	2+4	10	27	37	6	0	2
S7-42	10.1"	"	"	"	80	62	17	3+3	10	26	36	6	0	2
S7-8B	11.4"	"	"	"	82	62	17	3+3	10	26	36	4	0	3
"	12.1"	"	"	"	79	64	17	3+3	10	26	36	6	0	2
S3-23	12.7"	"	"	"	79	63	17	3+3	10	26	36	6	0	4
S5-27	14.5"	"	"	"	78	60	17	3+3	10	25	35	6	0	4
S11A-34	16.1	Metamo rphosed	"	"	76	58	17	$3+3$	10	26	36	0	0	0
S9-10	17.5	"	"	"	77	59	17	3+3	10	27	37	0	0	0

Table 17 c - Development of vertebral column, caudal fin rays and caudal fin supporting bones in larvae of Psettina brevirictis.

Station	BodyLength	Stage	Notochord	$\begin{aligned} & \text { Right } \\ & \text { Eye } \end{aligned}$	Precaudal vertebrae				Centra	Caudal vertebrae				Centra	$\begin{gathered} \hline \text { Ural } \\ \text { Centra } \end{gathered}$	$\begin{gathered} \hline \text { Total } \\ \text { Vertebrae } \end{gathered}$	Caudal fin rays	Ural components				Epural
					Neural		Haemal			Neural		Haemal						Sup	Hyp	Inf	Hyp	
					Process	Arch	Process	Arch		Process	Arch	Process	Arch					Upp	Mid	Mid	Low	
S5-28A	2.3	Post flexion	Straight	$\begin{gathered} \text { Symme } \\ \text { trical } \end{gathered}$	0	9	0	2	0	0	0	0	2	0	0	11	0	0	0	0	0	0
	2.7		"		3	6	0	3	0	0	15	3	12	0	0	24	0	0	0	0	0	0
"	3.2	"	"	"	9	0	0	4	0	13	7	14	6	0	0	29	0	0	0	0	0	0
S7-8B	4.4	"	"	"	9	1	0	6	0	20	3	20	3	0	0	32	0	0	0	0	0	0
	4.9	"	"	"	9	1	0	6	10	23	3	23	3	+	0	36	0	0	0	0	0	0
"	5.6	Mid flexion	Flexing	"	9	1	2	6	10	24	2	24	2	24	0	36	11	0	x	x	x	x
"	5.2	Early	"	"	9	1	0	6	10	24	2	24	2	23	0	36	7	0	x	x	0	0
S3-19	6.6	$\begin{aligned} & \text { Late } \\ & \text { flexion } \end{aligned}$	"	"	9	1	3	5	10	23	2	23	2	23	0	35	12	0	x	x	x	x
S7-19A	7.0	Post flexion	Flexed		9	1	4	4	10	23	2	23	2	23	1	36	17	x	x	x	x	x
S7-17B	8.0	"	"	"	9	1	6	3	10	24	2	24	2	26	1	37	17	x	x	x	x	x
S3-19	9.6	"	"	"	9	1	6	3	10	24	2	24	2	26	1	37	17	X	x	x	x	X
${ }_{\text {S }}^{\text {S }}$-12	10.1	"	"	"	9 9	1	6	3 3	10	23 23	2	23 23	2	25 25	1	36 36	17	x	x	x	x	x
S5-28B S3-23	11.2 12.7	"	"	Migra	9 9	1	6	3 3	10 10	23 23	2	23 23	2	25 25	1	36 36	17 17	X	x x	x x	x x	X
S3-23	12.7 14.5	"	"	Migra ting	9	1	6	3	10 10	23 23	2	23 22	2	25 24	1	36 35	17 17	X	x	x x	x	X
S11-34	16.1	Metamor	"	Migra	9	1	6	3	10	23	2	23	2	25	1	36	17	x	x	x	x	x
S9-10	17.5	phos	"	${ }^{4}$	9	1	6	3	10	23	2	23	2	25	1	36	17	X	X	X	X	X

Z91

iijimae may be referable to Bothus species. iijimae. Hence in all probability, the specimens described by Amaoka as P. urohyal and posterior basipterygial processes, structures characteristic of P.
 Tomkin as well as the present series from the Indian Ocean, Gulf of Thailand of P. ijijimae reported in detail by Pertseva-Ostroumova (1965) from Gulf of by Amaoka (1976) as P. iijimae from waters around Japan differ from the larvae described as Arnoglossus japonicus by Amaoka (1973). The larvae described the larval forms described Uchida resemble closely with the larval forms presence of elongated and branched dorsal ray together with the slender body of forms described by Uchida (1936) they cannot be placed under P. iijimae. The processes present in the larval forms of P. iijimae, being absent in the larval such as urohyal appendage, spines on urohyal and posterior basipterygial

larval forms agree with those of the adults. ijimae than in P. brevirictis (Table 18). The range in meristic counts of the P. brevirictis. The larvae at postflexion stage also are comparatively longer in P. fin, commencement of eye migration and metamophosis take place later than in take place in P. ijijimae earlier than in P. brevirictis. But differentiation of median neural arch, tiny dorsal ray, caudal rays, pelvic fin rays and spines on urohyal ventral body even before the fin rays are differentiated. The differentiation of first be noted that the spines are present near to the baseosts along the dorsal and rays in the latter which differentiates as soon as the fin rays are formed. It may

Indian Ocean, Gulf of Thailand and South China Sea.

Pertseva-Ostroumova (1965).
restriction of the spines only to its proximal part in Psettina spp.

$$
\text { The larval forms of } P \text {. brevirictis is described for the first time. }
$$ spines on posterior basipterygial processes at a later stage and also by the can be distinguished from those of Psettina species by the differentiation of multisquama and E. xenandrus but larval forms of these Engyprosopon species on cleithra is also a character shared in common by E. sechellensis, E. grandisquama clearly distinguishes them from Psettina. The absence of spines preflexion stages in E. grandisquamis. The presence of spines on cleithra of E.

 spines on fin rays, a characteristic feature of P. iijimae have been noted by counts agree with those of the adults. However, it is not clear whether the series confirm the identification of Pertseva-Ostroumova (1965). The meristic early stages to metamorphosing, and metamorphosed stages in the present

Table 18 a - Psettina ijimae - morphometrics, in mm (Larval stages within broken lines indicate notochord flexion).

Stations	Body Length	Right Eye	Notochord	Snout to Anus	Head Length	Snout Length	Eye		Body depth at		Caudal Peduncle		Snout to origin of pelvic fin
							Width	Height	Pectoral fin base	Anus	Depth	Length	
S5-23A	1.8 NL	Symme trical	Straight	1.00	0.41	0.13	0.18	0.21	0.61	0.45	-	-	-
S7-13	2.1 "		"	1.30	0.55	0.16	0.23	0.23	0.71	0.50	-	-	-
S7-18G	2.6	"	"	150	0.74	0.16	0.23	0.26	0.97	0.61	-	-	-
S5-22A	3.2	"	*	1.80	1.00	0.21	0.29	0.34	1.48	1.26	-	-	-
S7-18G	3.7	"	"	1.70	1.00	0.31	0.29	0.32	1.50	1.30	-	-	0.70
S5-10	3.9	"	"	1.80	1.10	0.39	0.31	0.32	1.90	1.50	-	-	0.90
S7.-8B	4.3	"	"	1.90	1.20	0.35	0.34	0.35	2.30	2.20	-	-	0.90
S7-18G	4.6	"	Early flexion	2.30	1.40	0.42	0.34	0.36	2.10	2.00	-	-	0.90
S7-18G	4.9 "	"		2.40	1.55	0.50	0.34	0.35	2.40	2.00	-	-	1.30
S7-8B	5.1 "	"	Mid flexion	2.40	1.60	0.55	0.38	0.43	2.70	2.40	-	-	1.30
S5-22E	5.2 "	"	"	2.30	1.60	0.58	0.39	0.42	2.70	2.70	-	-	1.30
S7-8B	5.8 "	"	Late flexion	2.40	1.80	0.55	0.42	0.48	3.00	2.80	-	-	1.30
S9-21	6.3 "	"	"	2.70	1.80	0.53	0.45	0.48	3.10	2.80	-	-	1.50
Ki - 527	6.6.".	"	"	2.70	1.90	0.53	0.45	0.48	3.10	3.10	-	-	1.30
S9-13A	6.5 SL	"	Flexed	2.50	1.80	0.53	0.48	0.53	3.40	3.20	0.58	0.32	1.10
S9-13A	7.0 "	"	"	2.80	2.00	0.61	0.53	0.56	3.50	3.40	0.66	0.39	1.30
S9A-13A	8.6 "	"	"	3.30	2.20	0.63	0.53	0.60	4.40	4.30	0.90	0.42	1.50
S7-8B	9.1 "	*	"	3.50	2.20	0.69	0.52	0.58	5.40	5.30	1.13	0.52	1.30
S9A - 13A	10.3 "	"	"	3.60	2.40	0.64	0.52	0.58	5.50	5.40	1.32	0.64	1.70
S9A - 13A	11.7 "	"	"	3.70	2.80	0.74	0.58	0.61	5.70	5.80	1.61	0.66	1.60
S9A - 13A	12.7 "	"	"	4.40	300	0.77	0.61	0.68	5.60	6.70	1.80	0.71	2.00
S9A-13A	13.5 "	Migra ting	"	4.40	3.00	0.74	0.60	0.64	5.90	6.60	2.00	0.79	1.90
S3-29	14.7	"	"	4.40	3.10	0.81	0.60	0.68	6.40	7.10	2.40	0.89	1.90
S11A-12	16.2 "	"	"	4.80	3.70	1.03	0.60	0.63	7.90	8.30	2.50	0.85	1.80
S4-U24	18.5 "	"	"	4.80	4.10	1.03	0.84	0.84	8.80	8.90	2.80	1.13	1.90
S5-28A	19.7	"	"	5.00	4.00	1.00	0.87	0.97	9.70	9.60	2.90	1.13	2.00
S5-28A	20.2 "	"	"	5.20	4.20	1.10	0.89	0.97	8.70	9.30	2.80	1.22	2.10
S9A-10	22.5 "	Migra ted	Metamor phosed	5.40	6.10	1.50	1.29	0.90	8.60	8.40	2.60	1.38	3.10
S9A - 4A	26.4	"	"	7.00	7.10	1.70	1.80	1.20	8.70	8.70	3.00	1.58	4.00
S9A - 4A	36.4 "	"	"	9.50	9.10	1.90	2.60	1.90	10.90	11.30	3.70	2.20	6.10
S9A-5	44.6	"	"	11.00	11.70	2.50	2.70	1.90	14.20	13.20	5.60	3.00	7.60

Table 18 b. Psettina ijijimae - meristics (Larval stages within broken lines indicate notochord flexion).

Stations	Size (mm)	Stage	Notochord	Right Eye	Fin Rays				Vertebrae			Spines		
					Dorsal	Anal	Caudal	Left pelvic	Precaudal	Caudal	Total	Urohyal	Cleithra	Posterior basipterygial processes
												0	0	
S5-23A	1.8 NL	Pre flexion	Straight	Symm etrical	1	0	0	0				0	0	0
S7-18G	2.1 "	,	"		1	0	0	0				0	0	0
	$3.7 \times$	"	"	"	1	0	0	0				0	0	0
S7-8B	4.3 "	"	"	"	1+	Form ing	0	0				0	0	0
				"										
S9A-13 A	*4.9"	Early flexion	Flexion	"	"	"	0	0				*0	0	
S7-8B	5.1 "	Mid	"	"	"	"	0	0				6	0	0
S9A-13 A		flexion	"	"	ca. 78	ca. 61	0	0				8	0	0
S7-8B	5.8 "	Late	"	"	ca. 82	ca. 60	0	0				8	0	0
		flexion												
S9A - 13A	6.5 SL	Post	Flexed	Symm	85	68	17	2+4	10	29	39	10	0	0
		flexion		etrical										
"	7.0 "	"	"	"	87	68	17	2+4	10	29	39	8	0	2
"	8.6 "	"	"	"	93	70	17	$2+4$	10	29	39	9	0	5
"	10.8"	"	"	"	88	68	17	3+3	10	28	38	8	0	4
S6-30	11.5"	"	"	"	86	69	17	$3+3$	10	29	39	8	0	7
S7-8B	13.5"	"	"	Migra	86	69	17	$3+3$	10	28	38	9	0	10
				ting										
S5-10	15.5"	"	"	"	88	70	17	$3+3$	10	29	39	10	0	10
S3-32	16.9"	"	"	"	84	68	17	$3+3$	10	28	38	9	0	9
S5-28A	20.2"	"	"	"	91	70	17	$3+3$	10	30	40	5	0	11
S9A-10	22.5"	Metamo rphosed	"	Migra ted	82	68	17	$3+3$	10	29	39	0	0	0
S9A-4A	26.4"	"	"	ted	84	70	17	3+3	10	29	39	0	0	0
S9A-5	44.6"	"	"	"	82	68	17	$3+3$	10	28	38	0	0	0

* Spinules along the base of median fins.

Table 18 c - Psettina iijimae - development of vertebral column, caudal fin rays and caudal fin supporting structures.

Stations	Body Length	Stage	NotoChord	$\begin{aligned} & \text { Right } \\ & \text { Eye } \end{aligned}$	Precaudal vertebrae					Caudal vertebrae					Ural Centra	$\begin{gathered} \text { Total } \\ \text { vertebrae } \end{gathered}$	Caudal fin rays	Ural components				Epural
					Neural		Haemal		Centra	Neural		Haemal		Cetnra				Sup	Hyp	Inf	Hyp	
					Process	Arch	Process	Arch		Process	Arch	Process	Arch					Upp	Mid	Mid	Low	
S5-23A	1.8 NL	Pre flexion	Straight	Symme trical	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
S7-18G	2.1 "				0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2.3 "	"	"	" ${ }^{\prime}$	0	9	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
"	2.6 "	"	"	" ${ }^{\text {c }}$	0	9	0	0	0	0	0	0	0	0	0	,	0	0	0	0	0	0
S5-22A		"	"	"	0	9	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
S7-18G	3.7 "	,	"	"	9	0	0	3	0	7	10	11	10	0	0	30	0	0	0	0	0	0
S7-8B	4.3 "		"	"	9	1	0	6	0	24	3	25	3	0	0	38	0	0	0	0	0	0
S7-18G	4.6 "	Early flexion	Flexion	"	9	1	0	8	0	24	3	24	3	0	0	37	6	0	x	x	0	0
S9A-13A	4.9 "		"	"	9	1	0	8	0	24	3	24	3	0	0	37	6	0	x	x	0	x
	5.5 "	"	"	"	9	1	0	8	10	26	3	26	3	+	0	39	8	0	x	x	x	x
S7-8B	5.8 "	Mid flexion Late flexion Post flexion	"		9	1	4	4	10	26	2	26	2	+	0	38	11	0	x	x	x	x
S9A-13A	6.5 SL		Flexed	"	9	1	4	5	10	26	2	26	2	26	1	39	17	0	x	x	x	x
"	7.6 "		"	"	9	1	4	5	10	26	2	26	2	28	1	39	17	X	X	x	x	x
"	8.6 "	- flexion	"	"	9	1	6	3	10	26	2	26	2	28	1	39	17	X	X	x	X	X
"	10.8 "	"	"	"	9	1	6	3	10	25	2	25	2	27	1	38	17	x	x	x	x	x
"	11.7 "	"	"	"	9	1	6	3	10	26	2	26	2	28	1	39	17	X	X	X	X	X
"	12.7 "	"	"	"	9	1	6	3	10	26	2	26	2	28	1	39	17	X	X	X	X	X
*	13.5 "	"	"	Migra ting	9	1	6	3	10	25	2	25	2	27	1	38	17	X	x	X	X	X
S5-5 10	15.5 "	"	"	${ }^{\text {a }}$	9	1	6	3	10	26	2	26	2	28	1	39	17	x	x	x	x	x
S3-32	16.9 "	"	"	"	9	1	6	3	10	25	2	25		27	1	38	17	X	x	x	\times	x
S4-U24	18.3 "	"	"	" ${ }^{\text {c }}$	9	1	6	3	10	26	2	26	2	28	1	38	17	x	x	x	x	x
S5-28A S9A - 10	20.2 20.	"	" Juvenile	M ${ }^{\text {" }}$	9 9	1	6	3 3	10 10	27 26	2	27 26	2	29 28	1	40 39	17	x	x	x x	x x	X
S9A-10	22.5 "	"	Juvenile	$\underset{\text { Migra }}{\text { ted }}$	9	1	6	3	10	26	2	26	2	28	1	39	17	X	x	x	x	X
S9A -4 A S9A - 5 s	26.4"	"	" ${ }^{\prime}$	"	9 9	1	6 6	3 3	10 10	26 25	2	26 25	2	28 27	1	39 38	17 17	x x	x x	x x	x x	x x
S9A-5s	44.6 "		"		9	1	6	3	10	25	2	25	2	27	1	38	17	X	x	x	X	X

relative body depth across anus increase as the larva grows.

 flexion stages and thereafter decreases (Table 25). Relative snout length, relative length between snout and pelvic fin base increase from preflexion to
 intestinal loop ventralwards occupying the space between eighth and nineth vertebral segments, pushing the over antero-posterior axis. Swim bladder is seen above intestinal loop
 space between cleithra and intestinal loop, its antero-posterior axis is more than

 The circular nature of the alimentary canal gets gradually changed into an the gut. Anus opens on right side of the $10^{\text {th }}$ myotome in early larval stages. single, circular coil in early stages. Copepod reminants occur in the lumen of

even in the largest specimen available in the collections. its migration to the left side in 13.0 mm SL. Shifting of the eye is not completed 아 Кıоұеле

: KbolouवıOW

25).

[^1]u! łəәش səssəכoıd ן!! body wall in 4.5 mm NL larva. Primordium of the pelvic fin is seen as a cluster of

 spuә ןеш! between pectoral fin attachment and cleithral tip in 4.0 mm NL. From this

[^2] as in other bothid species seen in 9.3 mm SL larva. The distribution of caudal rays on hypural plates are
 discernible which are to be support by it. Flexion is initiated in larvae of 6.5 mm
 deflect dorsalwards. Epural is differentiated in 8.0 mm NL larva. In midflexion supported by the inferior hypural lower is also present, causing notochord to
 bearing two rays and superior hypural middle supporting three rays develop.

 formed. There are 93-97 dorsal and 66-74 anal rays (Table 19 b) discernible only in 13.0 mm SL larva when full complement of median rays are support the first tiny dorsal ray in 7.8 mm SL larva, but this tiny dorsal ray is develop, forward extension of the first dorsal pterygiophore is differentiating to not discernible. In 6.2 mm NL rays on anterior region of dorsal and anal fin fold

 differentiated from anterior to posterior, but rays are not found above the head larva, in 5.9 mm NL larva, the pterygiophores and median fin rays are stages of the larvae. First anal pterygiophore gets differentiated in 5.5 mm NL

Fin and supporting structures

 lower part of anterior arch. Scales feebly ctenoid on ocular side, cycloid on
 eye, length $23 / 5$ to $24 / 5$ in that of head ; lower jaw nearly twice in head. Teeth

引npヲ әप।
There are 10+31 vertebrae including the urostyle. are also noticed in 14.9 mm SL. Vertebral centra are bony in 23.5 mm SL.
 and haemal processes is completed in 9.3 mm SL. Ossification of arches starts
 are also differentiated in 3.8 mm NL. But in the precaudal region, haemal arches

 starts at its tip in 8.4 mm NL which gets completed in 16.6 mm SL. Neural arches
 distinctly visible whereas in the posterior region the segments are only faintly 8.4 mm SL larva segmentation has commenced from anterior region and is

dorsalwards. Urohyal is differentiated as a cartilaginous plate in 5.9 mm NL processes reach up to the ascending loop of intestine, the distal ends bending rays of the left fin lie in advance of those of the right. Posterior basipterygial reaches the middle level of urohyal. From 18.6 mm SL larva the anterior three mm SL. Forward extension of the left fin radial continues and in 23.5 mm SL , it and the anterior two rays of the left fin lie in advance of those of the right in 9.3 fin radial of the left side becomes asymmetrical by growing longer than the right larva. When the larva attains 9.3 mm SL pelvic fin rays are differentiated. Pelvic from the cluster of cells which support the rudiment of the fin rays in 8.4 mm NL 6.2 mm NL. Anterior basipterygial processes differentiate as cartilaginous rods
reported so far.
reported from Indian Ocean. But the larval forms have not been described and basipterygial processes. The adult fishes belonging to A. tapeinosoma are because of the presence of spines on cleithra, urohyal and posterior
 wrongly identified Psettina sp. to A. tapeinosoma. The identification of larval
 loop of the intestinal coil, in which case they differ from Bothus spp. The fin ray posterior basipterygial processes extend only upto the level of the ascending cleithra, urohyal and posterior basipterygial processes. The distal ends of the that of Engyprosopon, Bothus and Psettina species. Spines are absent on the the hypural plates. The length of the larvae at postflexion stages is more than
 head region and anal region the differentiation of pterygiophores and rays are fin rays are differentiated from anterior to posterior in 5.2 mm NL but over the

syxemory

spot on distal part of pectoral ; distal ends of pelvics blackish (Norman, 1934). spots ; a large dark spot at base of posterior parts of dorsal and anal ; a dark
 blotch at junction of straight and curved parts of lateral line, and generally one or series of indistinct darker blotches along upper and lower edges of body; a dark length about $2 / 3$ that of head. Caudal pointed or double truncate. Brownish; a female. Anal (65) 67-72 (Fig. 18 E). Pectoral of ocular side with 11 or 12 rays, prolonged in the mature male, a little longer than those which follow in the

Table 19a-Arnoglossus tapeinosoma-morphometrics, in mm (Larval stages within broken lines indicate notochord flexion).

Stations	Body Length	Right Eye	Notochord	Snout to Anus	Head Length	Snout Length	Eye		Body depth at		Caudal Peduncle		Snout to origin of pelvic fin
							Width	Height	Pectoral fin base	Anus	Depth	Length	
S11A-85	2.8 NL	Symm etrical	Straight	1.60	0.70	0.19	0.21	0.21	0.60	0.45	-	-	-
S6-31	3.7 "	龶	"	2.00	0.90	0.21	0.29	0.29	1.00	0.60	-	-	-
S6-39	3.8 "	"	"	2.00	0.90	0.19	0.27	0.27	0.95	0.76	-	-	-
S6-31	4.5 "	"	"	2.20	1.20	0.22	0.32	0.35	1.20	1.06	-	-	-
S6-28	5.3 "	"	"	2.50	1.40	0.40	0.32	0.39	1.55	1.60	-	-	-
S9-15	5.9 "	"	"	2.60	1.60	0.39	0.39	0.45	1.80	1.70	-	-	-
S6-3	6.2 "	"	"	2.40	1.50	0.45	0.40	0.45	2.10	2.20	-	-	1.30
S6-28	6.3 "	"	Early caudal formation	3.10	1.60	0.42	0.39	0.42	1.90	2.10	-	-	-
S6-28	6.5"	"	Early flexion	3.30	1.90	0.40	0.40	0.43	2.30	2.40	-	-	1.70
S3-10	7.8 "	"	Mid flexion	3.50	2.00	0.48	0.45	0.48	2.50	2.50	-	-	1.90
S3-19	8.0 "	"		3.50	1.90	0.42	0.45	0.48	2.40	2.50	-	-	1.90
S5-24	8.4."	"	Late flexion	3.80	2.40	0.55	0.48	0.60	3.20	3.20	-	-	2.00
S7-8B	9.3 SL	"	Flexed	3.80	2.40	0.50	0.42	0.40	3.00	3.00	1.03	0.45	2.00
S8-41	11.8 "	"		4.40	3.00	0.70	0.56	0.64	4.20	4.40	1.60	0.64	2.70
S8-41	13.0"	Migra ting	"	5.30	3.30	0.90	0.55	0.61	4.30	4.80	1.70	0.77	3.00
S11C-2	14.9 "	"	"	5.60	4.20	1.01	0.64	0.77	5.90	6.50	2.50	1.14	3.20
S11a-34	15.6"	"	"	5.30	3.80	0.84	0.61	0.64	5.10	5.60	2.30	0.92	3.00
S11a-34	18.6"	"	"	6.00	4.50	0.90	0.68	0.71	6.60	7.00	2.60	1.13	3.30
S5-19	22.6 "	"	"	7.00	4.90	0.97	0.87	0.93	7.80	8.50	3.20	1.26	3.10
S3-16	23.5 "	"	"	7.80	5.50	1.13	1.00	1.13	8.50	9.70	3.70	1.38	3.60
S3-13	24.6"	"	"	7.10	5.10	1.22	1.10	1.08	9.56	10.40	3.70	1.42	2.90

Table 19 b-Arnoglossus tapeinosoma - meristics (Larval stages within broken lines indicate notochord flexion).

Stations	$\begin{aligned} & \hline \text { Size } \\ & (m m) \end{aligned}$	Stage	Notochord	Right Eye	Fin Rays				Vertebrae			Spines		
					Dorsal	Anal	Caudal	Left pelvic	Precaudal	Caudal	Total	Urohyal	Cleithra	Posterior basipterygial processes
BF-24 Cr. 2	2.8 NL	Pre flexion	Straight	Symme	1									
S6-31	$3.7 \times$	"	"	"	1									
S6-31	4.5 "	"	"	"	1									
S6-28	5.3 "	"	"	"	1									
S9-15	5.9 "	"	"	"	ca. 62	ca. 34								
S6-3	6.2 "	"	"	"	ca. 72	ca. 42								
S6-28	6.3 "	Early caudal formation	"	"	ca. 67	ca. 38	2							
S6-28	6.5"	Early flexion	Flexing	"	ca. 74	ca. 45	6							
S3-10	7.8 "	Mid flexion		"	ca. 86	ca. 63	11							
S5-24	8.4."	Late flexion	"	"	93	... 65.	12	Forming						
S7-8B		Post flexion	Flexed	"	94	66	17	2+4	10 10	31 31	41			
S8-41	11.8 "	"	*	"	96	66	17	2+4	10	31	41			
"	13.0"	"	"	Migra	95	69	17	2+4	10	31	41			
				ting										
S11C-2	14.9"	"	"	"	94	70	17	2+4	10	31	41			
S11A-34	15.6"	"	"	"	96	74	17	2+4	10	31	41			
"	18.6"	"	"	"	97	68	17	3+3	10	31	41			
S3-16	23.5"	"	"	"	93	73	17	$3+3$	10	31	41			
S3-13	24.6 "	"	"	"	94	73	17	$3+3$	10	31	41			

Table 19 c - Arnoglossus tapeinosoma - development of vertebral column, caudal fin rays and caudal fin supporting structures.

Station	Body Length (mm)	Stage	Notochord	$\begin{aligned} & \hline \text { Right } \\ & \text { Eye } \end{aligned}$	Precaudal vertebrae				Centra	Caudal vertebrae				Centra	$\begin{gathered} \text { Ural } \\ \text { Centra } \end{gathered}$	$\begin{gathered} \hline \text { Total } \\ \text { Vertebrae } \end{gathered}$	Caudal fin rays		ral con	onent		Epural
					Neural		Haemal			Neural		Haemal						Sup	Hyp	Inf	Hyp	
					Process	Arch	Process	Arch		Process	Arch	Process	Arch					Upp	Mid	Mid	Low	
S11A-85	2.8 NL	$\begin{aligned} & \text { Pre } \\ & \text { flexion } \end{aligned}$	Straight	Symme trical	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
S6-31	3.7 "		"	"	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
S6-39	3.8 "	"	"	"	0	9	0	0	0	0	15	0	14	0	0	24	0	0	0	0	0	0
S6-30	4.0 "	"	"	"	0	9	0	5	0	0	16	0	15	0	0	25	0	0	0	0	0	0
S6-31	4.5 "	"	"	"	0	9	0	6	0	0	17	0	16	0	0	26	0	0	0	0	0	0
S6-28	5.3 "	"	"	"	9	0	0	6	0	12	6	12	6	0	0	27	0	0	0	0	0	0
Ar Lu 31	5.6 "	"	"	"	9	1	0	6	0	14	12	14	12	0	0	35	0	0	0	0	0	0
S9-15	5.9 "	"	"	"	9	1	0	7	0	24	4	24	4	0	0	37	0	0	0	0	0	0
S6-3	6.2 "	"	"	"	9	1	0	8	0	24	4	23	4	0	0	37	0	0	0	0	0	0
S6-28	6.3 "	Early caudal	"	"	9	1	0	8	0	23	5	23		0	0	37	2	0	0	0	0	0
"	6.5 "	formation Early	Flexing	"	9	1	0	8	0	26	2	26	5	0	0	37	6	0	+	+	0	0
S3-10	7.8 "	flexion Mid flexion	"	"	9	1	0	8	0	28	2	28	2	0	0	39	11	0	+	+		0
S3-19	8.0 "		"	"	9	1	0	8	0	27	2	27	2	0	0	38	11	0	+	+	+	+
S5-24	8.4 "	$\begin{aligned} & \text { Late } \\ & \text { flexion } \end{aligned}$	"	"	9	1	0	8	10	29	2	29	2	+	0	40	12	+	+	+	+	+
S7-8B	9.3 SL	Post flexion	Flexed	"	9	1	6	2	10	28	2	28	2	+	1	41	17	+	+	+	+	+
S8-41	11.8 "		"	M"	9	1	6	2	10	28	2	28	2	30	1	41	17	+	+	+	+	+
	13.0 "		"	Migra ting	9	1	6	2	10	28	2	28	2	30	1	41	17	+	+	+	+	+
S11C-2	14.9 "	"	"	"	9	1	6	2	10	28	2	28	2	30	1	41	17	+	+	+	+	+
S11A-34	15.6"	"	"	"	9	1	6	2	10	28		28	2	30	1	41	17	+	+	+	+	+
	18.6"،	"	"	"	9	1	6	2	10	28	2	28	2	30	1	41	17	+	+	+	+	$+$
S5-19 S3-16	22.6 " ${ }^{23.5}$	"	"	"	9	1	6	2	10 10	28 28	2	28 28	2	30 30	1	41 41	17 17	+	+	+	+	+
S3-13	24.6 "	"	"	"	9	1		2	10	28	2	28	2	30	1	41	17	+	+	+	+	+

 base decreases up to flexion stages and then increases.

 snout length increases in preflexion to flexion stages but there after decreases

 becomes more compact and the ventral portion is pushed forwards so that anus

 postflexion stages are available in the samples (Figs. $19 \mathrm{~A}, \mathrm{~B}, \mathrm{C}$; Tables 20 a ,

 be distinguished only with difficulty even in 7.5 mm SL larva, the largest vertebral segments preceded by four arches. Processes are very small and can mm NL. In precaudal region, haemal processes are found in the posterior four haemal processes in the caudal region are discernible even in earliest larvae 3.3 posterior caudal region. Neural processes in the precaudal and neural and segments are not clearly defined even in 7.5 mm SL larva particularly in the

 posterior basipterygial processes. of the liver in advanced stages. No spines are found on urohyal, cleithra and where the terminal portion curve dorsalwards and forwards and ends before tip along the ventral body wall up to the level of the ascending loop of intestinal coil features of the larvae of this species. Posterior basipterygial processes run fin. This early differentiation of pelvic fin appears to be one of the salient collections. Two of left pelvic fin rays are found well in advance of those of right Pelvic fin radial and rays are found even in earliest larvae available in the

completed and full complement of 17 caudal rays are seen. hypural middle three each. In 5.7 mm larva flexion of the notochord is follows: inferior hypural lower one ray, inferior hypural middle and superior

are found. Dorsal fin rays and anal fin rays vary from 72-81 and 52-67 mm larva when the full complement of 80 dorsal and 63 anal rays of median fins very early stages (3.3 mm NL larvae). First tiny dorsal ray is differentiated in 5.7 anterior to posterior end and are well developed except a few posterior ones in earliest specimen, median pterygiophores and rays are differentiated from in the collection. Fin folds are continuous. Anal pterygiophore is differentiated in

been described and reported so far. The adults are reported from Indian Ocean. The larvae of A. aspilos have not shorter than A. tapeinosoma. The number of fin rays agree with those of adults. vertebrae almost equal to that of A. tapeinosoma. The larval body is, however, dorsal and anal rays among the genus so far examined. But the number of basipterygial processes. The larvae of A. aspilos has the smallest number of early stages. The spines are absent on cleithra, urohyal and posterior presence of median dorsal and anal rays and also pelvic fin rays from the very
The larvae of A. aspilos can be distinguished from other species in the
: syлewəप्ன
12 rays, length about $2 / 3$ that of head. Uniformly brownish (Norman, 1934). none prolonged. Anal 61-62 (64) (Fig. 19 C). Pectoral of ocular side with 11 or 48 in lateral line. Dorsal 80 (84) ; all the rays scaled, at least on ocular side, part of anterior arch. Scales ctenoid on ocular side, cycloid on blind side ; 46 to rather close-set, not enlarged anteriorly. 7 rather slender gill-rakers on lower eye, length $22 / 5$ in that of head ; lower jaw about twice in head. Teeth minute, lower a little in advance of upper. Maxillary extending to below anterior part of $1 / 5$ to nearly 4 in length of head ; eyes separated by a narrow interspace, the

Table 20 a - Arnoglossus aspilos - morphometrics, in mm (Larval stages within broken lines indicate notochord flexion).

Stations	Body Length	Right Eye	Notochord	Snout to Anus	Head Length	Snout Length	Eye		Body depth at		Caudal Peduncle		Snout to origin of pelvic fin
							Width	Height	Pectoral fin base	Anus	Depth	Length	
S8-26A	3.3 NL	Symme trical	Straight	1.10	1.00	0.45	0.29	0.27	1.70	1.70	-	-	0.60
"	3.4 "		"	1.30	1.00	0.50	0.27	0.27	1.70	1.70	-	-	0.80
"	3.6 "	"	"	1.20	1.00	0.40	0.29	0.39	2.00	1.70	-	-	0.40
"	3.5 "	"	Mid flexion	1.20	1.00	0.50	0.29	0.29	2.00	1.90	-	-	0.50
S6-29	5.7 SL	"	Flexed	2.20	1.70	0.88	0.51	0.37	2.30	2.20	0.60	0.30	1.50
S6-3	6.2 "	"	"	2.40	1.80	0.90	0.40	0.45	2.40	2.30	0.80	0.45	1.30
AB-54	7.5 "	"	"	2.60	2.00	0.93	0.42	0.52	4.50	4.30	1.00	0.55	0.90

Table 20 b - Bothus myriaster - meristics (Larval stages within broken lines indicate notochord flexion).

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{Stations} \& \multirow[t]{2}{*}{$$
\begin{gathered}
\hline \text { Size } \\
(\mathrm{mm})
\end{gathered}
$$} \& \multirow[t]{2}{*}{Stage} \& \multirow[t]{2}{*}{Notochord} \& \multirow[t]{2}{*}{$$
\begin{aligned}
& \hline \text { Right } \\
& \text { Eye } \\
& \hline
\end{aligned}
$$} \& \multicolumn{4}{|c|}{Fin Rays} \& \multicolumn{3}{|c|}{Vertebrae}

\hline \& \& \& \& \& Dorsal \& Anal \& Caudal \& Left pelvic \& Precaudal \& Caudal \& Total

\hline S8 - 26A
"
" \& $$
\begin{aligned}
& 3.3 \mathrm{NL} \\
& 3.4 \text { " } \\
& 3.6 \text { " }
\end{aligned}
$$ \& Pre flexion " \& Straight
"
" \& Symm etrical " \& ca. 58

59
64 \& $\begin{array}{r}\text { ca. } 50 \\ \\ 52 \\ \hline 52\end{array}$ \& 0
0

0 \& $$
\begin{aligned}
& 2+4 \\
& \\
& 2+4 \\
& 2+4
\end{aligned}
$$ \& \& \&

\hline " \& 3.5 " \& Mid flexion \& Flexing \& " \& ca. 74 \& ca. 52 \& 7 \& 2+4 \& \& \&

\hline S6-29 \& 5.7 SL \& Post flexion \& Flexed \& " \& 80 \& 63 \& 17 \& $2+4$ \& 10 \& 29 \& 39

\hline S6-3 \& 6.2 " \& \& " \& " \& 72 \& 52 \& 17 \& 2+4 \& 10 \& 26 \& 36

\hline AB-54 \& 7.5 " \& " \& " \& " \& 81 \& 67 \& 17 \& 2+4 \& 10 \& 26 \& 36

\hline
\end{tabular}

Table 20 c-Arnoglossus aspilos - development of vertebral column, caudal fin rays and caudal fin supporting structures.

Stations	Body Length	Stage	Notochord	$\begin{aligned} & \hline \text { Right } \\ & \text { Eye } \end{aligned}$	Precaudal vertebrae				Centra	Caudal vertebrae				Centra	UralCentra	$\begin{gathered} \hline \text { Total } \\ \text { vertebrae } \end{gathered}$	Caudal fin rays	Ural components				Epural
					Neural		Haemal			Neural		Haemal						Sup	Hyp	Inf	Hyp	
					Process	Arch	Process	Arch		Process	Arch	Process	Arch					Upp	Mid	Mid	Low	
S8-26 A	3.3 NL	Pre flexion.	Straight	Symme trical	9	1	0	8	0	18	2	18	2	0	0	30	0	0	0	0	0	0
"	3.4 "		"		9	1	0	8	0	19	2	19	2	0	0	31	0	0	0	0	0	0
"	3.6 "	"	"	"	9	1	0	8	0	18	3	18	3	0	0	31	0	0	0	0	0	0
"	3.5 "	$\begin{gathered} \text { Mid } \\ \text { flexion } \end{gathered}$	Flexing	"	9	1	0	8	0	21	2	21	2	0	0	33	7	0	x	x	x	0
S6-29	5.7 SL	Post flexion	Flexed	"	9	1	+	8	10	26	2	26	2	28	1	39	17	x	x	x	x	x
S6-3	6.2 "	${ }^{*}$	"	"	9	1	+	8	10	23	2	23	2	25	1	36	17	x	x	x	x	x
AB - 54	7.5 "	"	"		9	1	4	4	10	23	2	26	2	28	1	39	17	x	x	x	x	x

Z8し
 length and ends bifurcated. First anal pterygiophore is differentiated in the

 alimentary canal runs almost parallel to notochord and makes an elliptical coil larva. Teeth not visible even in the postflexion stage. Anterior portion of migration to left side in 16.7 mm SL, but not completed even in 19.7 mm SL mm NL, right eye has started shifting from its symmetrical position preparatory to symmetrical and black pigments are seen from the earliest stage available 4.3

तбоןOपdiow
Tables 21 a, b, c). flexion and postflexion stages are contained in the samples (Figs. 20 A, B, C, D ; collections of IIOE and Naga Expeditions. The larvae belonging to preflexion,

There are 11+34 vertebrae including urostyle Haemal processes of the precaudal region starts differentiating in 7.8 mm NL . processes are also differentiated in 4.3 mm NL and completed in 15.2 mm SL .
 səssəэoıd ןeגnəu ןepneэəлd 'pə!!!sso əле pue '7S wu L’6L u! pədeys \|әq-qunp
 neural and haemal processes as well as centra start ossification in 15.2 mm SL.
 wall, like other neural spines in advanced stages. Even in 19.7 mm SL, the

 uəس!эəds forwards and its second ray lies opposite to the cleithral tip in the largest of those of the right fin in 19.7 mm SL. Left pelvic fin radial continues to grow
 Left pelvic fin radial becomes asymmetrical and reaches beyond the level of basipterygial processes) are differentiated with ray rudiments in 8.8 mm SL. Pelvic fin radial rudiment is seen as pack of cells in 7.8 mm NL , radials (anterior intestine in later stages. Urohyal is also differentiated in 5.4 mm NL larva down along the ventral body wall and reaches the level of ascending loop of differentiated in 5.4 mm NL larva, posterior basipterygial portion of which runs

 to 81 anal rays are seen in advanced stages. complement of the median fin rays are differentiated. 102 to 103 dorsal and 78 ray gets differentiated in larvae ranging between 8.8 and 15.2 mm SL , when full articulation of the elongated dorsal ray in larvae of 7.8 mm SL. First tiny dorsal

species of the genus. differentiation of pelvic fin rays separate larvae of A. elongatus from other myotome / vertebrae ; very large number of vertebrae and fin rays ; late

 larval forms belonging to A. elongatus from Bothus spp the anus as well as the larger number of vertebrae and fin rays help to identify

 Engyprosopon and Psettina in the absence of spine on cleithra, urohyal and

syıluә्व

 fins (Norman, 1934) blotch just behind curve of lateral line ; a series of dark spots on dorsal and ana ocular side with 12 or 13 rays, length $11 / 2$ to $13 / 4$ that of head. Caudal
 lateral line. Dorsal 100-102; all the rays scaled, at least on ocular side, second arch. Scales feebly ctenoid on ocular side, cycloid on blind side ; 64 to 66 in
 lower jaw $12 / 3$ to 2 in head. Teeth minute, those of upper jaw somewhat larger extending to below anterior $1 / 2$ of eye, length $21 / 4$ to $21 / 3$ in that of head; separated by a bony ridge, the lower a little in advance of upper. Maxillary

Table 21 a - Arnoglossus elongatus - morphometrics, in mm (Larval stages within broken lines indicate notochord flexion).

Stations	Body Length	Right Eye	Notochord	Snout to Anus	Head Length	Snout Length	Eye		Body depth at		Caudal Peduncle		Snout to origin of pelvic fin
							Width	Height	Pectoral fin base	Anus	Depth	Length	
S11A-34	4.3	Symme	Straight	2.00	1.10	0.21	0.26	0.24	1.06	0.85	-	-	-
S7-15	5.4	"	"	2.30	1.40	0.48	0.35	0.39	1.61	1.13	-	-	-
S6-3	7.8	"	Early flexion	4.50	2.00	0.52	0.52	0.55	2.10	2.40	-	-	1.10
Ki - 677	8.8	"	Flexed	4.70	2.50	0.67	0.52	0.54	2.50	2.60	0.80	0.70	1.70
S4-8	15.2	"		5.30	3.60	0.70	0.74	0.81	4.90	4.70	1.51	0.72	3.50
S4-24B	16.7	Migrating		5.90	3.90	0.90	0.71	0.77	5.00	5.00	1.60	0.87	3.80
S6-15	17.6		"	5.80	4.20	1.12	0.71	0.74	5.20	5.30	1.80	0.84	3.70
S4-24 B	19.7	"	"	6.80	4.40	1.14	0.77	0.77	5.50	5.80	1.80	0.93	4.10

Table 21 b-Arnoglossus elongatus - meristics (Larval stages within broken lines indicate notochord flexion).

Table 21 c - Arnoglossus elongatus - development of vertebral column, caudal fin rays and caudal fin supporting structures.

Stations	BodyLength	Stage	$\begin{aligned} & \text { Noto- } \\ & \text { chord } \end{aligned}$	$\begin{aligned} & \text { Right } \\ & \text { Eye } \end{aligned}$	Precaudal vertebrae				Centra	Caudal vertebrae				Centra	$\begin{gathered} \hline \text { Ural } \\ \text { Centra } \end{gathered}$	$\begin{gathered} \hline \text { Total } \\ \text { vertebrae } \end{gathered}$	Caudal fin rays	Ural components				Epural
					Neural		Haemal			Neural		Haemal						Sup	Hyp	Inf	Hyp	
					Process	Arch	Process	Arch		Process	Arch	Process	Arch					Upp	Mid	Mid	Low	
S11A-34	4.3 NL	Pre flexion	Straight	Symme trical	10	0	0	0	0	27	5	27	5	0	0	42	0	0	0	0	0	0
S7-15	5.4 "	"	" ${ }^{\text {c }}$	"	10	1	0	8	0	23	5	23	5	0	0	39	5	0	x	0	0	0
S6-3	7.8 "	Early flexion	Flexion	"	10	1	7	3	11	28	5	28	5	33	0	44	5	0	x	x	0	0
Ki-677	8.8 SL	Post flexion	Flexed	"	10	1	7	3	11	31	2	31	2	33	1	45	17	X	x	X	x	x
S4-8	15.2 "	"	"	-	10	1	7	3	11	31	2	31	2	33	1	45	17	X	x	x	x	x
S4-24B	16.7 "	"	"	Migra ting	10	1	7	3	11	31		31	2	33	1	45	17	x	x	x	x	x
S6-15	17.6 "	"	"		10	1	7	3	11	31	2	31	2	33	1	45	17	x	x	x	x	x
S4-24B	19.7 "	"	"	"	10	1	7	3	11	31	2	31	2	33	1	45	17	x	x	x	x	x

 notochord is not effected, caudal rays are also not differentiated. In this respect,

region than in posterior part. 70 dorsal and 48 anal rays are differentiated. available 7.4 mm NL dorsal and anal rays are well differentiated in the anterior mm NL larva three more rays are seen in 4.7 mm . In the largest specimen

: səયnłכnגłs bu!̣adans pue u!コ
 deciphered in the caudal region. former gains over the latter as grow the proceeds. 34 myotomes can be posterior axis being almost equal to dorso-ventral axis in early stages but the and eighth myotomes. Liver more or less rectangular in shape, anteriormyotome. Swim bladder very conspicuous and occupies the space between fifth myotome. In 7.4 mm anus is pushed forwards and opens at the level of eighth coil at the level of the eighth myotome, anus opens at the level of the $10^{\text {th }}$ then gets pushed ventralwards by the swim bladder, it then makes an elliptical number. Alimentary canal runs parallel to the notochord up to fourth myotome, angle of the lower jaw is in advance of the level of eye. Teeth present but few in black and symmetrical. Lower jaw prominent projecting beyond the upper ;

[^3]
Kboloud.ow

collections (Figs. 21 A, B ; Tables 22 a, b, c). collections taken from the Indian Ocean during IIOE but not in Naga Expedition

Arnoglossus intermedius (Bleeker, 1866)

 ocular side, cycloid on blind side ; 45 to 50 in lateral line. Dorsal 77-83 ; first ray strongly spinulate) ; 8 or 9 on lower part of anterior arch. Scales feebly ctenod on
 wider apart anteriorly ; lateral teeth of lower jaw somewhat stronger and wider
 little beyond, length about $21 / 2$ in head ; lower jaw $13 / 4$ to $14 / 5$ in head. little in advance of upper. Maxillary extending to below anterior edge of eye or a separated by a concave space, its width $1 / 4$ to $1 / 3$ diameter of eye ; lower eye a Snout longer than eye, diameter of which is $41 / 2$ to 5 in length of head ; eyes

$\overline{\text { tnpe } 2 \mathrm{LI}}$ precaudal vertebral segment. region. The first neural arch is discernible in 6.0 mm NL, thus marking the 10
 caudal region, three processes and eleven arches are also discernible in 4.0 mm precaudal region. However, haemal arches are seen in precaudal region. In the
 neural arches in the precaudal and 12 in the caudal region are also visible. They begin to differentiate in the last three precaudal and first caudal myotome six that each myotome corresponds to a vertebral segment. Neural processes very long and narrow. Urostyle segment is differentiated in this. It may be noted caudal portion, but $9-10$ myotomes can be clearly marked out. Last myotome is are seen in 7.4 mm NL. Segmentation is not clear in the posterior third of

and first rays of left fin lies opposite the cleithral tip. largest specimen 7.4 mm NL, three rays are seen well in advance of the right fin in 5.0 mm NL, but radials do not extend to the level of the tip of cleithra. In the NL. Posterior basipterygial processes, pelvic fin radial and rays are discernible
this species are not described and reported so far. The adults of this species are reported from Indian Ocean. The larval forms of caudal portion. With this the fin ray count of the larvae will tally with the adult.
 developed and three rays of the left fin lie in advance of the right fin. There is developed in the posterior thrid of the caudal portion. The pelvic fin is well NL larvae. The caudal rays are also wanting. The median fin rays are not portion remains straight even after the differentiation of hypural plates in 7.4 mm found on the urohyal, cleithra and posterior basipterygial processes. The caudal the anterior end of the dorsal fin fold from the very early stages. Spines are not remaining species of the genus in the presence of two elongated dorsal rays at

syıemay

 (Norman, 1934). dark brown spots; a row of larger spots along basal parts of dorsal and anal on the straight portion, are usually most conspicous ; all the fins with numerous above and below commencement of straight part of lateral line, and another pair markings on body, of which a series near upper and lower edges of body, a pair

Table 22 a-Arnoglossus intermedius - morphometrics, in mm (Larval stages within broken lines indicate notochord flexion).

Stations	Body Length	Right Eye	Notochord	Snout to Anus	Head Length	Snout Length	Eye		Body depth at		Caudal Peduncle		Snout to origin of pelvic fin
							Width	Height	Depth	Length	Depth	Length	
$\mathrm{Pi}-16$	4.0 NL	Symme trical	Straight	1.70	0.90	0.35	0.24	0.24	1.09	1.09	-	-	-
"	4.1 "	"	"	1.90	1.00	0.60	0.24	0.26	1.09	1.06	-	-	-
Di-5014	4.7 "	"	"	2.10	1.30	0.70	0.26	0.29	1.40	1.40	-	-	-
$\mathrm{Pi}-16$	5.0 "	"	"	2.00	1.30	0.68	0.29	0.26	1.80	1.80	-	-	1.00
Di - 5014	5.7 "	"	"	2.20	1.70	0.68	0.31	0.37	2.30	2.20	-	-	1.50
"	6.0 "	"	"	2.20	1.60	0.77	0.35	0.30	2.80	2.80	-	-	1.10
OS - 30	7.4 "	"	"	2.80	2.00	0.81	0.39	0.41	3.90	4.00	-	-	1.50

Table 22 b-Arnoglossus intermedius - meristics (Larval stages within broken lines indicate notochord flexion).

Stations	$\begin{aligned} & \hline \text { Size } \\ & (m m) \end{aligned}$	Stage	Notochord	Right Eye	Fin Rays			
					Dorsal	Anal	Caudal	Left pelvic
$\mathrm{Pi}-16$	4.0 NL	Post flexion	Straight	Symme trical	5	0	0	0
$\mathrm{Pi}-16$	4.1"	"	"	"	5	0	0	0
Di - 5014	4.7 "	"	"	"	5	FR	0	0
Pi-16	5.0 "	"	"	"	47	17	0	FR
Di-5014	6.0 "	"	"	"	64	34	0	2+4
Ds - 30	7.4"	"	"	"	70	48	0	3+3

Table 22 c - Arnoglossus intermedius - development of vertebral column, caudal fin rays and caudal fin supporting structures.

Stations	Body Length	Stage	Notochord	$\begin{aligned} & \text { Right } \\ & \text { Eye } \end{aligned}$	Precaudal vertebrae				Centra	Caudal vertebrae				Centra	$\begin{gathered} \text { Ural } \\ \text { Centra } \end{gathered}$	$\begin{gathered} \text { Total } \\ \text { vertebrae } \end{gathered}$	Caudal fin rays	Ural components				Epural
					Neural		Haemal			Neural		Haemal						Sup	Hyp	Inf	Hyp	
					Process	Arch	Process	Arch		Process	Arch	Process	Arch					Upp	Mid	Mid	Low	
Pi -16	4.0 NL	Post flexion	Straight	Symme trical	3	6	0	3	0	1	12	3	11	0	0	23	0	0	0	0	0	0
"	4.1 "	${ }^{\prime}$	"	${ }^{\text {a }}$	3	6	0	6	0	4	13	4	13	0	0	26	0	0	0	0	0	0
Di - 5014	4.7 "	"	"	"	9	0	0	7	0	18	5	18	5	0	0	32	0	0	0	0	0	0
Pi-16	5.0 "	"	"	"	9	0	0	8	0	18	5	18	5	0	0	32	0	0	0	0	0	0
Di-5014	6.0 "	"	"	"	9	1	0	8	0	19	3	19	2	0	0	32	0	0	0	0	0	0
OS - 30	7.4 "	"	"	"	9	1	4	3	+	21	2	22	2	0	0	34	0	0	x	x	x	0

into spines. and related groups and wherever present margins of the structure are drawn out

 posterior basipterygial processes，pelvic fin radial，cleithra and sides of the
 distal ends of the pterygiophores and in different parts of the body．These spiny

axis is about twice the anterio-posterior axis.

 elliptical coil ending in a straight rectal portion lying vertically down，the anus to the level of sixth myotome and then runs down obliquely describing a single respectively in early stages．Alimentary canal runs parallel to the notochord up

：$\overline{\text { KбоןOपवıOW }}$

 Tables 23 a，b \＆25）． （0レ8レ＇ənbsəu！ృey）s！ןe！əədu！snssoן6ouィ甘$$
\text { vertebral segments in } 12.2 \mathrm{~mm} \text { SL. Liver well developed and its dorsoventral }
$$

cleithra in 122 mm SL . radial of the left side grows forwards and reaches a little front of the tip of the rays of the left pelvic fin are seen lying in advance of the right. The pelvic fin basipterygial processes) are differentiated in 8.5 mm NL and in 10.3 mm SL two do not reach up to the level of the intestinal loop, the pelvic fin radials (anterior mm NL the pelvic fin radial rudiment is seen. Posterior basipterygial processes

middle. Full complement of 17 rays are seen in 10.3 mm SL larva along with in 8.5 mm NL larva in which two rays are seen articulated to inferior hypural traceable. Notochord remains straight at this stage, its flexion however, is seen

[^4]extension of the first dorsal pterygiophore which is to support the first tiny dorsal specimen in the collections. There are 101 dorsal and 79 anal rays. Forward first dorsal ray, the differentiation of which is indicated in 12.2 mm SL , the largest remaining anterior portion and in 10.3 mm SL all rays are found except the tiny posterior portions in 7.7 mm NL . In 8.5 mm NL rays are developed in the folds, fin rays are also well differentiated but not in the remaining anterior and anterior end of dorsal fin fold. In the middle caudal portion of dorsal and anal fin larvae. An elongated dorsal ray followed by 6 to 7 short rays are seen in the

thereafter decreases, to values less than those of preflexion stage. between snout and pelvic fin base increase from preflexion to flexion stages and other hand decreases. Snout to anus length, eye width, eye height and length anus increase from preflexion to postflexion stages. Relative snout length on the
 caudal portion. In some larval forms pigments are not clearly seen.

L61
 helpful in placing the present larval forms along with Arnoglossus spp. The the posterior basipterygial processes not extending to the anus are characters placed under the genus Arnoglossus or Bothus. The long leaf-like larval body, cleithra, urohyal and posterior basipterygial processes, these larvae can be

: sүлешәу

this is greyish in colour and very indistinct (Norman, 1934). conspicuous black blotch on hinder end of pelvic fin of ocular side ; in the female
 male. Caudal rounded. Vertebrae $10+32-35$. Greyish or brownish, generally
 follow. Anal 74-82 (Fig. 22 C). Pectoral of ocular side with 9 to 11 rays, length 1 second to fifth rays are somewhat thickened, a little longer than those which mature male, the highest ray nearly as long as head; in the mature female the to fifth or sixth rays thickened, prolonged, and free for most of their length in the side, cycloid on blind side ; 58 to 63 in lateral line. Dorsal (94) 95-106; second 10 gill-rakers on lower part of anterior arch. Scales feebly ctenoid on ocular lower jaw $21 / 10$ to $21 / 5$ in head. Teeth all small, not enlarged anteriorly. 8 to extending to below anterior part of eye, length $25 / 6$ to $31 / 8$ in that of head separated by a bony ridge, the lower a little in advance of the upper. Maxillary Snouts shorter than eye diameter of which is $25 / 6$ to 4 in length of head ; eye

stjnpe әप1

caudal vertebrae including the urostyle. notochord is also complete in 10.3 mm SL. There are 10 precaudal and 32 arches at the posterior end are seen in 10.3 mm SL. Segmentation of the cartilaginous. In the caudal region 29 neural and haemal processes and two are clearly differentiated in precaudal region in 10.3 mm SL. First neural arch is neural processes, one archand six haemal processes preceded by two arches

Rosamma Stephen, (1998). Adults are not yet reported from Indian waters. first time by Lalithambika Devi, (1986) and reported by Lalithambika Devi \& Bank. The larvae of A. imperialis are described from the Indian Ocean for the
 report have been collected only from stations around Agulhas Bank. Decker described and reported by Kyle (1913). Larval forms described in the present part of Mediterranean (Norman, 1934). Larvae from Atlantic waters have been from the Atlantic coasts of Europe and Africa, northern Scotland and western vertebrae tally with the adults of Arnoglossus imperialis. The adults are reported even after the development of hypural plates. The number of fin rays and
 peculiarity of the present larvae is that the caudal rays are differentiated much scutes and guided them to place such larvae under Arnoglossus spp. Another urohyal, cleithra and posterior basipterygial processes and the spiny discoid statement might have led many workers to confuse between the spines on the
 Rhombidae have spines in one form or another in the postlarval stages, but none He has stated that " with one exception all known genera of the family these spiny discs in A. imperialis from 7.0 mm to 29.0 mm and not afterwards. of the body are characteristic feature of the species. Kyle (1913) has observed rays, cleithra, urohyal, posterior basipterygial processes and also in other parts

Table 23 a - Arnoglossus imperialis - morphometrics, in mm (Larval stages within broken lines indicate notochord flexion).

Stations	$\begin{aligned} & \hline \text { Body } \\ & \text { Length } \end{aligned}$	$\begin{aligned} & \text { Right } \\ & \text { Eye } \end{aligned}$	Notochord	Snout to Anus	Head Length	Snout Length	Eye		Body depth at		Caudal Peduncle		Snout to origin of pelvic fin
							Width	Height	Pectoral fin base	Anus	Depth	Length	
A - 2877	7.7	Symme trical	Straight	3.00	1.70	0.56	0.37	0.40	2.80	2.60	-	-	1.20
A-3497	8.5			3.40	1.90	0.55	0.47	0.55	3.50	3.40	-	-	1.50
A - 3546	10.3	"	Post flexion	3.80	2.50	0.66	0.55	0.58	4.70	4.70	0.87	0.55	1.30
A - 2866	12.2	"	"	4.20	2.90	0.84	0.52	0.55	5.80	5.90	1.42	0.58	1.50

Table 23 b-Arnoglossus imperialis - meristics (Larval stages within broken lines indicate notochord flexion).

Stations	$\begin{aligned} & \text { Size } \\ & (m m) \end{aligned}$	Stage	Notochord	Right Eye	Fin Rays				Vertebrae		
					Dorsal	Anal	Caudal	Left pelvic	Precaudal	Caudal	Total
A-2877	7.7 NL	Pre flexion	Straight	Symm etrical	Ca. 87	Ca. 59	0	0			
A - 3497	8.5"	Mid flexion	Flexing	"	Ca. 92	Ca. 67	11	0			
A -3546 $A-2866$	$\begin{aligned} & 10.3 \text { SL } \\ & 12.2 \text { " } \end{aligned}$	Post flexion	Flexed	"	98 101	76 79	17 17	$2+4$ $2+4$	10 10	32 32	42 42

LOZ

-әедәдәл
half times the length of the larva and also in the presence of 11 precaudal possession of an extra ordinarily elongated anterior dorsal ray almost one and

imperialis differs from
differentiated and also in the late development of caudal rays. The larvae of A. other species in the urostyle remaining straight even after the hypural plates are The larvae of A. intermedius and A. imperialis can be distinguished from those of
 A. intermedius except the anterior two elongated and two ordinary rays (which is larvae of A. aspilos and A. intermedius can be distinguished from others. But in
 the length at which eye migration is commenced. In the differentiation of the the largest specimen of A. imperialis and A. intermedius, it is difficult to assess tapeinosoma has the maximum. As the eye migration has not commenced in is maximum in A. imperialis except in the case of tiny dorsal in which A. arch, first tiny dorsal ray, hypurals and eye migration is minimum in A. aspilos. It The length at which commencement of median and pelvic fin rays, first neural maximum in A. elongatus whereas A. aspilos has the minimum in all the three.

 comparatively short length of the left pelvic fin radial. retention of the anterior elongated dorsal ray in all stages of the larvae and in the posterior basipterygial processes not extending to the level of the anus, in the shape of the larvae (elongated in Arnoglossus and oval in Bothus), the Arnoglossus spp. can be differentiated from those of Bothus spp. from the intermedius, and A. imperialis are reported and discussed. The larvae of

copepods successfully.
to the effect that the waters in the Agulhas Bank can support Atlantic species of from Agulhas Bank only give strength to the statement made by Decker (1973) The fact that the larvae of A. imperialis of the present report have been collected But the adults and larvae of A. imperialis are not reported from Indian waters. reported in the present series resemble very much with those reported by Kyle. imperialis 7.0 to 29.0 mm collected from Atlantic waters. The larval forms larval stage of the present account. Kyle (1913) has described larvae of A. measuring 8.3 mm Gulf of Tomkin belonging to A. elongatus which resemble the Engyprosopon spp. Pertseva-Ostroumova (1965) has reported a larval form probability the larvae described by Balakrishnan may be referable to Arnoglossus spp. do not possess any spine on the above structures. In all the

Table 24. Difference in morphometrics at the commencement of postflexion and length of larvae when meristic characters differentiate in Arnoglossus species (in mm).

Species	Standard Length	Snout to anus	Body depth across to anus	Median fin rays	Pelvic fin rays	First neural arch	First tiny dorsal ray	Hypural	Commencement of eye migration
A. tapeinosoma	9.3	3.8	3.0	5.9	8.4	5.6	13.0	6.5	13.0
A. aspilos	5.7	2.2	2.2	3.3	3.3	3.3	5.7	3.5	7.5
A. elongatus	8.8	4.7	2.6	5.4	8.8	5.4	6.8-15.2	7.8	16.7
A. intermedius	Only preflexion stages			4.0-4.7	5.0	6.0	-	7.4	-
A. imperialis	10.3	3.8	4.7	7.7	8.5-10.3	10.3	12.2	7.7-8.5	-

times the dorso-ventral axis. bothids, its antero-posterior axis measuring more than two and a half canal down in preflexion stage. Liver is not massive as in other between fourth and sixth myotomes, which presses the alimentary level of the tenth. An oval swim bladder in placed at the space reaches the level of seventh caudal vertebra and the anus opens at the trailing abdomen is superimposed on the body, the intestinal loop vertebral segments and the rectal portion extends further down. If the trailing abdomen equals the length between first and seventh caudal pushes the abdomen which hangs down as a trailing appendage. The postflexion stage, the intestinal coil gets considerably elongated and backwards and anus opens at the level of the $11^{\text {th }}$ myotome. In end of the abdominal cavity, rectal portion is distinctly marked, directed an elliptical coil which is directed backwards and occupies the posterior almost parallel to the notochord up to seventh myotome where it forms and 6 pairs in lower appear in postflexion stage. Alimentary canal runs almost equal, teeth absent in preflexion stage, but 11 pairs in the upper small being less than the diameter of the eye in early stage, jaws are diameter of the eye in front of it in preflexion stage. Mouth terminal and muscular outer ring. The snout is about one and half times the black and symmetrical, in postflexion stage they have a conical postflexion stage tapers gradually giving the characteristic shape. Eyes dorsal body wall, caudal portion tapers in preflexion stage but in Ventral profile of the abdomen remains straight and parallel to the

: KбоןOपवगow
 stages measuring 4.3 mm NL and 19.0 mm SL respectively are present

Laeops macrophthalmus (Alcock, 1889)

cleithra and posterior basipterygial processes, loop up to the level of the anus. No spines are found on the urohyal,
 anterior three rays lie in advance of that of the right fin. The posterior
 In postflexion stage, the pelvic fin rays are well differentiated, the left cartilages are discernible, the latter extending to the level of the anus.
 developed even in the postflexion larva. In the preflexion stage, there

beneath the vertebral column.
rays and also at the posterior dorsal corner of the abdominal cavity the dorsal and ventral body wall at the bases of the dorsal and anal fin anal rays. Small brownish pigment patches are seen distributed along
 are comparatively long and most of the rays have a length equal to the
 dorsal ray is retained, the tiny first dorsal is seen articulated to the dorsal and anal fin fold along with pterygiophores. The elongated the condition met within preflexion stage. But rays are differentiated in mm SL larva, the dorsal fin has not grown much over to the snout from
 from the level of the base of the occipital. No other rays or elongated dorsal ray supported by the first dorsal pterygiophore arising the skull but has not reached the snout with a well differentiated, preflexion stage. The anterior end of the dorsal fin fold extends over

Fin and supporting structures:

90乙
and asymmetrical pelvic fin radial with three of the anterior rays lying presence of spineless urohyal, cleithra and basipterygial processes Arnoglossus spp. and Bothus spp. to which they resemble in the
 following the trailing abdomen up to the anus, the number of fin rays portion, the trailing abdomen, the posterior basipterygial processes portion. In the possession of long narrow leaf like posterior caudal dorsal profile, in the backwardly directed intestinal loop and rectal

syıleməy
pectoral dark brown or blackish (Norman, 1934). towards their margins; middle rays of caudal and distal part of left head. Caudal obtusely pointed. Brownish ; dorsal and anal fins darker Pectoral of ocular side with 13 to 15 rays, length $11 / 6$ to $13 / 5$ in that of longest shorter than head (except in young). Anal 67-70 (Fig. 23 C). rays detached from remainder of fin; none of the rays prolonged, line. Dorsal 85-90 ; origin above posterior nostril of blind side; first two to 8 gill-rakers on lower part of anterior arch. About 93 scales in lateral head ; teeth uniserial, almost entirely confined to blind side of jaws. 6 anterior edge of eye, length $33 / 4$ to $41 / 4$ ($33 / 5$ in young) in that of
 young) in length of head; lower eye a little in advance of upper, behind eyes. Diameter of eye $33 / 4$ to a little more than 4 (5 1/5 in $2 / 3$. Upper profile of head and body more or less convex above and

: ş|npe әप। precaudal and 35 caudal vertebrae including urostyle. cartilaginous and has no spines in 19.0 mm SL larva. There are 11 processes are also well developed. The first neural arch is
 19.0 mm vertebrae are clearly visible. In the caudal region they are differentiated 11 in the precaudal region and 35 in caudal region. In preflexion stage, the caudal end remaining straight, myotomes are well Notochord remains vacuolated and unsegmented in the

60Z
Pectoral fins remain in embryonic condition, pelvic fins have six
rays which are smaller than median fin rays. Pelvic fin radial of left
side are comparatively short, distal extremity of radial reaches only a
Urostyle shrunk below the margin of caudal fin.
supported by neural and haemal processes of penultimate vertebra middle five, superior hypural upper three and one ray on either side

 ventral body wall. Seventy eight small rays occur in anal fin, all dorsal Bothus and Arnoglossus. It runs slantingly down to the edge of the first caudal pterygiophore is long but not stout and leaf-like as in the rest of the median rays. There are 115 dorsal rays. In the anal fin second dorsal ray long and the following $12-13$ rays are smaller than dorsal pterygiophore, which originates from base of occipital region, developed, supported by the forward extension of the first long, stout level of eye, rays start from extremity of the fin, tiny first dorsal ray well

'səssəวoud

it. Viscera lost due to damage and rupture of the abdominal wall. beyond the upper, snout more than twice the diameter of eye in front of symmetrically placed. Mouth small and lower jaw projects slightly length about six times eye diameter. Eyes are comparatively small and

not included in the systematic portion (Figs. 24 A, B ; Tables 14 a, b).

Chascanopsetta lugubris Alcock, 1894
the intestine (the viscera being lost it is difficult to assess the exactness
 The larva also differs from those of Arnoglossus spp. in the extension radial with one ray in advance of the right fin and also in the meristics. elongated dorsal ray and in the short but asymmetrical left pelvic fin
 fin and continuous median fins. The larva can be distinguished from the left pelvic fin, elongated dorsal ray at the anterior end of the dorsal and posterior basipterygial processes, in the asymmetrical nature of of Bothus spp. and Arnoglossus spp. in the spinules urohyal, cleithra

: syлeməप्व dusky (Norman, 1934). or yellowish brown, with or without numerous small dark spots ; fins Caudal obtusely pointed; caudal peduncle deeper than long. Greyish of ocular side with 14 to 17 rays, length $13 / 4$ to $21 / 5$ in that of head. $3 / 4$ in straight part. Dorsal 114-122. Anal 77-85 (Fig. 25 B). Pectoral length $11 / 4$ to $12 / 5$ in that of head. Width of curve of lateral line 5 to 5 nearly vertical or horizontal ; maxillary extending to well beyond eye, interorbital width. Cleft of mouth generally oblique, but sometimes

$: \overline{\text { ŋnpe әप। }}$ pterygiophores. There are $16+37$ vertebrae including urostyle. well developed, last two vertebrae in front of urostyle have no processes developed, neural and haemal processes of caudal region

 margin, it can reach a little distance in front of the anal fin. rupture of abdominal wall, when kept in position along the ventral right. The posterior basipterygial processes displaced due to the little in front of cleithral tip and one ray of left fin is in advance of the

Table 25 - Body proportions of larval and metamorphosed stages of bothid fishes, "Body proportion expressed as 10^{-2} of body length or head length : Mean Standard deviation and Range).

Body proportion	E. cocosensis	E. latifrons	E. mogkii	E. grandisquamis
SA/BL				
Pre flexion	$47.50 \pm 4.95(44-51)$	$56.22 \pm 3.93(51-63)$	$54.00 \pm 3.61(50-57)$	$55.17 \pm 7.47(50-70)$
Flexion	$49.25 \pm 0.50(49-50)$	$49.00 \pm 2.65(46-51)$	$50.00 \pm 6.08(43-54)$	$45.50 \pm 2.38(45-50)$
Post flexion	$38.29 \pm 6.03(27-46)$	$45.33 \pm 2.31(44-48)$	$43.20 \pm 5.85(36-49)$	$37.83 \pm 7.57(27-52)$
Metamorphosed	--	--	-	
HL/BL	$29.50 \pm 0.71(29-30)$	$30.00 \pm 2.06(27-33)$	$28.67 \pm 0.58(28-29)$	$27.67 \pm 2.07(26-31)$
Pre flexion	$28.50 \pm 1.29(27-30)$	$29.33 \pm 2.08(27.31)$	$32.33 \pm 2.52(30-35)$	$31.00 \pm 1.41(30-33)$
Flexion	$27.53 \pm 2.40(24-32)$	$30.33 \pm 2.08(28-32)$	$29.20 \pm 1.30(28-31)$	$27.83 \pm 2.29(22-31)$
Post flexion	--	-	-	-
Metamorphosed				
		--		
SL/HL	$33.50 \pm 2.12(32-35)$	$30.44 \pm 3.05(24-35)$	$33.67 \pm 1.15(33-35)$	$27.33 \pm 2.42(23-30)$
Pre flexion	$35.25 \pm 2.7532-38)$	$36.33 \pm 3.21(34-40)$	$32.00 \pm 3.61(29-36)$	$30.00 \pm 3.46(25-33)$
Flexion	$34.24 \pm 3.80(29-40)$	$32.67 \pm 3.51(29-36)$	$31.00 \pm 2.00(29-34)$	$27.67 \pm 3.77(21-32)$
Post flexion	--	--	-	
Metamorphosed				
		--		
EW/HL		--		
Pre flexion	$27.50 \pm 0.71(27-28)$	$33.00 \pm 4.18(27-41)$	$31.00 \pm 4.36(26-34)$	$31.33 \pm 4.97(23-38)$
Flexion	$27.00 \pm 4.16(22-32)$	$27.33 \pm 2.31(26-30)$	$24.33 \pm 2.52(22-27)$	$25.00 \pm 3.74(21-30)$
Post flexion	$25.65 \pm 2.89(21-31)$	$25.67 \pm 1.15(25-27)$	$25.00 \pm 1.58(23-27)$	$24.33 \pm 1.56(22-27)$
Metamorphosed	--	--	-	

Contd..

Table 25. (Contd.)

Body proportion	E. cocosensis	E. latifrons	E. mogkii	E. grandisquamis
EH/HL				
Pre flexion	31.00 ± 1.41 (30-32)	34.00 ± 2.92 (3039)	33.67 ± 2.08 (32-36)	35.00 ± 5.10 (27-41)
Flexion	28.75 ± 3.30 (26-33)	31.33 ± 2.31 (30-34)	27.33 ± 3.06 (24-30)	26.75 ± 2.99 (24-31)
Post flexion	29.00 ± 3.10 (24-34)	$27.67 \pm 2.52(25-30)$	27.00 ± 2.00 (24-29)	$25.50 \pm 1.85(22-28)$
Metamorphosed	--	--	--	--
BP-/BL				
Pre flexion	--	36.00 ± 3.00 (35-39)	39.50 ± 0.71 (39-40)	38.00 ± 6.16 (29-43)
Flexion	--	--	--	--
BP+/BL				
Pre flexion	48.00 ± 4.24 (45-51)	50.75 ± 6.34 (42-57)	42.00	39.50 ± 6.36 (35-44)
Flexion	44.75 ± 4.03 (40-49)	49.33 ± 5.03 (44-54)	54.00 ± 5.20 (51-60)	50.50 ± 5.45 (45-58)
Post flexion	53.88 ± 5.29 (46-63)	49.67 ± 4.16 (45-53)	54.00 ± 3.00 (49-57)	50.67 ± 3.45 (46-54)
Metamorphosed	--	--	--	--
BA-/BL				
Pre flexion	--	27.20 ± 2.49 (25-31)	$17.50 \pm 20.51(30-32)$	29.75 ± 5.44 (22-34)
Flexion	--	--	--	--
BA+/BL				
Pre flexion	43.50 ± 0.71 (43-44)	43.25 ± 4.99 (36-47)	34.00	34.50 ± 4.95 (31-38)
Flexion	42.00 ± 2.94 (39-45)	44.67 ± 5.03 (40-50)	50.33 ± 6.66 (46-58)	45.75 ± 6.18 (41-54)
Post flexion	54.53 ± 4.81 (45-66)	48.67 ± 6.51 (42-55)	54.00 ± 3.39 (49-57)	52.50 ± 4.17 (47-59)
Metamorphosed	--	--	--	--

Contd..

Table 25. (Contd.)

Body proportion	E. cocosensis	E. latifrons	E. mogkii	E. grandisquamis
CD/BL				
Post flexion	$16.53 \pm 4.14(9-26)$	$11.33 \pm 2.52(9-14)$	$14.00 \pm 3.24(10-17)$	$16.00 \pm 3.44(10-20)$
Metamorphosed	--	--		
CL/BL	$6.88 \pm 1.05(5-9)$	$6.33 \pm 0.58(6-7)$	$5.80 \pm 0.45(5-6)$	$6.42 \pm 0.67(5-7)$
Pre flexion	--	-	-	
Metamorphosed				
		--	$26.50 \pm 0.71(26-27)$	
SP/BP	$22.50 \pm 0.71(22-23)$	$25.14 \pm 2.19(22-28)$	$26.67 \pm 2.52(24-29)$	$26(26)$
Pre flexion	$26.00 \pm 0.82(25-27)$	$27.33 \pm 1.53(26-29)$	$25.00 \pm 1.00(24-26)$	$26.00 \pm 1.83(24-28)$
Flexion	$19.65 \pm 4.78(9-28)$	$26.33 \pm 1.53(24-27)$	$24.00 \pm 2.55(21-28)$	$18.58 \pm 4.96(13-28)$
Post flexion	--	--	--	
Metamorphosed	--			

Contd..

Table 25. (Contd.)

Body proportion	E. sechellensis	E. multisquama	B. myriaster	B. pantherinus
SA/BL				
Pre flexion	--	53.00 ± 3.63 (48-57)	39.00	48.33 ± 10.02 (37-56)
Flexion	46.00	45.60 ± 3.65 (41-50)	37.33 ± 1.15 (36-38)	28.67 ± 1.15 (38-40)
Post flexion	42.67 ± 4.18 (35-51)	44.50 ± 0.71 (44-45)	27.66 ± 7.58 (15-42)	34.29 ± 4.23 (29-41)
Metamorphosed	--	--		12.00-1.41 (11-13)
HL/BL				
Pre flexion	--	25.67 ± 1.51 (23-27)	27.00	27.33 ± 3.06 (24-30)
Flexion	27.00	29.20 ± 1.79 (27-31)	32.33 ± 1.15 (31-33)	32.33 ± 0.58 (32-33)
Post flexion	28.56 ± 1.74 (25-31)	31.00 ± 0.00 (31)	26.86 ± 4.94 (17-35)	27.29 ± 1.98 (25-30)
Metamorphosed	--	--		22.00 ± 2.83 (20-24)
SL/HL				
Pre flexion	--	26.67 ± 4.93 (23-35)	47.00	33.33 ± 2.52 (31-36)
Flexion	37.00	35.40 ± 2.70 (31-38)	44.33 ± 1.53 (43-46)	45.67 ± 6.66 (38-50)
Post flexion	$34.00-3.32$ (28-38)	32.50 ± 0.71 (32-33)	46.07 ± 8.66 (36-65)	30.71 ± 3.35 (27-30)
Metamorphosed	--	--		27.00-1.41 (26-28)
EW/HL				
Pre flexion	--	33.50 ± 3.83 (30-41)	--	29.33 ± 8.39 (24-39)
Flexion	25.00	35.40 ± 2.70 (22-30)	23.00 ± 2.83 (21-25)	19.00 ± 0.00 (19)
Post flexion	$24.56-2.79$ (21-29)	25.00 ± 0.00 (25)	16.07 ± 2.93 (12-22)	20.00 ± 3.61 (16-26)
Metamorphosed	--	--		15.00 ± 0.00 (15)

Contd..

Table 25. (Contd.)

Body proportion	E. sechellensis	E. multisquama	B. myriaster	B. pantherinus
EH/HL				
Pre flexion	--	35.83 ± 2.93 (33-41)	--	29.33 ± 4.04 (25-33)
Flexion	28.00	29.40 ± 4.04 (25-35)	25.60 ± 2.83 (23-27)	20.00 ± 2.65 (17-22)
Post flexion	27.33 ± 3.74 (22-35)	$22.50 \pm 0.71(22-23)$	17.69 ± 2.87 (15-23)	21.42 ± 2.88 (17-24)
Metamorphosed	--	--	--	12.50 ± 0.71 (12-13)
BP-/BL				
Pre flexion	--	26.50 ± 3.79 (21-29)		
Flexion	--			
BP+/BL				
Pre flexion	--	38.50 ± 10.61 (31-46)	49.00	43.00 ± 16.37 (25-57)
Flexion	46.00	46.00 ± 3.67 (43-52)	60.66 ± 3.06 (58-64)	55.33 ± 5.51 (50-61)
Post flexion	53.22 ± 3.70 (47-59)	46.50 ± 0.71 (46-47)	74.87 ± 10.28 (51-91)	53.71 ± 3.68 (48-59)
Metamorphosed	--			72.50 ± 0.71 (72-73)
BA-/BL				
Pre flexion	--	22.00 ± 2.58 (19-25)	--	22.00
Flexion	--			
BA+/BL				
Pre flexion	--	29.00 ± 4.24 (26-32)	46.00	47.00 ± 7.07 (42-52)
Flexion	40.00	41.40 ± 5.64 (35-48)	59.33 ± 3.06 (56-62)	51.67 ± 4.16 (47-55)
Post flexion	53.11 ± 3.59 (49-59)	44.00-4.24 (41-47)	74.07 ± 10.58 (51-91)	53.71 ± 3.90 (48-58)
Metamorphosed	--	--		60.00 ± 7.07 (55-65)

Contd..

Table 25. (Contd.)

Body proportion	E. sechellensis	E. multisquama	B. myriaster	B. pantherinus
CD/BL				
Post flexion	$15.33 \pm 2.92(11-19)$	$10.00 \pm 1.41(9-11)$	$22.66 \pm 9.26(9-37)$	$15.86 \pm 3.34(11-22)$
Metamorphosed	--			$22.00 \pm 2.83(20-24)$
CL/BL				
Post flexion	$6.78 \pm 0.67(6-8)$	$5.50 \pm 0.71(5-6)$	$6.40 \pm 1.72(3-9)$	$6.00 \pm 0.58(5-7)$
Metamorphosed	--		$6.00 \pm 1.41(5-7)$	
		$27.00 \pm 1.71(26-29)$	22.00	
SP/BP	--	$28.80 \pm 3.03(25-33)$	$17.67 \pm 6.66(12-25)$	$20.00 \pm 0.01(19-21)$
Pre flexion	27.00	$31.00 \pm 2.83(29-33)$	$9.13 \pm 6.48(1-25)$	$12.86 \pm 4.85(9-23)$
Flexion	$22.44 \pm 4.66(17-29)$			$3.50 \pm 0.71(3-4)$
Post flexion	--			
Metamorphosed				

Contd..

Table 25. (Contd.)

Body proportion	P. brevirictis	P. iijimae	A. tapeinosoma	A. aspilos
SA/BL				
Pre flexion	$49.78 \pm 5.02(43-58)$	$52.57 \pm 7.09(44-62)$	$49.00 \pm 5.78(39-57)$	$34.67 \pm 2.89(33-38)$
Flexion	$42.50 \pm 3.51(39-46)$	$45.00 \pm 3.70(41-50)$	$46.25 \pm 3.20(44-51)$	34.00
Post flexion	$36.89 \pm 5.13(31-44)$	$32.33 \pm 5.07(25-40)$	$35.00 \pm 4.34(29-41)$	$37.00 \pm 2.83(35-39)$
Metamorphosed	$29.00 \pm 2.65(26-31)$	$25.91 \pm 4.11(22-36)$		
HL/BL	$28.33 \pm 2.96(22-32)$	$27.14 \pm 2.73(22-31)$	$25.25 \pm 1.28(24-27)$	$29.00 \pm 1.00(28-30)$
Pre flexion	$27.50 \pm 1.29(26-29)$	$30.43 \pm 1.13(29-32)$	$27.00 \pm 2.45(24-29)$	29.00
Flexion	$27.33 \pm 1.94(25-30)$	$23.25 \pm 2.45(20-29)$	$24.20 \pm 2.11(21-28)$	$28.50 \pm 2.12(27-30)$
Post flexion	$26.67 \pm 2.53(25-28)$	$26.27 \pm 3.44(23-35)$		
Metamorphosed				
SL/HL	$26.22 \pm 4.44(19-32)$	$28.43 \pm 5.16(21-35)$	$25.38 \pm 3.16(21-30)$	$45.00 \pm 5.00(40-50)$
Pre flexion	$30.00 \pm 5.23(26-37)$	$30.57 \pm 3.46(26-36)$	$23.50 \pm 1.29(22-25)$	50.00
Flexion	$25.89 \pm 2.93(21-31)$	$27.08 \pm 2.19(25-31)$	$22.40 \pm 2.30(20-27)$	$49.50 \pm 3.53(47-52)$
Post flexion	$26.00 \pm 1.73(15-28)$	$24.00 \pm 2.28(21-27)$		
Metamorphosed				
EW/HL	$29.56 \pm 4.10(25-36)$	$33.00 \pm 6.93(28-44)$	$27.13 \pm 3.31(23-27)$	$28.30 \pm 1.15(27-29)$
Pre flexion	$27.00 \pm 1.83(25-29)$	$23.71 \pm 0.95(22-25)$	$22.00 \pm 1.83(20-24)$	29.00
Flexion	$21.67 \pm 2.18(19-25)$	$21.33 \pm 2.81(16-27)$	$17.33 \pm 1.75(15-20)$	$19.50 \pm 2.12(18-21)$
Post flexion	$22.33 \pm 3.51(19-26)$	$26.55 \pm 4.41(19-33)$		
Metamorphosed				

Table 25. (Contd.)

Body proportion	P. brevirictis	P. iijimae	A. tapeinosoma	A. aspilos
EH/HL				
Pre flexion	$33.67 \pm 4.09(30-40)$	$36.00 \pm 7.96(29-51)$	$29.13 \pm 1.81(26-32)$	$31.00 \pm 6.92(27-39)$
Flexion	$30.50 \pm 1.91(28-32)$	$25.71 \pm 1.80(22-27)$	$24.00 \pm 9.57(23-25)$	29.00
Post flexion	$24.44 \pm 2.18(21-27)$	$23.08 \pm 3.06(17-28)$	$18.66 \pm 1.94(16-21)$	24.00 ± 2.82
Metamorphosed	$14.33 \pm 2.31(13-17)$	$17.36 \pm 3.14(11-21)$		
BP-/BL			25.80 ± 3.03	
Pre flexion	$32.00 \pm 4.00(28-36)$	$40.17 \pm 6.31(34-49)$		
Flexion				
BP+/BL	$48.83 \pm 6.49(41-58)$	53.00	$31.66 \pm 2.08(30-34)$	$52.60 \pm 3.06(50-56)$
Pre flexion	$51.25 \pm 2.99(48-55)$	$49.71 \pm 2.69(46-52)$	$33.80 \pm 3.50(30-38)$	57.00
Flexion	$55.00 \pm 2.85(51-58)$	$48.58 \pm 4.58(43-59)$	$35.44 \pm 2.70(32-40)$	$50.00 \pm 14.14(40-60)$
Post flexion	$37.00 \pm 3.61(33-40)$	$33.36 \pm 4.20(30.43)$		
Metamorphosed				
BA-/BL	$23.33 \pm 5.86(19-30)$	$30.67 \pm 7.45(23-39)$	$21.20 \pm 5.93(16-30)$	
Pre flexion				
Flexion				
	BA+/BL	$45.17 \pm 8.70(33-53)$	5.10	
Pre flexion	$49.50 \pm 4.43(44-54)$	$46.00 \pm 3.65(41-52)$	$34.50 \pm 3.51(31-38)$	54.00
Flexion	$56.44 \pm 2.86(53-61)$	$50.25 \pm 3.08(46-58)$	$38.33 \pm 3.57(32-44)$	$48.00 \pm 12.73(39-57)$
Post flexion	$37.67 \pm 5.51(32-43)$	$33.73 \pm 4.67(29-45)$		
Metamorphosed				

Contd..

Table 25. (Contd.)

Body proportion	P. brevirictis	P. iijimae	A. tapeinosoma	A. aspilos
CD/BL				
Post flexion	$14.11 \pm 3.10(10-19)$	$13.50 \pm 2.15(9-16)$	$14.33 \pm 1.73(11-17)$	4.00
Metamorphosed	$13.33 \pm 2.52(11-16)$	$11.73 \pm 1.27(10-14)$		
CL/BL	$6.22 \pm 4.41(6-7)$	$5.83 \pm 0.39(5-6)$	$6.00 \pm 0.87(5-8)$	
Post flexion	$6.67 \pm 1.15(6-8)$	$6.18 \pm 0.60(5-7)$		
Metamorphosed				$17.66 \pm 6.51(11-24)$
SP/BP	$22.00 \pm 2.61(19-26)$	$21.00 \pm 2.00(19-23)$	21.00	1.00
Pre flexion	$22.00 \pm 3.37(18-26)$	$25.00 \pm 4.76(20-34)$	$24.50 \pm 1.00(24-26)$	
Flexion	$16.11 \pm 2.93(13-21)$	$13.75 \pm 3.08(10-19)$	$18.56 \pm 4.10(12-23)$	$19.00 \pm 9.90(12-26)$
Post flexion	$18.00 \pm 0.04(14-20)$	$14.64 \pm 5.18(10-29)$		
Metamorphosed				

Contd..

Table 25. (Contd.)

Body proportion	A. elongatus	A. Imperialis
SA/BL		
Pre flexion	$45.00 \pm 2.83(43-47)$	38.96
Flexion	58.00	40.00
Post flexion	$38.20 \pm 8.32(33-35)$	$35.66 \pm 1.74(34-37)$
Metamorphosed		
HL/BL		
Pre flexion	$26.00-0.00(26)$	22.08
Flexion	26.00	22.35
Post flexion		$24.02 \pm 3.54(23-24)$
Metamorphosed	$26.50 \pm 10.61(19-34)$	32.94
	26.00	28.95
SL/HL	$24.40 \pm 3.44(19-27)$	$27.69 \pm 1.82(26-29)$
Pre flexion		
Flexion		
Post flexion		
Metamorphosed	$24.50 \pm 0.71(24-25)$	21.76
	26.00	24.74
EW/HL	$19.00 \pm 1.87(17-21)$	$19.97 \pm 2.88(18-22)$
Pre flexion		
Flexion		
Post flexion		
Metamorphosed		

Contd..

Table 25. (Contd.)

Body proportion	A. elongatus	A. imperialis
EH/HL		
Pre flexion	$25.00 \pm 4.24(22-28)$	23.52
Flexion	28.00	28.95
Post flexion	$22.20 \pm 3.68(18-28)$	21.09 ± 2.99 (19-23)
Metamorphosed		
BP-/BL	25.00	
Pre flexion		
Flexion		
	30.00	46.36
BP+/BL	29.00	$46.59 \pm 1.35(46-48)$
Pre flexion	$29.60 \pm 1.67(28-32)$	
Flexion		
Post flexion		
Metamorphosed	20.00	
BA-/BL		33.77
Pre flexion		40.00
Flexion	21.00	47.00 ± 1.93 (46-48)
BA+/BL	31.00	
Pre flexion	$30.00 \pm 0.71(29-31)$	
Flexion		
Post flexion		
Metamorphosed		

Contd..

Table 25. (Contd.)

Body proportion	A. elongatus	A. imperialis
CD/BL		
Post flexion	$9.60 \pm 0.55(9-0)$	$10.05 \pm 2.26(8-12)$
Metamorphosed		
CL/BL		
Post flexion	$5.60 \pm 1.34(5-8)$	$5.05 \pm 0.39(4-5)$
Metamorphosed		
SP/BL		
Pre flexion	14.00	
Flexion	$21.40 \pm 1.67(19-23)$	$12.46 \pm 0.23(12-13)$
Post flexion		
Metamorphosed		

$B P=$ Body proportion ; HL = Head length ; BL = Body length ; AN = Snout to anus ; SA = Snout to anus ;
SL = Snout length ; EW = Eye width ; EH = Eye height ; BP- = Body depth at pectoral fin base before development of dorsal base ; BP+ = Body depth at pectoral fin base after development of dorsal base ; BA- = Body depth at anus before development of dorsal and anal bases ; BA+ = Body depth at anus after development of dorsal and anal bases ; CD = Caudal peduncle depth ; CL = Caudal peduncle length ; SP = snout to pelvic fin base.
 on Norman (1934, 1966), Hubbs (1945) and Amaoka (1969), is given as Fig. 25. The
 behind. The present study is based on morphometric and meristic characters.

papers on bothid larvae of the Indo-Pacific region.
on the basis of the work on bothid larval fishes by the author as well as from published provides distinct, diagnostic features of the larval forms studied so far, prepared mostly
 could not yield sufficient material both in number and in stages of growth, particularly of

 morphological resemblance with their adults. In early larval stages meristics are also not

Fig. 25 - Current hypothesis for interrelationships of pleuronectiform fishes, from
Hensley and Ahlstrom, 1984 .
$\exists \forall N I \perp \exists$ SdOIN $\exists \forall \perp$
ARNOGLOSSUS
PSETTINA
LOPHONECTES
ENGYPROSOPON
CROSSORHOMBUS
BOTHUS
PARABOTHUS
TOSARHOMBUS
GRAMMATOBOTHUS
KAMOHARAIA
MANCOPSETTA
ACHIROPSETTA
CHASCANOPSETTA
PELECANICHTHYS
LAEOPS
JAPONOLAEOPS
NEOLAEOPS
ASTERORHOMBUS
ヨ甘NIH 109

эヲवІнноя К！！ше」

1969）． urostyle fused with hypural；last neural and haemal spines fused with centrum（Amaoka， present；eyes on left side（except in reversed specimens）the first neural spine absent； forms always dorsal，pectoral radial present；one or two post cleithra on each side；ribs the edge of head，optic chiasma monomorphic，the nerve of the right eye in sinistral
 preopercular margin free，lower jaw generally prominent，lower edge of the urohyal palate；vertebrae never less than 30，caudal vertebrae with well developed apophyses；
 cartilaginous plate placed in advance of the cleithra，its anterior ray well in advance of

 sәsКйdodeлed рәңэәц！К Крремимор column with solid centra co－ossified with arches；posterior caudal vertebrate with
 supraoccipitals，interorbital bar mainly formed by the frontal of the ocular side，pectoral more or less protractile，bordered by pre－maxillaries；parietals separated by

 ıou pue әdm！

 meristic and morphometric characters of adults observable only in advanced stages of

form other Pleuronectiformes. in combination with other characters or alone help to distinguish the larvae of bothids basipterygial processes or in any one of them (Fig. 26). The aforesaid characters either process ; the spines may or may not be present on cleithra, urohyal or posterior the cartilaginous pubic bar while Ahlstrom et al., (1984) termed it as basipterygial

 either side as larvae grow ; right arm of Y attached to the cleithra, while left arm
 cluster of chondrioblasts (cells) which transform into Y-shaped processes attached to
 side; basipterygia attached to the posterior lower middle faces of the cleithra between and Norman, 1934) placed in advance of the cleithra; presence of post-cleithra on either (Ahlstrom et al., 1984; sciatic portion - Hensley, 1977; cartilaginous plate - Kyle, 1913 advance of the first ray of the right fin; pelvic fin radials attached to the cleithra; a urohyal pelvic- fin radial asymmetrical in advanced larval stages with its anterior 2 to 3 rays in which 15 are branched and are borne on hypural plates, pelvic fin with six rays, left articulated through a system of pterygiophores and baseosts; caudal fin with 17 rays, of
 compressed body; continuous median fin folds without spinous rays; the forward

Only one genus has hitherto been reported from the Indo-Pacific region (Amaoka, 1970). posterior basipterygial processes. The $2^{\text {nd }}$ dorsal ray is moderately or slightly elongated

 with fin rays, SP-Spines, UH-Urohyal, CL-Cleithra

 the pelvic fin radials are asymmetrical and in many cases that of the left side elongated and basipterygials may or may not be present．The second dorsal ray invariably long ；

әeu！чłоя 乙 К！！шeł qns
Fig． 27 －Larva of Tapeionopsetta ocellata， 59.0 mm SL，from Amaoka， 1970.

ocellata（Gunther）Fig． 27 （from Amaoka，1970）．
Dorsal fin rays 85－95，anal fin rays 71－81；vertebrae 10＋30－32 Taeniopsetta
though the lowermost one is rudimentary.
The spines arranged subvertically along the margin of head，well developed，
reddish and yellow blotches and bands on the body and head（Ahlstrom et al．，1984）． orange spots in live larvae along the bases of the dorsal and anal fins and orange，
 plate－like and serrated，three spines on head ； $1^{\text {st }}$ ray of the right ventral fin opposite

 みәq！！епәsdo！uәe」 snuәэ
 Thin, long and leaf-like Caudal pterygiophore
Short stout leaf-like Long based Short based Left pelvic fin radial asymmetrical $2^{\text {nd }}, 3^{\text {rd }}$ and $4^{\text {th }}$
Not very long $2^{\text {nd }}, 3^{\text {rd }}$ elongated
$2^{\text {nd }}, 3^{\text {rd }}$ and $4^{\text {th }}$ Very long about $1 \frac{1}{2}$ times the body length $2^{\text {nd }}$ Elongated dorsal rays On urohyal and cleithra On cleithra

Absent

On discoid scutes in different parts of the body
Absent On median fin rays On posterior basipterygial processes On urohyal, cleithra and posterior basipterygial processes
On urohyal and posterior basiptergial processes Spines
Present Amaoka, 1969).
17 genera of adults are reported from the Indo-Pacific region (Norman,1934,

Parabothus polylepis（Alcock）
vertebrae 10＋29－31 including－－urostyle（from Lalithambika Devi，1986） Fig． 28

EL－ZL sKed u！y feue＇t6－Z6 sked u！y iesıō available from the Indo－Pacific region．

 species from the Japanese waters（Amaoka，1969），but only post larvae of one species characteristic．
intestinal loop near its middle and the late differentiation of pelvic fin rays seem to be basipterygial process extending to the ascending loop of the intestinal coil；a bend in the pelvic fin radial with anterior three rays in advance of the right fin；the posterior

ueman snyłoqeлed snuәэ

6．3．1．Body deeply ovate，vertebrae $10+(25-32)$

6．2．1．Body lancet－shaped，vertebrae $10+(25-27)$
6．2．Middle level of the intestinal loop （ $8 乙-\angle Z$ ）＋0レ әедqәцәл＇рәңебиоןә

$$
10-12+(26-36)
$$

Body slender，moderately elongated or oval；urohyal
appendage in early stages in one species，
vertebrae 10＋（23－27） appendage in early stages in one species，

Body laterally compressed ；mostly diaphanus urohyal

Chascanopsetta
Laeops
Bothus
sпqшочлодәңs \forall
sпчıояодешшел
Arnoglossus
Psettina
Engyprosopon

Synopsis to species
and two species from the Japanese waters (Amaoka, 1969).

axis; swim bladder does not displace the contour of the alimentary canal. fin; I iver not massive and its dorso-ventral axis more than twice the anterior posterior not distinctly longer than the other rays; three left pelvic fin rays in advance of the right scales along the bases of the dorsal and anal fins, one scale per ray; $2^{\text {nd }}$ dorsal fin ray spines on posterior basipterygial process and that too only on the left ramus, ctenoid

$\varepsilon 1$

 specimens both in number as well as in different stages of development in the plankton

」ə૫łun๖ uodosoıdイ6иヨ snuə๑

Fig． 33 －Larva of C．kobensis， 13.8 mm SL，Fukui， 1997

لـ！

 Spines on urohyal 5-19, cleithra absent and posterior basipterygia processes 14-26 8.5. Fig. 38a Spines on urohyal 20-36, cleithra - o- and basipterygial processes 2/2-11/11 which end in spine 7.2. Fig. 37a Spines on urohyal 2-24, cleithra 2-9 and posterior basipterygial processes 5-26 7.1. Fig. 36a Spines on urohyal 6-29, cleithra 1-10 and posterior basipterygial processes 8-27 6.2. Fig. 35a Spines on urohyal 9-19, cleithra 1-6 and posterior basipterygial processes 20-49 Spines on urohyal 20-42, cleithra3-9 and posterior do not juxtapose 4.4 The spines on the right and left ramusbelow the intestinal loop Except above process curves dorsalwards and anteriorwards
 process ends in spine 4.4\&6.3 On cleithra ... 5
The distal end of the posterior basipterygial Spines absent
On cleithra On urohyal and posterior basipterygial process 5 t.. On urohyal, cleithra and posterior basipterygial Spines present

Synopsis to species

species from Japan (Amaoka, 1969), of which two species are common.
15 species of adults are reported from the Indo-Pacific (Norman,

> Engyprosopon character or ends straight in a spine.
ascending loop of the intestinal coil and curves dorsalwards which is the typical
absent in some species. Posterior basypterygial process reach upto the level of

 шолиן

Lalithambika Devi,1986) Fig. 39 (from

Lalithambika Devi,1986) Fig. 38 (from

Lalithambika Devi, 1986) Fig. 37 (from

Lalithambika Devi, 1986) Fig. 36 (from

Lalithambika Devi, 1986) шол) $\varsigma \varepsilon$ •ـ

Lalithambika Devi, 1986)
8.4
Fig.

8.3

Brownish black stellate pigments over
the whole body
Fin rays differentiate very late
Pterygiophores of the median fin rays
differentiate early....... Caudal formation stage prior to flexion stage basipterygial processes 6-20 and ends in spine.

 basipterygial processes curve dorsalwards and anteriorwards below the intestinal loop,

әnbsəu!fey ‘snчłog snuəэ

 vertebrae10+(29-30) ... B. mancus (Broussonet) Lalithambika Devi, 1986) Dorsal fin rays 96-103, anal fin rays 74-81,
 vertebrae 10+(26-29) B. myriaster Dorsal fin rays 86-92 (95), anal fin rays 62-71; Swim bladder larger than the eye diameter 5.3 Swim bladder smaller than the eye diameter 5.1 Late development of fin rays and pelvic fin 4.2 Jaws devoid of teeth .. 5.2 Jaws carry small teeth .. 4 Teeth

Deeply ovate body.

 Synopsis to species those of Norman (1934) and 3 species from the Japanese waters (Amaoka, 1969) which are similar to body and fins (Ahlstrom et al., 1984). species, B. myriaster (Amoaka, 1964) and B. mancus became heavily spotted over the notochord; later larval stages unpigmented, except in transforming specimens of some

> polyophthalmus (Bleeker) Vertebrae 10+27.,.. Grammatobothus Dorsal fin rays 77-86, anal fin rays 61-69;
 metamorphosis. present on the urohyal and posterior basipterygial processes in larvae nearing

Fig. 42 - Larva of B. mancus, 18.9 mm SL, from Fukui, 1997.

ray long and stout. Brown pigment spots on the abdomen over the swim bladder middle of intestinal coil; short but asymmetrical left pelvic fin radial and rays. $2^{\text {nd }}$ dorsal

еуеиед snquoчıоләs snuəs
Fig. 44 - Larva of Grammatobothus polyophthalmus, 27.1 mm SL, from Fukui, 1997.

$\stackrel{\stackrel{\rightharpoonup}{+}}{\stackrel{\rightharpoonup}{+}}$

Synopsis to species

lines, and along the horizontal septum.
being devoid of spines.
(Jordan and Starks)

three species from Japanese waters (Amaoka, 1969) of which one species is common.

bladder (gas bladder, Ahlstrom et al., 1984) in series along the dorsal and ventral mid

and restricted to proximal half of the posterior basipterygial processes, the distal half basipterygial processes and the absence of spines on cleithra; the spines late to appear

 sqqnн еи! „әsd snuәכ元

27)P. brevirictis (Alcock) Lalithambika Devi, 1986)
2.2.2. Dorsal fin rays $86-92$, anal fin rays $68-71$; Fig. 47 (fromvertebrae

-(696l ‘еуоеш) sıәңем әsәueder

 ornamented and persists throughout the larval life ；spines absent on the urohyal，
(Ahlstrom et al., 1984).

 ләуәә日 snssoן6ouィ甘 snuәэ

－

(986ا ' Dorsal fin rays (94) 98-101 (106), anal fin rays Fig. 55 (from
(74)76-79(82); vertebrae 10+(32-35) Lalithambika Devi,
 Dorsal fin rays 77-83, anal fin rays 56-63; Fig. 54 (from

 vertebrae 10+(26-29)......A. aspilos aspilos (Bleeker) Lalithambika Devi, 1986) Dorsal fin rays 72-81 (84), anal fin rays 52-67; Dorsal fin rays (83) 93-97 (98), anal fin rays 65-74;
vertebrae 10+31 A. tapeinosoma (Bleeker) Teeth present 6.5 Teeth present but few in number 6.4 Teeth present only during preflexion stages 6.2 Teeth absent 6.3
 hypural plates differentiated and also late The urostyle remaining straight even after the
 Presence of dorsal and anal rays and pelvic
fin rays from very early stages Elongated dorsal ray with melanophores
Presence of dorsal and anal rays and pelvic
 Elongated dorsal ray string - like and bears Two elongated dorsal rays 5.3
 Elongated dorsal ray about one time the body Elongated dorsal ray -Gsциed ұиәәән! и! between the distal ends of the pterygiophores and Discoid scutes with circlet of 9 spines each in Spines absent
 6uol łe|f ‘u!чł Кpog

S ε

פ

- 9861

9ε
 (76) 85-93; vertebrae 11-12+(39-41)

 Dorsal fin rays 100-106, anal fin rays 82-85 vertebrae 10+35L. guentheri, Alcock Dorsal fin rays 96-102, anal fin rays 73-81; vertebrae 11+35L. macrophthalmus Alcock Lalithambika Devi, 1986) Dorsal fin rays 85-98, anal fin rays 67-75; Fig. 58 (from

Synopsis to species

 Amaoka (1969). Indo-Pacific (Norman, 1934) of which 2 species were reported from Japanese waters by over the body and median fins (Ahlstrom et al., 1984) 8 or 9 species of adults from the with 3 anterior rays lying in advance; melanistic blotches forming an irregular pattern spineless urohyal, cleithra and basipteygial processes; asymmetrical left pelvic fin radial following the trailing abdomen up to the anus; liver not massive as in other bothids ; distinct and opens backwards; elongated dorsal ray at the anterior end of the dorsal fin

[^0]:

[^1]:

[^2]:

[^3]:

[^4]:

