Evolution to decay of upwelling and associated biogeochemistry over the southeastern Arabian Sea shelf

G. V. M. Gupta1, V. Sudheesh1,2, K. V. Sudharma1, N. Saravanane1, V. Dhanya1, K. R. Dhanya1, G. Lakshmi1, M. Sudhakar1, and S. W. A. Naqvi2

1Centre for Marine Living Resources and Ecology, Ministry of Earth Sciences, Kochi, India, 2Now at Department of Marine Biology, Microbiology and Biochemistry, School of Marine Sciences, Cochin University of Sciences and Technology, Kochi, India, 3National Institute of Oceanography, Council of Scientific and Industrial Research, Dona Paula, India

Abstract
Observations along 10 shelf transects in 2012 near 10°N in the southeastern Arabian Sea revealed the usual warm oligotrophic conditions during the winter monsoon and upwelling of oxygen-deficient, nutrient-rich cool water during the summer monsoon (SM). By changing an oligotrophic to a nutrient-replete condition, the upwelling is the major process that regulates the biogeochemistry of this shelf. Its onset is perceptible at 100 m depth between January and March. The upwelling reaches the surface layer in May and intensifies during June–July but withdraws completely and abruptly by October. Despite the nutrient injection, the primary production during SM, integrated for euphotic zone, is comparable to that during the preceding spring intermonsoon (SIM). Again, as usual, the high oxygen demand coupled with low concentration in the upwelled subsurface waters causes severe oxygen depletion below the shallow pycnocline. The oxygen concentrations/saturations of 2012 on the midshelf are similar from those of mid-1958 to early 1960, except for marginally higher values during the peak upwelling period due to relatively weak upwelling in 2012. This implies little anthropogenic influence on coastal hypoxia unlike many other coastal regions. In 2012, the inner shelf system shifted from net autotrophy in SIM to net heterotrophy in SM but on an annual basis it was net autotrophic (gross primary production to community respiration ratio, GPP/R:1.11 ± 0.84) as organic production exceeded consumption.

1. Introduction
This is the first published modern Kochi Time Series (KoTS) of nutrients and associated variables for the not well-studied upwelling off Kochi (Cochin; ~10°N), southwest India and is the second modern one for the west coast of India after Candolim Time Series (CaTS, since 1997) off Goa (15.5°N). Perennial upwelling is associated with the eastern boundary currents in the Pacific (Humboldt and California currents) and the Atlantic (Benguela and Canary currents). The surface currents flow toward the equator as part of the large-scale subtropical gyres as they do also during the summer monsoon (SM), but differs in the southeastern Arabian Sea (SEAS) in that it is not only driven by local winds but is also remotely forced [Johannessen et al., 1987; Shetye et al., 1990] and is quite rainy.

The seasonal reversal of winds and currents results in large changes in the mixed layer dynamics of the northern Indian Ocean, in particular, the Arabian Sea (AS), making it highly productive. During SM, both the western and eastern AS, especially the former, experience upwelling that brings cold, low oxygen and nutrient-rich waters to the surface. During winter monsoon (WM), convective mixing enhances nutrient levels in the euphotic zone leading to enhanced biological production in the northern AS [Madhupratap et al., 1996; Gardner et al., 1999; Prasanna Kumar et al., 2001; Wiggert et al., 2005]. The extensive oxygen minimum zone (OMZ; O2 < 20 μM) in the open ocean is maintained by high O2 demand for degradation of particles sinking from the surface layer and limited O2 supply through horizontal advection. The OMZ in the AS is among the largest in the world, and its extension to the continental shelf during the upwelling period results in severe coastal hypoxia causing drastic changes in the biogeochemical properties including the emission of greenhouse gases [Naqvi and Jayakumar, 2000]. Naqvi et al. [2005] have identified the western continental shelf of India as one of the “hot spots” for oceanic N2O emissions arising from seasonal anoxic/hypoxic events. The upwelling greatly influences the composition and abundance of marine life including fish eggs and larvae [Bakun and Parrish, 1982; Balan, 1984; Johannessen et al., 1987; Naqvi et al., 2006]. Hence, the
development of anoxia/hypoxia in shelf waters associated with upwelling is a major ecological event [Naqvi and Jayakumar, 2000; Rabalais et al., 2001].

Time series observations are essential to understand seasonal and interannual variability of oceanographic processes and their response to human perturbations. Issues of particular concern are warming, eutrophication, deoxygenation, and acidification of seawater and their impacts on biogeochemical fluxes and ecosystem functioning. There is a dearth of long-term data from fixed sites in the Indian Ocean as compared to the Pacific and the Atlantic. However, the first time series study along the Indian coast was carried out by Banse [1959, 1968] off Kochi during 1958–1960. His study provided insight into the influence of SM on the hydrography and water composition of the SEAS. Banse opined that upwelling and sinking were mainly caused by the currents and not the winds, as reported earlier by Rama Sastry and Myrland [1959]. Banse [1959] also reported 4–5°C variation in sea surface temperature with annual maximum during April–May and minimum in July–August based on 16 years of surface data in the sea off Calicut (~11.3°N, SEAS). Subsequent studies aimed at explaining the physical dynamics of upwelling [Sharma, 1978; Johannessen et al., 1987; Schott and McCreary, 2001; Shankar et al., 2002; Shenoi et al., 2005; Jayaram et al., 2010], but its biogeochemical effects were not studied in detail. Subsequently, the two other time series measurements being made off Goa since 1997 (Candolim Time Series, CaTS) in the AS [Maya et al., 2011] and off Visakhapatnam (since 2007) in the Bay of Bengal [Sarma et al., 2013] revealed regional variability of the response of tropical seas to long-term changes in the climate. As the SEAS experiences conditions that are different from these shallow time series sites, sustained observations were initiated off Kochi and named as Kochi Time Series (KoTS). The data collected in 2012 are used here to address (i) seasonal evolution and termination of upwelling process, (ii) distribution of nutrients in response to the changing physical and biogeochemical processes, (iii) comparison of O2 saturations with historical data, and (iv) net ecosystem metabolism.

2. Study Area

The biogeochemistry of the SEAS is closely linked to the seasonally changing coastal currents by northward and southward flowing West India Coastal Current (WICC) during WM and SM, respectively. The transition seasons viz., spring intermonsoon (SIM) and fall intermonsoon (FIM) exhibit mixed signals between SM and WM. The northerly current during WM carries low-salinity water originating in the Bay of Bengal fortifying stratification in the upper water column. During SM the upwelling-induced nutrient enrichment leads to high biological production over the western continental shelf of India. One of the important aspects of the SEAS is the seasonal hypoxia/anoxia arising from increased oxygen demand for mineralization of organic matter following high surface production. Many small rivers like the Mandovi and Zuari in Goa, the Kali in north Kanara, and the Nethravati in south Kanara flow across the coastal plain and discharge into the AS. The Cochin backwaters (CBW), the largest estuarine system of the southwest coast of India, is connected to the SEAS. CBW receives 1.04 × 10^5 m^3 of industrial and 260 m^3 of domestic wastes per day without treatment [Balachandran et al., 2005] and is highly heterotrophic in nature [Thottathil et al., 2008; Gupta et al., 2009]. This is expected to influence the biogeochemistry of the adjoining sea considerably.

3. Materials and Methods

Time series sampling was carried out along a transect of the shelf off Kochi (KoTS, Figure 1) 10 times from January to December 2012 (approximately 30–45 days interval) on board Fishery Oceanographic Research Vessel (FORV) Sagar Sampada. Six stations (bottom depth 13, 20, 30, 40, 50, and 100 m) were occupied for collections from standard depths (surface, 10, 20, 30, 40, 50, 75 and 100 m). On most occasions, sampling began in the morning (station 1) and was completed in the evening (station 6). The details of sampling dates and phase of the tide are given in Table 1. Station 1 is located in the dredged navigation channel for the Cochin port which connects the estuary and the sea. For convenience, the continental shelf is classified into four regions with station 1 being nearshore, stations 2 and 3 over inner shelf, stations 4 and 5 over midshelf, and station 6 representing the outer shelf.

Temperature and salinity profiles were recorded using a conductivity-temperature-depth (CTD) profiler (SBE 11 Plus, Sea-Bird, Redmond, WA, USA). Water was collected using Niskin samplers (5 L) mounted on the CTD rosette. Samples for dissolved oxygen (O2) were collected in 60 ml glass bottles, fixed with 0.5 ml
each of Winkler reagents and titrated onboard against 0.001 N thiosulphate with starch-based visual end point detection [Grasshoff et al., 1999]. Assuming that NO2/C0 levels would be generally low, sodium azide was not added for preventing interference with O2 [Wong, 2012]. The small amount of O2 carried by the reagents was not considered. The detection limit was about 2 μM. O2 saturation was computed following Garcia and Gordon [1992]. Samples for nutrients (nitrate, nitrite, ammonium, phosphate, and silicate) were analyzed colorimetrically (Evolution 201, Thermo, USA) within a few hours of collection on board the ship following standard procedures [Grasshoff et al., 1999]. The analytical precision expressed as standard deviation for nitrate, nitrite, ammonium, phosphate, and silicate were ±0.05, ±0.01, ±0.07, ±0.02, and ±0.03 μM, respectively.

Samples (2 L) for chlorophyll a (Chl a) estimation were filtered onboard through Whatman 47 mm GF/F filter (0.7 μm) under gentle vacuum (≤50 mm Hg) and kept at −20°C till the analysis. Chl a in the filters were extracted with 90% acetone at 4°C in the dark for 12 h and measured fluorometrically [Joint Global Ocean Flux Study, 1994]. Biovolume of surface mesozooplankton in samples collected using Bongo net (300 μm) was estimated on board by the displacement method after removing surplus water by absorbent paper.

Gross primary production (GPP) and community respiration (R) were measured in situ by the O2 method with light and dark bottles (LB and DB, respectively) collected from and incubated at the surface, 10, 20, and 30 m at a station located ~25 km away from the shore (close to station 3), where depth is ~33 m, referred to as the PP station. These incubations were done on the day following regular section work. However, nutrients and Chl a data collected at station 3 on the preceding day of incubation have been used to explain the variations in metabolic rates assuming insignificant variation between successive days. Water samples were collected in two sets (as LB and DB) of three BOD (biological oxygen demand) glass bottles (300 ml); each were attached to a polypropylene rope and incubated in situ for 24 h (0600 to 0600 h). The dark bottles were wrapped with aluminum foil and black tape. The O2 was analyzed immediately after retrieval on board the ship. The net community production (NCP), community respiration (R), and gross primary production (GPP) were calculated from O2 changes (with "I" denoting initial O2), by LB − I, I − DB, and NCP + R, respectively. The metabolic rates measured as O2 were converted to carbon equivalents assuming a photosynthetic quotient of 1.2 and respiratory quotient of 1 [Laws, 1991]. Net primary production (NPP) in the same samples was also measured in situ as 14C uptake [Joint Global Ocean Flux Study, 1994]. Paired LB and DB Nalgene polycarbonate
bottles with 250 ml sample each were inoculated with NaH\(^{14}\)CO\(_3\) (activity 5 μCi ml\(^{-1}\), Bhabha Atomic Research Centre, India; with 1 ml of this strength per bottle) and incubated along with BOD bottles for 12 h during daytime. On retrieval, water samples were immediately passed through Whatman 25 mm GF/F filter (0.7 μm) under gentle vacuum (<50 mm Hg) in diffused light and kept at −20°C until analysis. The excess labeled dissolved inorganic carbon on the filter was removed by exposing them to fumes of concentrated hydrochloric acid for 1 min. The filters were then placed in scintillation vials with 5 ml cocktail (dioxane). Radioactivity was measured by a liquid scintillation counter (Beckman Coulter LS6500). NPP rates were calculated based on a 12 h photo period and expressed as mg C m\(^{-3}\) d\(^{-1}\). A Secchi disc was used to estimate the

Figure 2. Vertical profiles of temperature, salinity and dissolved oxygen at (a) station 1 (nearshore), (b) station 3 (inner shelf), (c) station 5 (midshelf), and (d) station 6 (outer shelf) during summer monsoon months.
euphotic depth (2.8 × Secchi depth) [Richard et al., 1982] which was rounded off to the nearest sampling depth to calculate photic column integrated metabolic rates.

4. Results
4.1. Hydrography
The sea surface temperature (SST) exhibited a progressive warming between January (>28°C) and April (>30°C) during spring intermonsoon (SIM, March–April). By May, the waters over the inner shelf began to cool and cold waters persisted through the summer monsoon (SM, June–September). The mixed layer depth (MLD; 0.2 density
difference from surface) was thin (up to 20 m) during SM (Figure 2) and deepened (up to 50 m) during winter monsoon (WM, November–December, Figure 3). The depth of the 26°C isotherm (D_{26}) generally followed closely with MLD (Figure 4). Therefore, D_{26} is utilized here to describe the progression of upwelling. D_{26} was located at 100 m over the outer shelf during January, but it shoaled progressively to 80 m by March, remained invariable up to April but shoaled up to 10 m by July. Thereafter, it showed downward movement to ~70 m by October before its complete disappearance in November. The observations reveal the following: (i) initiation of upwelling in the deeper layers during January–March and its progression to the upper layers during June–September, (ii) sharp withdrawal of upwelling during October–November.

While the intensification of upwelling took about 4 months from April to July, its collapse happened within a month. The D_{26} appeared over the midshelf only by the end of April and over the inner shelf by the middle of May indicating that the advancement of upwelling between outer and midshelf took longer time (100 days at 0.22 km d$^{-1}$) than from middle to inner shelf (15 days at 1.29 km d$^{-1}$). The rate of upwelling in terms of vertical upliftment of isotherms is on the order of 1.3–1.9 m d$^{-1}$. This is in agreement with ~1.5 m d$^{-1}$ reported earlier for the SEAS by Johannessen et al. [1987]. The upwelling is generally slow to begin with (March–April), but it gets momentum by May as D_{26} shoaled from about 45 m to 15 m and extended ~30 km toward the coast. By July, the D_{26} has reached the surface close to the coast indicating the complete and peak spreading of upwelling to the entire shelf region, which sustained up to August. Similarly, the withdrawal of upwelling followed a sequence with the sharp withdrawal of D_{26} from the nearshore region to midshelf during August–September and finally from the outer shelf by end of October. Consequently, SST increased by 2–3°C during November–December.

During WM and the beginning of SIM, the surface waters over the shelf off the southwest coast of India are advected from the Bay of Bengal [Prasanna Kumar et al., 2001] which are warm (>28°C) and relatively fresh (salinity < 34.5). Parallelly, the outer shelf experienced the intrusion of Arabian Sea High-Salinity Water (ASHSW) at depth through upwelling resulting in stratification of the water column (Figures 3 and 5). In April the ASHSW waters advanced into the midshelf through upwelling, and the Bay of Bengal Low-Salinity Water (BBLSW) had completely withdrawn from the outer shelf and even started withdrawing from the middle and inner shelves. This indicates that the displacement of BBLSW from the SEAS under the advent of upwelling progresses from the outer shelf to the inner shelf. A clear uplift of 35.5 isohaline from ~80 to 60 m (March–April) and further to ~15 m in May is due to the penetration of ASHSW into the shelf region through upwelling.

The monsoon precipitation considerably lowered the surface salinity to < 34 (June–September) and established strong stratification. According to India Meteorological Department [2013], 2012 was an Indian Ocean Dipole (IOD) year with a relatively short duration during July–October; the IOD index was near neutral during June–July and positive from the beginning of August that resulted in deficient monsoon rainfall over the
Indian subcontinent during the first half of the season followed by neutral and above normal rainfall during August and September, respectively. Consistent to this, the study region did receive considerable rainfall just before our June and September observations, but the period preceding the July observations was largely dry when the upwelling was at peak. This pattern of rainfall is clearly reflected in the surface salinity distribution during SM (Figures 2 and 5) with the lowest recorded in September.

4.2. Monthly Variations in O$_2$, Nutrients, and Chl a

The distribution of O$_2$ (Figures 2 and 3 and Figure S1 in the supporting information) and nutrients (Figures 6, 7, and S2–S6) showed marked seasonal variations. The high O$_2$ (>200 μM) and low nutrients (NO$_3$: <0.5 μM; PO$_4$: 0.2–0.3 μM) in the upper 50 m in January indicate well-oxygenated, oligotrophic condition as stratification limits upward flux of nutrients. Although the conditions in the euphotic column showed little change up to April, upwelling brought low-O$_2$ (~70–80 μM) and high-nutrient waters at depth over the outer shelf. The low-O$_2$ and high-nutrient water continued to advect toward the inner shelf and spread over the entire shelf region by September. The maximum effect of upwelling was seen between May and June which turned the subsurface waters (>30 m) hypoxic (<50 μM) and nitrate rich (>10 μM). Ammonium concentrations were <0.5 μM at all depths between the outer and midshelf regions (Figure S4). Similar to N and P, silicate concentration also showed enrichment during SM upwelling (Figure S6). These seasonal sequences of subsurface changes in hydrography, O$_2$, and nutrients of 2012 are similar to the results by Banse [1968], Rao and Ramanirtham [1976], Sharma [1978], Menon and George [1977], and Johannessen et al. [1987]. The impact of upwelling was severe in surface waters of coastal stations (stations 1 and 2) in June, where the O$_2$ saturation was at its minimum (6.75% and 15.6%, respectively) and nutrient levels were at their maxima. These stations are affected by the monsoon discharges from the Cochin estuary, but as the sampling was conducted during the high tide in June (Table 1), the influence of runoff in the nearshore region is not expected to be very high. The atmospheric fallout of N through rainfall (~4 μM of nitrate) [Naqvi et al., 2000] also adds to the mixed layer concentrations, but this is much smaller relative to the supply through upwelling. High concentrations of nitrite in the nearshore and inner shelf regions in June (up to 3.2 μM, Figure 6) are associated with a corresponding increase in N$_2$O (164 nM, Sudheesh et al., in preparation, 2015). The minimum O$_2$ concentration of 7 μM (Figure 2) is expected to inhibit denitrification in the water column, but it is most likely that denitrification occurred in the anoxic seabed. Primary nitrite maximum was seen mostly at the bottom of euphotic zone, for example, at station 3 intermediate depths during SM (Figure 6) and close to the bottom during nonupwelling periods (Figure 7) due to oxidation of excretes of secondary producers and nitrification of ammonia. Similar maximum was also observed over the midshelf off Kochi during 1958–1960 (K. Banse, personal communication, 2014). The transition in October was distinguished by a sharp decline in nutrient

![Figure 5. KoTS monthly variation in salinity for all stations.](image-url)
concentrations (NO$_3$: 0.49 ± 0.5 μM, NO$_2$: 0.16 ± 0.2 μM; PO$_4$: 0.29 ± 0.1 μM; Figure 7) and rise in O$_2$ level (>150 μM; Figure 3) following the abrupt withdrawal of upwelling. Subsequently, the MLD deepened and the O$_2$ concentrations increased further to ~200 μM.

The nutrient ratios especially Si/P (9.2 and 8.0) and Si/N (0.54 and 0.68) remained almost similar between summer upwelling (June–September) and the rest of the year (Figure 8), but the N/P ratio was high and close
Figure 7. Vertical profiles of nutrients and chlorophyll a at (a) station 1 (nearshore), (b) station 3 (inner shelf), (c) station 5 (midshelf), and (d) station 6 (outer shelf) during months other than summer monsoon.
to the Redfield value during upwelling (13.6) compared to nonupwelling period (8.8) suggesting nitrogen deficiency during the latter period. Among the nonupwelling seasons, the N/P ratios during SIM (9.7) and WM (9.6) were practically undistinguishable and higher than those during FIM (7.3).

The Chl a concentration was low during January–March (0.01–0.62 mg m$^{-3}$; Figure S7) but increased in April due to the proliferation of Trichodesmium erythraeum [Jabir et al., 2013] under the prevailing calm, warm, and bright sunlight conditions. Subsurface chlorophyll maximum (SCM) was continually seen during this period (Figure 7) supported by deeper photic depths and nutrients injection (at the outer shelf) following upwelling. During this period, Chl a increased to 2.59 mg m$^{-3}$ in nearshore waters along with nutrients (NO$_3$: 0.83 μM and PO$_4$: 0.52 μM). Apart from the intraannual variation, the recent satellite-based studies of Jayaram et al. [2010]

![Figure 8](image1.png)

Figure 8. Variation in stoichiometric ratios of nutrients between summer monsoon and the rest of the year.

![Figure 9](image2.png)

Figure 9. Time series changes in metabolic rates (a) Chl (mg m$^{-3}$), (b) NCP, (c) GPP, (d) NPP, (e) Community Respiration, (f) trophic status represented by GPP/R ratio, and associated changes like (g) N/P ratio at PP station (refer Figure 1). All metabolic rates are expressed in mg C m$^{-3}$ d$^{-1}$.
and Shalin and Sanilkumar [2014] also reported significant interannual variation in Chl a concentrations in the SEAS chiefly due to variation in upwelling intensity. With the onset of SM, since nutrients were adequately available, the SCM disappeared, especially over the inner shelf, as the enhanced phytoplankton production is limited mostly within the shallow photic depth (~10 m; Figure 6) due to the monsoon cloud cover. High Chl a levels were observed in the upper 20 m beyond the inner shelf during July when the region experienced completely dry conditions (at least for 10 days) prior to the sampling period with no cloud cover resulting in deeper euphotic zone as compared to June. Thus, the availability of nutrients and sunlight promoted phytoplankton growth within the euphotic column in July. The withdrawal of SM in October quickly reduced the chlorophyll levels to the pre-SM levels culminating in oligotrophic conditions by December (Figure 7). The environmental conditions during WM were almost similar to those during SIM, and the deeper photic depths favored reappearance of SCM, albeit with low magnitude that the oligotrophic condition supported proliferation of relatively less intense *Trichodesmium* blooms in November–December.

4.3. Plankton Metabolic Rates

The plankton production and respiration rates along with N/P ratios at the PP station are shown in Figure 9. The net community production (NCP) was positive between January and May, but from June through October the NCP was negative between 10 and 30 m depths. In November, the NCP was negative up to 10 m and positive below this depth, but in December, the NCP was negative in the entire water column. The Chl a maximum at the bottom, in April, was responsible for the high NCP and GPP rates but did not affect the NPP. The NPP rates during SIM were more than double of that during WM, whereas it was the other way around for respiration (R) rate, which was the highest in the upper 10 m during July–September. The NCP, GPP, and NPP rates in the photic zone (within the upper 10 m) during SM responded positively to the increase in Chl a and exhibited similar maxima. The respiration rate in the surface layers also showed a twofold to threefold rise during SM though it was lower than the GPP. The respiration rate during October–December was almost twice that of pre-SM rates. The photic column integrated Chl a, GPP, and NPP, represented as Chl$_{p\text{-int}}$, GPP$_{p\text{-int}}$, and NPP$_{p\text{-int}}$, respectively, and the column-integrated R, represented as $R_{c\text{-int}}$, are presented in Figures 10 and 11. NPP$_{p\text{-int}}$ increased progressively from March to May before peaking in June following upwelling and increase in Chl$_{p\text{-int}}$. The NPP$_{p\text{-int}}$ during WM was comparable to that in April and July, but the corresponding Chl$_{p\text{-int}}$ showed significant variation. Similar to NPP$_{p\text{-int}}$, GPP$_{p\text{-int}}$ in WM was almost comparable with that during July, whereas the $R_{c\text{-int}}$ during the former period was higher than that during the latter period. NPP$_{p\text{-int}}$ was at its minimum in...
October (100 mg C m$^{-2}$ d$^{-1}$) coinciding with the GPP$_{p-int}$ minimum (780 mg C m$^{-2}$ d$^{-1}$) following the cessation of upwelling, whereas the maxima in these properties did not coincide with the former occurring in June (1290 mg C m$^{-2}$ d$^{-1}$) and the latter in April (4240 mg C m$^{-2}$ d$^{-1}$). The highest R_{c-int} was recorded in June coinciding with the highest NPP$_{p-int}$ and GPP$_{p-int}$.

5. Discussion
The upwelling along the west coast of India is forced not only by local winds but also by Kelvin waves originating in the Bay of Bengal and traveling around Sri Lanka [McCreary et al., 1993; Shankar and Shetye, 1997], but the exact forcing mechanism for its early occurrence (January–March) is still unknown. The northerly flowing WICC favors the formation of anticyclonic gyre in the Lakshadweep Sea during January causing sinking of surface waters, leading to the formation of Lakshadweep high [Bruce et al., 1994; Shankar and Shetye, 1997; Shenoi et al., 1999]. This influence the shelf surface waters to move offshore, the mass transported will be balanced by the rising of subsurface waters, initiating upwelling at depth. Although the Modular Ocean Model output showed northerly currents in the SEAS during January–April 2012 for a very short period between 28 February and 14 March 2012, the currents distinctly reversed from northerly to southerly (M. Ravichandran, personal communication, 2014). The model results (2004–2012) also showed that such anomalous reversal of coastal currents for a brief period recurs every year during January–April. Although Sea Surface Height Anomaly (SSHA) increased (>6 cm) during January–April, there was a short period during the first half of March when the SSHA dropped abruptly by 6–8 cm (see Figure S8) probably in response to the anomalous reversal of coastal currents. Although the exact cause of this brief anomalous feature is unknown, this period was also characterized by the advection of offshore waters at depth (outer shelf), perhaps as a consequence of the initiation of upwelling by the reversal of currents.

5.1. Comparison With Historical Data (1958–1960)
Banse [1968] carried out the first time series measurements of hydrographical parameters in Kochi coastal waters (50 m, ~45 km away from the coast) from July 1958 to January 1960. We compare his results with the present time series from the same location (station 5; Figure 12) especially in contradiction with any waters (50 m, ~45 km away from the coast) from July 1958 to January 1960. We compare his results with Banse [1968] carried out the first time series measurements of hydrographical parameters in Kochi coastal waters (50 m, ~45 km away from the coast) from July 1958 to January 1960. We compare his results with the present time series from the same location (station 5; Figure 12) especially in contradiction with any change in O$_2$ saturation. As stated earlier, 2012 was an IOD year and registered positive SST anomalies in the present time series from the same location (station 5; Figure 12) especially in contradiction with any waters (50 m, ~45 km away from the coast) from July 1958 to January 1960. We compare his results with Banse [1968].

The O$_2$ saturation was generally similar among the years (Figure 12). However, a close look during peak upwelling periods (Figure 13) revealed that the upper 10 m O$_2$ saturations increased from ~18% in 1958 to ~50% in 1959 and 86% in 2012, but below this depth saturation levels are only marginally higher (6–10%) in 2012 as compared to earlier years. This can be due to (i) increased anthropogenic effects, (ii) variation in upwelling intensity or source water characteristics, and (iii) both. A recent study [Martin et al., 2010] revealed a sixfold increase in nitrate and phosphate concentrations and fourfold increase in sediment organic carbon in the lower reaches of the adjoining Cochin estuary (CE) between 1965 and 2005 due to large-scale developmental activities. Our parallel study in the CE shows that the turnover time of dissolved inorganic nitrogen (DIN) pool was very fast (11 ± 7.6 h for NH$_4$ and 118 ± 115 h for NO$_3$ during September 2012) as the substrate renewal rates largely sustained high N uptake reflecting the estuarine response to increased human impacts.
Figure 12. Comparison of KoTS 2012 results at station 5 with those of 1958–1960 [Banse, 1968, Figure 2] off Kochi. The replotted data, published by Central Marine Fisheries Research Institute [1964] and in principle also available from data centers, were kindly provided by K. Banse, Oceanography, University of Washington, Seattle, WA, USA. Reproduced with permission from the publisher.

Figure 13. Comparison of historical profiles corresponding to peak upwelling months (refer to Figure 12).
The flushing time of estuary during monsoon (~5 days based on Gupta et al. [2009]) supports the argument that much of the anthropogenic DIN is utilized within the estuary. This is in agreement with the studies from the Godavari estuary on the east coast of India [Sarma et al., 2009, 2010]. Despite this, the CE still exports significant fraction of DIN to the coastal sea during SM (for example, 5.5 \(\mu M \) of \(NH_4^+ \) and 12.9 \(\mu M \) of \(NO_3^- \) at the surface of CE mouth with salinity 5.36 during September 2012) causing O\(_2\) depletion. However, this is largely found to extend only up to station 3 (see Figures 2, 5, 6, and S1–S6). Therefore, the observed variations in O\(_2\) saturations at station 5 can be attributed largely to the upwelling source water characteristics (nutrients, oxygen, etc.).

Understandably, coastal hypoxia during upwelling is dynamically linked to the offshore oxygen minimum zone (OMZ). Upwelling supports moderately high primary production which in turn causes further depletion of oxygen from an already oxygen-deficient waters that upwell over the shelf. Coastal waters off Kochi have never been found to be fully anoxic (sulphidic) in the last four decades, but such conditions recur every year north of Mangalore (12.8°N) [Naqvi et al., 2009]. We could also identify an anoxic layer off Mangalore (unpublished data) and a suboxic condition (8–10 \(\mu M \) O\(_2\)) off Kochi during September 2012 (Figure 2). This is because the upwelling source (offshore) water at Mangalore is relatively cold, less saline, and more oxygen depleted as compared to warmer, saltier, and less oxygen-depleted water off Kochi. The O\(_2\) within the OMZ decreases northward, including in the West India Undercurrent that is a source of water upwelling over the shelf [Naqvi et al., 2006]. Moreover, the northern Arabian Sea processes (especially the winter convective mixing which has large interannual variability) largely influence the upwelling source waters north of Mangalore but not off Kochi. As discussed earlier, stronger upwelling off Kochi brought up the poorly ventilated waters to shallower depth (10 m) in 1958–1959 compared to 2012 (20 m) which resulted in the greatest difference in O\(_2\) saturations at 10 m (Figure 13), but below this depth the variation was minor. The inferred longer residence time of upwelled water over the shelf during earlier years would have also favored more O\(_2\) consumption. It is also possible that the upwelling intensity is linked to the depth of source water from offshore OMZ; i.e., in 1958–1959 upwelling waters probably originated from the deeper part of the OMZ which is relatively cold and poorly ventilated. This clearly shows that the variable upwelling intensity between the periods resulted in the observed differences in O\(_2\) saturations.

The stronger upwelling in 1959 has also displayed enrichment of midshelf nutrients in 1959 especially nitrate (1–25 \(\mu M \)) relative to 2012 (0.03–18.5 \(\mu M \)). About 10-fold higher subsurface nitrite maximum (10–20 m) during peak upwelling period in the past (~2 \(\mu M \)) than the present period shows higher nitrification potential in the early days which was also responsible for highly depleted O\(_2\) conditions. Nevertheless, the varied nutrients enrichment enhances phytoplankton (Chl a) production which also exhibits interannual variation due to varying upwelling intensity.

5.2. Response of Inner Shelf to an Episodic Event

In early September 2012, an interesting feature occurred at station 4 (~35 km away from the coast). The water column had become much cooler, hypoxic (20%), and nutrient rich, but with low biomass (Chl a: 0.97 mg m\(^{-3}\); zooplankton biomass: 0.88 ml m\(^{-3}\)). The adjacent inner shelf (stations 2 and 3) was, however, less saline (due to heavy precipitation for about 10 days prior to sampling) and O\(_2\) supersaturated.
bacterial demand (EBD) was calculated as follows:

\[
\text{EBD} = \left(\text{Column Community Respiration, } R_{c\text{-int}} \right) - \left(\text{Photic zone GPP, } \frac{\text{GPP}_{\text{p-int}}}{C_0} \right)
\]

The negative EBD during April–May (Figure 11) indicates net autotrophy following surplus organic production in the deep euphotic layer. However, the respiration increased from June to September to yield a positive EBD. The photic depth between SIM and SM was considerably reduced from about 100% to 30% of water column due to monsoon cloud cover and light shading by phytoplankton. Despite a greater than fourfold rise in surface Chl a, the photic column production during SM months did not vary significantly prior to onset of SM. The clustering of 60–80 fishing boats near station 4 indicated that the latter site was not suitable for the fishes. Four days later when the area was revisited, typical monsoon upwelling conditions were reestablished with no signs of any abnormality.

5.3. Net Ecosystem Metabolism Over the Inner Shelf

Chl\textsubscript{p-int} did not show any correlation with either GPP\textsubscript{p-int} or NPP\textsubscript{p-int} (figure not shown), though the trend of NPP\textsubscript{p-int}/GPP\textsubscript{p-int} Variability was comparable with that of Chl\textsubscript{p-int} (Figure 10) suggesting that the environmental factors (light, nutrients, etc.) play a major role in regulating the primary production. Warm, calm, and oxic conditions during April and October–December facilitated the proliferation of cyanobacteria (Trichodesmium erythraeum), which constitute the second dominant microphytoplankton group after diatoms. Although the environmental conditions in April were comparable to those during November–December, the Chl a concentration during the former period was almost twice of that during the latter period (Figures 7 and 9a) as a result of relatively high nutrient concentrations through upwelling. Also, both seasons supported twofold higher bottom concentrations compared to surface as the entire water column was sun lit, the magnitude of former was higher by 30–50% than the latter. While the Chl a maximum at bottom during April has facilitated a twofold to threefold higher GPP compared to the surface, the same during November–December did not enhance the GPP. The N/P ratio at the bottom was low during WM (3.0–4.5) as against a moderately higher ratio of 7 in April indicating substantial N limitation for GPP during the latter period. The low-surface NPP rate in July compared to June and September is also attributed to low N/P ratio.

The trophic status of the system will be net autotrophic if GPP/R is >1 and net heterotrophic if GPP/R is <1. Apart from light, N/P ratios also controlled the trophic status as low ratios (<10) witnessed autotrophy and high ratios (>10) heterotrophy (Figures 9f and 9g). The entire water column remained net autotrophic up to May, but with the onset of SM, it was restricted to surface layer below which, despite the nutrient enrichment, the system shifted to heterotrophy due to low GPP caused by light limitation and self-shading by phytoplankton. Also, the low O\textsubscript{2} concentrations could inhibit the growth of many phytoplankton. Despite significant drop in GPP rates, the column trophic status in October continued to follow the SM bimodal pattern of surface autotrophy and bottom heterotrophy. However, the trend reversed in November with heterotrophy in the upper 10 m and autotrophy below this depth. Following this, the column trophic status shifted completely to heterotrophy by December. The entire column GPP/R ratio shows that autotrophy prevailed from April (2.3) to May (2.5). Thereafter, the SM processes, mainly upwelling, made the system net heterotrophic during June–September (0.82–0.93). The October–December period was also characterized by net heterotrophy (0.33–0.61) albeit intense than SM due to very poor GPP. The annual mean GPP/R ratio was 1.11 ± 0.84 indicating that the inner shelf in 2012 was net autotrophic.

In order to check whether autotrophic production was sufficient to meet the respiratory demands, the excess bacterial demand (EBD) was calculated as follows:

\[
\text{EBD} = \left(\text{Column Community Respiration, } R_{c\text{-int}} \right) - \left(\text{Photic zone GPP, } \frac{\text{GPP}_{\text{p-int}}}{C_0} \right)
\]
(0 to ~70% of water column) between SIM and SM could not be met by the autotrophic supply that remained almost unchallenged between these seasons. In the same manner, the EBD during WM was comparable with that of SM, despite a drop in production.

6. Conclusions

The Kochi time series of 2012 exhibited substantial intraannual variability in the biogeochemical properties in response to the combined effect of natural and anthropogenic activities. Upwelling is the dominant process controlling the biogeochemistry of SEAS on an annual basis. The present study provides the first detailed information concerning biogeochemical changes associated with the evolution, propagation, and decay of upwelling. Upwelling causes a drastic change from oligotrophic to nutrient-replete conditions leading to enhanced primary production during the summer monsoon. On an annual basis the inner shelf system was net autotrophic as the organic matter produced exceeded its consumption. The present O₂ saturations of Kochi midshelf waters during nonupwelling periods do not differ much from observations made five decades ago, but there was a marginal increase during the peak upwelling periods due to relatively weak upwelling in 2012. Although to the north of our study region along the west coast of India (approximately between Mangalore and Ratnagiri) the inner shelf has been experiencing sulphidic conditions [Naqvi et al., 2006, 2009], such conditions do not seem to occur off Kochi presumably due to the difference in the initial oxygen content of upwelling source water. Our data do not show any indication of an intensification of hypoxic conditions due to human activities unlike many other coastal areas [Diaz and Rosenberg, 2008]. However, the low-oxygen subcynocline waters over the shelf maintains the oxygen levels critically poised and just short of anoxia, underlining the vulnerability of the region to potential global change. In view of model results predicting the expansion of OMZs in the future [Bopp et al., 2013], hypoxia in coastal waters of SEAS is expected to add further stress on coastal biogeochemistry and fishery resources.

Acknowledgments

The authors thank the Secretary, Ministry of Earth Sciences (MoES) for his support to this study. S.G.P. Matondkar, Shanta Nair, Mangesh Gaun, and Damodar Shenoy, NIO, Goa, have helped us in analyzing chlorophyll and ¹³C samples. We are grateful to K. Banse, University of Washington, USA, for sharing the historical data and also providing constructive comments on the previous draft versions. The appreciations with positive comments of both the reviewers are greatly acknowledged. Thanks are also due to the FGBNMG Sampada vessel management group for allotting the cruises and to the onboard support during the cruises. The authors V.S., K.V.S., D.S., K.R.D., and G.L. thank the Centre for Marine Living Resources and Ecology, MoES for financial support. The data presented are archived at www.incois.gov.in. This work is undertaken as a part of the SIBER-India program of MoES.

References

Balachandran, K. K., C. M. Laluraj, M. Nair, T. Josep, P. Sheeba, and P. Venugopal (2005), Heavy metal accumulation in a flow restricted, tropical estuary, Estuarine Coastal Shelf Sci., 65, 361–370.

Gardner, W., J. Gundersen, M. Richardson, and I. Walsh (1999), The role of seasonal and diel changes in mixed-layer depth on carbon and oxygen content of upwelling source water. Our data do not show any indication of an intensification of hypoxic conditions due to human activities unlike many other coastal areas [Diaz and Rosenberg, 2008]. However, the low-oxygen subcynocline waters over the shelf maintains the oxygen levels critically poised and just short of anoxia, underlining the vulnerability of the region to potential global change. In view of model results predicting the expansion of OMZs in the future [Bopp et al., 2013], hypoxia in coastal waters of SEAS is expected to add further stress on coastal biogeochemistry and fishery resources.

Sarma, V. V. S. S., et al. (2009), Influence of river discharge on plankton metabolic rates in the tropical monsoon driven Godavari estuary, India, Estuarine Coastal Shelf Sci., 85, 515–524.

Shankar, D., P. Vinayachandran, and A. S. Unnikrishnan (2002), The monsoon currents in the north Indian Ocean, Prog. Oceanogr., 52, 63–120.

Shenoi, S. S. C., D. Shankar, V. V. Gopalakrishna, and F. Durand (2005), Role of ocean in the genesis and annihilation of the core of the warm pool in the southeastern Arabian Sea, Mausam, 56, 147–160.

