Application of generalised inverse for analysis of magnetic anomalies due to a dyke Model –
- Some numerical experiments

Technical Report No: NIO/TR/07/2005

M.M.Malleswara Rao
T.V.Ramana Murty
S.Surya Prakash
P.Chandramouli
K.S.R.Murthy

National Institute of Oceanography
Regional Centre
Visakhapatnam. -530 017
2005
CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Abstract</td>
<td>2</td>
</tr>
<tr>
<td>Introduction</td>
<td>3</td>
</tr>
<tr>
<td>Notation</td>
<td>5</td>
</tr>
<tr>
<td>Magnetic dyke forward problem</td>
<td>6</td>
</tr>
<tr>
<td>The inverse problem</td>
<td>7</td>
</tr>
<tr>
<td>Closeness ratio</td>
<td>12</td>
</tr>
<tr>
<td>Software details</td>
<td>13</td>
</tr>
<tr>
<td>Dyke inversion – synthetic & Field examples</td>
<td>13</td>
</tr>
<tr>
<td>Synthetic example</td>
<td>13</td>
</tr>
<tr>
<td>Field example</td>
<td>13</td>
</tr>
<tr>
<td>Field example – results & discussion</td>
<td>14</td>
</tr>
<tr>
<td>Acknowledgements</td>
<td>17</td>
</tr>
<tr>
<td>References</td>
<td>18</td>
</tr>
</tbody>
</table>

TABLES:
- Synthetic model - Table I a & b | 20 |
- Field model - Tables 1 to 6 | 22 |
- Software details - Annexure – I | 26 |
- Sample input/output & FORTRAN coding - Annexure – II | 28 |

FIGURES
- Fig. 1 – Parameters of dyke model. |
- Fig. 2 – Magnetic Profile off Visakhapatnam (at 40m depth) |
- Fig. 3A- Synthetic anomaly and its inversion, |
- 3B- Field anomaly and its inversion |
- Fig. 4 – Column vectors U_p. Station index vs modes (1-7) amplitudes |
- Fig. 5 – Column vectors of V_p – Parameter index Vs modes (1-7) amplitudes. |
- Fig. 6 – 3D-data resolution matrix modes (1 to 7) |
- Fig. 7 – 3D Model resolution matrix modes (1 to 7) |
- Fig. 8 – 3D filtered data kernel matrix (mode 1 to 7) |
ABSTRACT

Forward and Inverse methods of magnetic interpretation have been used to estimate the parameters of dyke like intrusion over the eastern continental shelf of India. In the forward problem, the tentative parameters of the causative source are assumed and anomalies are calculated using the anomaly equation, while inverse problem refers to methods of tracing the boundaries or outlines of anomalous bodies using an iterative approach. While solving the inverse problem, data kernel has been generated through the model (i.e. partial derivatives of magnetic anomaly function with respect to model parameters at each station forming the kernel). In solving the coupled eigenvalue problem of covariance matrices of data kernel, Singular Value Decomposition (SVD) has been performed to build Generalised Inverse Operator (GIO). This GIO is operated on the observed anomaly (with reference to the calculated) to yield improved model parameters. Data and model resolution matrices are computed to check the correctness of the solution and further analysis. The marine magnetic total field anomaly of continental shelf of Visakhapatnam is interpreted using Generalised Inverse (GI) technique, which revealed the causative source of the anomaly as a dyke model at a depth of 120 m below seabed.

The software routine details are given in Annexure-I and sample input/output and FORTRAN coding are given in Annexure-II.

Key words: Magnetic anomaly, forward problem, inverse problems, GIO, SVD, data resolution, model resolution, closeness ratio, dyke intrusive, Visakhapatnam.
Introduction

Among the many geophysical techniques, magnetic method is easy to execute and economically viable and therefore widely used in geophysical exploration. A general procedure is to assume most plausible shape for the magnetic anomaly source and compute its magnetic effect at the surface and to modify the model progressively until a reasonable fit with the observed anomaly is obtained \(^{(1-3)}\). The refined model represents a possible solution. The process of making inferences about the causative source from observed data is what is widely known as the inverse problem. Backus & Gilbert\(^{4}\) made an attempt for exploring the mathematical structure of the inverse problems.

The marine magnetic data that were collected in the Bay of Bengal, are interpreted in terms of the geological structures, causing the magnetic anomalies \(^{5,6}\). In the present work, marine magnetic total field anomalies off Visakhapatnam, east coast of India (Fig. 1) inverted by the generalised inverse approach, to yield the intrusive dyke model parameters.

Ultimately the above physical problem gives a mathematical relationship between the theoretical framework (\(M\): kernel) to observed data (\(dr\)) and leading to system of equations (i.e., \(M\,dy = dr\)) for solving parameters (\(dy = Mg^{-1}\,dr\), where \(Mg^{-1}\) is Generalised Inverse Operator (GIO)). In general the exploration problems are two types: 1) over-determined and 2) under-determined. The trivial solution of even-determined case is of rare occurrence. In all the cases a good resolution of both the model and data are desirable. The least square method solves the over-determined problem minimizing the squared Euclidean length of the error and has a perfect model resolution. Instead, the under-determined problem can be solved with a perfect data resolution by minimizing the model length. In nature, the problems are neither purely over-determined nor purely under-determined, they are mixed type. The entire field or observation over which the determination of the parameters of the model is to be carried out comes up in observation blocks, some of which are over-determined while some are under-determined leading to non-uniqueness of the solution. The generalized inverse technique solves such a mixed determined problem over the whole region of observations and has both
data and model resolutions intermediate between the two extremes. Generalised Inverse (GI) technique through Singular Value Decomposition (SVD) is employed to solve such a mixed determined problem. The advantages of involving SVD in construction of the GIO are viz., (1) SVD is objective and does not impose a predetermined form to the data; (2) It provides an objective means of ranking uncorrelated modes of variability to determine weak signals or noise from the data; and (3) it provides the modes of variability which are not correlated with one another.

Earlier, Malleswara Rao et al. suggested interpretation of magnetic anomalies due to bodies of polygonal cross section using Marquardt optimisation technique. In the present study, magnetic anomalies due to intrusive dyke model are analysed using the approach of Natural Generalised Inverse (GI) technique as it throws light on data and model resolution and individual model parameter contribution. All these procedures and algorithms attempt to relate physical models to readily observable data and determine the "best-estimates" of model parameters.
Notation

- J - intensity of effective magnetization of two-dimensional body lying in a plane perpendicular to the strike
- ϕ - dip of the effective magnetization
- α - strike of the body measured from the magnetic north due east or west
- i - dip of the earth’s magnetic field
- F - Earth’s magnetic field expressed in gammas

D_m - direction of measurement, is 0 for horizontal ΔH, $\Pi/2$ for vertical ΔV and i for the total field ΔF anomalies.

ΔT - anomaly in any component: it is equal to ΔH, ΔV and ΔF when D_m is 0, $\Pi/2$ and i respectively.

ΔT_{cal} - calculated anomaly

dT - $(\Delta T_{obs} - \Delta T_{cal})$

K - susceptibility contrast of the body

θ - geological dip of the dyke model

Q - an angle, which is a function of θ, ϕ, D_m, i and α

D - distance from an arbitrary reference point to the position of centre of the dyke

x - distance co-ordinates of anomalies

w - half width of the dyke

C - size factor, being a function of magnetisation(in gammas) and dip of dyke

z - depth to the top of the dyke

N_{OBS} - Number observations

A' - regional gradient

B' - regional at the first station
Magnetic dyke - forward problem

Dykes and thin sheets are frequently used geophysical models in magnetic studies (Radhakrishna Murthy11-13). The dyke is assumed to be a model with a horizontal top bounded by parallel sides (Fig. 2). Equation for its magnetic anomaly can be written by treating it as a model bounded by four first order surfaces. The conventional method is to write down the magnetic anomaly of a line dipole of cross-sectional area $du \cdot dv$ and integrating it throughout the cross-section of the dyke. When the origin is placed above the center of the dyke the generalized equation for its magnetic anomaly in any component can be written as (Radhakrishna Murthy12):

$$
\Delta T(x) = 2J' \int_{z_1-w+(v-z_1)\cot \theta}^{w+(v-z_1)\cot \theta} \int \frac{(v^2-(x-u)^2)\sin \phi' - 2(x-u)v \cos \phi' dvdu}{(x-u)^2 + v^2} \quad (1)
$$

where w is the half-width of the dyke, θ is its dip, z_1 and z_2 are the depths to its top and bottom and

$$
J' = J(1 - \cos^2 \alpha \cos^2 D_m)^{1/2}, \quad \phi' = \phi - \arctan (\sin \alpha \cot D_m)
$$

with J, ϕ, α and D_m as defined in notation. The usefulness of the above equation is that one can use the same for calculating vertical, horizontal or total field anomalies by suitably taking the values of D_m. Equation 1 after integration simplifies to

$$
\Delta T(x) = 2J' \sin \theta [\cos Q \cdot (\theta_A - \theta_B + \theta_C - \theta_D) + \sin Q \ln (r_B r_D / r_A r_C)] \quad (2)
$$

where various parameters are defined in Fig.2. For special case when the dyke is extending to a large depth $\theta_C = \theta_D$ and $r_D = r_C$. Thus, Eq.(2) takes the form (Radhakrishna Murthy3):

$$
\Delta T(x) = C [\cos Q \cdot (\theta_A - \theta_B) + \sin Q \ln (r_B / r_A)] \quad (3)
$$

The distances and angles involved in Eq. (3) are defined as follows.

$$
\theta_A - \theta_B = \arctan ((x+w)/z) - \arctan ((x-w)/z), \text{ for } z \neq 0,
$$
\[r_A^2 = (x+w)^2 + z^2, \quad r_B^2 = (x-w)^2 + z^2 \]

with \(Q = \theta - \phi \) and \(C = 2 J' \sin \theta \).

The inverse problem

The generalised equation for the magnetic anomaly of a dyke model is of infinite depth extent shown in Eq:(3). The parameters to be determined from its anomalies are \(w, z, Q \) (from \(\theta - \phi \)), \(J \sin \theta \) (from \(J' \sin \theta \)) and \(D \) the position of the center of the dyke. For this, the anomalies \(\Delta T(x_i) \) are digitized at distances measured from a convenient reference on the profile. When the distances are measured relative to the reference point, the anomaly equation is rewritten as

\[
\Delta T(x_i) = C \left[\cos Q (\theta_A - \theta_B) + \sin Q \ln \left(\frac{r_B}{r_A} \right) \right] + A'x_i + B',
\]

where \(A'x_i + B' \) is the associated regional anomaly. Initialization of these parameters is achieved by the procedure suggested by Radhakrishna Murthy\(^{14}\), which considers the dominant maximum and minimum anomalies and their corresponding distances from the chosen reference point on the magnetic anomaly profile. To calculate the initial values these characteristic distances and/or anomalies are scaled by the computer from the field profile and their ratios or magnitudes are used to calculate the parameters by properly derived empirical relations. The characteristic distances to be measured are chosen, by trial and error, such that they or their ratios vary significantly with one of the parameters and less significantly with others.

Most often the anomalies \(\Delta T_{cal} \) computed involving these initial parameters differ from the observed anomalies \(\Delta T_{NOBS} \). The difference between observed and calculated anomalies at the \(i^{th} \) anomaly point is expressed by the Taylor’s expansion in terms of errors in the initial values of the model parameters which can be expressed, in terms of errors \(dw, dz, dD, dQ, dC \), regional gradient \((A') \) and constant \((B') \), in the parameters as follows:

\[
dT(x_i) = \Delta T_{obs}(x_i) - \Delta T_{cal}(x_i) \quad (i=1, \ldots N_{OBS}) \quad \text{(5)}
\]

\[
dT(x_i) = \sum 7 \frac{\partial \Delta T_{cal}(x_i)}{\partial a_k} \, da_k,
\]
where \(da_1 = dw, da_2 = dz, da_3 = dD, da_4 = dQ, da_5 = dC, da_6 = dA' \), and \(da_7 = dB' \).

The partial derivatives are calculated through the following equations:

(Radhakrishna Murthy\(^{13} \)):

\[
\frac{\partial \Delta T(x_i)}{\partial a_i} = 2C \left[\frac{(x_i - D)^2 + z^2 + w^2}{(x_i - D + w)^2 + z^2 + w^2} \right],
\]

\[
\frac{\partial \Delta T(x_i)}{\partial a_j} = 2C \left[\frac{2z(x_i - D)\cos Q - [(x_i - D)^2 + z^2] \sin Q}{(x_i - D + w)^2 + z^2 + w^2} \right],
\]

\[
\frac{\partial \Delta T(x_i)}{\partial a_1} = C \left[\frac{f \arctan ((x_i - D - w)/z) - \arctan ((x_i - D + w)/z)}{\frac{\pi}{2}} \right],
\]

\[
\frac{\partial \Delta T(x_i)}{\partial a_2} = C \left[\frac{f \arctan ((x_i - D + w)/z) - \arctan ((x_i - D - w)/z)}{\frac{\pi}{2}} \right],
\]

\[
\frac{\partial \Delta T(x_i)}{\partial a_3} = x_i,
\]

and

\[
\frac{\partial \Delta T(x_i)}{\partial a_i} = 1.0. \quad (6)
\]

The necessary normal equations to be solved for the increments \(da_k \ (k=1, \ldots, 7) \) are framed involving Eq.(3), the observed data and partial derivatives with respect to model parameters and are given by

\[
\sum_{i=1}^{N_{\text{OBS}}} \sum_{k=1}^{7} \frac{\partial \Delta T(x_i)}{\partial a_j} da_k \frac{\partial \Delta T(x_i)}{\partial a_j} (1 + \delta \lambda) da_k = \sum_{i=1}^{N_{\text{OBS}}} \frac{\partial \Delta T(x_i)}{\partial a_j} dT(x_i), \quad (j = 1, \ldots, 7)
\]

with \(N_{\text{OBS}} = \) number of magnetic anomaly points, the constant \(\delta = 1 \) for \(i = j \),
and 0 otherwise and \(\lambda \) is Marquardt\(^9\) damping factor. The Marquardt damping factor \(\lambda \) is chosen by the relation \(\lambda = 0.5 \left[2^{n-1} - 1 \right] \) (Radhakrishna Murthy\(^{13}\)). The value of \(\lambda \) is initially set to zero by putting \(n=1 \). Subsequently, it is increased or decreased, each time, by one depending upon the resulting objective function is increased or decreased. The Eq.(7) may be be put in the matrix form:

\[
M \ dy = dr \quad \text{----------------------} \quad (8)
\]

The Eq. set (8) (for \(i = 1, \ldots, N_{OBS} \)) is to be solved for the increments to the various parameters. To handle this problem there are different approaches that include - a) ridge regression, frequently called Marquardt\(^9\) iteration and b) Generalized Inversion (GI) approach. In the present magnetic data inversion, we follow the second method viz. GI, as it has additional advantages over the Marquardt method (as already mentioned in the beginning).

Equation (8) is written in following discrete form for computational convenience:

\[
dr = M \ dy \ ; \ dr = (dr_i) \ ; \ dy = (dy_k) \ ; \ (i = 1, 2, \ldots, N_{OBS} ; \ k = 1, 2, \ldots, 7) \quad \text{-------} \quad (9)
\]

Equation (9) is solved by generalised inverse\(^{(8,15-17)}\) (GI) through singular value decomposition (SVD) to obtain the following optimised model parameters\(^{10,18}\) \(dy_P \) as follows:

\[
M = U \sqrt{V^T} \quad \text{-------} \quad (10)
\]

The columns of \(U \) and \(V \) are orthonormal i.e. \(U^T U = I_{N_{OBS}} \) and \(V^T V = I_m \)

with \(I_{N_{OBS}} \) and \(I_m \) are unit matrices of order \((N_{OBS} \times N_{OBS}) \) and \((m \times m) \) respectively and \(m = \) number of model parameters.

In general, \(UU^T \neq I_{N_{OBS}} \) and \(VV^T \neq I_m \) ; \(p \leq r = \min (N_{OBS}, m) \quad \text{-------} \quad (11)\)

where \(r \) is the rank of the matrix \(M \) (data kernel), \(p \) number of factors to be
considered and the matrices \(U \) and \(V \) are the respective coupled Eigen vector matrices for the Eigen value problem defined as:

\[
(M M^T) U \equiv l^2 U \quad \text{---------(12)}
\]

and \[
(M^T M) V \equiv l^2 V \quad \text{---------(13)}
\]

In Eq.(10), \(\sqrt{\ } \) is diagonal matrix of non-zero singular values \((l_i^2 = \lambda_i')\) of \(M \) arranged in the decreasing order. Once \(U, \sqrt{\ } \) and \(V \) are obtained by solving above Eigenvalue problem (Eqs.12 and 13) the generalised inverse solution (Jackson\(^\text{18}\)) is given by

\[
dy_P = V V^T dy = M^{-1}_g dr \quad \text{---------(14)}
\]

where \(M^{-1}_g = V_p \sqrt{\ }^{-1} U_p^T \) is the natural generalised inverse operator(GIO). Let \(s(d) = \{u_1, u_2, \ldots, u_n\} \) and \(s(m) = \{v_1, v_2, \ldots, v_m\} \) be sets of orthogonal vectors (i.e., column vectors of complete data space \(U \) and model space \(V \)) as detailed below:

\[
U = \{U_p, U_{r-p}, U_0\} \quad \text{is the complete data space where}
\]

\(U_p \) : optimised data space - set of \(p \) eigenvectors corresponding to dominant eigenvalues such that \(\lambda_1' > \lambda_2' > \lambda_3' > \ldots > \lambda_p' \neq 0 \).

\(U_{r-p} \) : set of \((r-p) \) eigenvectors corresponding to remaining dominant eigenvalues such that \(\lambda_{p+1}' > \lambda_{p+2}' > \ldots \lambda_r' \neq 0 \) and

\(U_0 \) : Null space - having eigenvectors corresponding to \(r- \min (N_{\text{OBS}} \times m) \) zero eigenvalues.

Similarly it follows in the case of complete model space (i.e. \(V = \{V_p, V_{r-p}, V_0\}\)) and can also be explained.

If \(V V^T \) equals to \(I_m \) (i.e. the rank of the matrix \(M = m \)) then the solution of the Eq. (8) is

\[
dy_P = dy = M^{-1}_g dr \quad \text{---------(15)}
\]

If \(V V^T \) not equals to \(I_m \) (for the case of, presence of noise in the model space)
\[dy_P \approx dy = M^{-1}_g dr \quad \text{---------(16)} \]

For better estimates the resolution in the model space \(VV^T \) of Eq.(16) has to be improved. This is done judiciously by selecting the \(p(\leq r) \) eigenvectors (also called factors or modes) in the activated model space \(s(m) \) corresponding to the ranking of the \(p \) singular values \((\lambda_i') \) of the data kernel \((M) \) in descending order. The noise in the data kernel prevailing in the form of small values increases the ranking of the matrix apart from amplifying the solution. This however does not provide any additional information on the model parameters. So, it can be treated as though the solution to the present problem is obtained through the optimisation.

The above process is continued to obtain optimised model based on the best fit between the observed and calculated anomalies. Once the optimised solution is obtained, it is necessary to assess how best the data determines the model parameters. This is done through model resolution \((V_p V_p^T) \) and data resolution \((U_p U_p^T) \) matrices.

The following mathematical presentation shows us how the data and model space are interrelated. Pre-multiplying (Eq. 14) by \(V_p^T \) on both sides of the equation and by defining the general parameters

\[\alpha = V_p^T dy_p \quad \text{---------(17)} \]

\[\Rightarrow \quad \alpha_j = v_j^T . dy_p \]

and

\[\beta = U_p^T dr_p \quad \text{---------(18)} \]

\[\Rightarrow \quad \beta_j = u_j^T . dr_p \]

it reduces to

\[\alpha = \Gamma^T \beta \quad \text{---------(19)} \]

The relation shows how data errors in \(\beta \) component belong to small eigenvalues \(\lambda_i' \) (of diagonal matrix \(\Gamma \)) are strongly amplified giving rise to large errors of \(\alpha_j \) and hence those components \(dy \), which contributes to \(\alpha_j \). For the investigation of parameter errors and information content of the data it has become tradition to use the model resolution matrix \(R = V V^T \) and information density matrix \(S = U U^T \).

From Eq. (17) we see that an investigation of the vector \(v_j \) will reveal which
parameters of dy are specifically attached to the generalised parameters a_j. From Eq. (18) we see that similar investigation of the vector u_j will reveal which data of dr are particularly contributing to the content of the generalised datum β_j. The components of v_j directly indicate which of the parameters of dy are determined. On other hand the components of u_j indicate where to find those data points that contribute to the determination of these parameters v_j^{10}.

Closeness ratio: The ratio between the sum of the factors considered and that of the data matrix (kernel) is the measure of closeness of the model data

\[
\text{Measure of closeness} = \frac{\sum_{i=1}^{p} \lambda_i}{\sum_{i=1}^{r} \lambda_i} \quad \text{------------------------ (20)}
\]

where r is the rank of the data matrix M (Kernel). The first eigen function, u_1, associated with the largest eigenvalues λ_1 represents the gross features (i.e., $\| u_1^T M \|$) in the data in the least square sense, while the second function u_2 associated with second largest eigenvalue λ_2 describes the residual mean square data [i.e., $\| u_2^T (M - (u_1 u_1^T M)) \|$] in the least square sense and so on. The closeness ratio is expressed in percentage to judge the contribution of different parameters.
SOFTWARE DETAILS:

The software program details for the dyke model analysis using GI are presented in program GIDYKE.FOR (ANNEXURE – I) with another synthetic dyke model as input and output details with FORTRAN coding in ANNEXURE – II.

Dyke inversion - Synthetic and field examples:

The performance of the natural Generalised Inverse (GI) explained above is illustrated with synthetic and field data sets by carrying two numerical experiments as detailed below.

Synthetic data:

A synthetic dyke model with parameters $w = 4.0 \text{ km}$, $z = 1.0 \text{ km}$, $D = 10.0 \text{ km}$, $Q = 90^\circ$ and $J = 100$ are taken and computed the magnetic anomaly at 21 points (NOBS) using the forward model Eq.(3). The synthetic anomaly so generated is subjected to GI and the derived model anomaly denoted by stars and corresponding model (dotted circles) shown in Fig. 3A, which is well coincided with actual synthetic model anomaly denoted solid line. The GI optimized model parameters are $w = 3.99 \text{ km}$, $z = 1.07 \text{ km}$, $D = 10.0 \text{ km}$, $Q = 90^\circ$ and $J = 101.06$ shows the efficacy of the method. Root Mean square Error (RMS) at initial (zero) iteration is 9.83 and the objective function is 2806. At 5th iteration, RMS error in GI optimized model is 1.68 while in Marquardt Inversion (MI) after 24 iterations the RMS error is 4.72 and objective function is 468 (Table I b). The success of synthetic model inversion with GI prompted to carry out the field data inversion using GI.

Field data:

Marine magnetic total field data was collected, using Baringer Proton precession magnetometer (model M123) off Lawson’s Bay (opposite Kailash Hill) of Visakhapatnam (17° 42’ N, 83° 17’ E) along a coast parallel profile (HH’) (Fig. 1) at 40 m water depth, covering a distance of 2.5 km, at one-minute polarisation
interval. Figure 3B shows the observed magnetic anomaly along this coast parallel profile HH' of Fig.1. The observed total field marine magnetic data were corrected using 1985 IGRF coefficients (DGRF¹⁹) and the residual data at 26 points on the profile is considered in the present GI analysis. The residual marine magnetic anomaly ranges between -460 to 170 nT with a low of -460nT at 1.25 km from the reference point, flanked by highs on either side, 60nT(left) and 170 nT (right)(Fig.3B). This magnetic anomaly is subjected to GI to yield optimized dyke parameters. Figure 3B also shows the calculated anomalies of initial and final dyke model using GI.

Field example - Results and discussion

In the present section, computed results of the field data (Fig.3B) are discussed. SVD of kernel \(M_{26\times7} = U \sqrt{V^T} \) has been performed on residual magnetic data and shown as observed data in Fig. 3B. The column matrices \(U = (u_1, u_2, \ldots, u_7) \) and \(V = (v_1, v_2, \ldots, v_7) \) are orthonormal eigenvectors spanning data space \(s(d) \) and model \(s(m) \) corresponding to eigenvalues \(\lambda_i' \) of diagonal matrix \(\Sigma_i \) (Table 1) computed by solving coupled eigen value problem of two covariance matrices \(MM^T \) and \(M^T M \) of 7 components contributing 100% of total variance. Based on the point of inflection or minimum point of cumulative eigenvalues, four factors (\(p=4 \)) are retained for interpretation as shown in Figs.4 and 5 (however other figures in respect of other 3 factors are also shown for the sake of completeness). The GI

\[
M_{g}^{-1} = V_p \Sigma_p^{-1} U_p^T
\]

has been built after removing null spaces \(\{U_0, V_0\} \) to operate on observed magnetic anomaly to yield dyke intrusive model parameters in the present studies (Fig.3B, field model).

Using vectors in activated space, data resolution matrix \(\{U_p, U_p^T\} \) and model resolution matrix \(\{V_p, V_p^T\} \) have been computed and the elements of these matrices are presented in 3-D contour form (Figs.6 and 7) respectively. The diagonal elements of these resolution matrices are presented in Tables 2 and 3. The column Vectors \(u_i \) \((i=1, \ldots, 7) \) of \(s(d) \) of corresponding eigenvalues of \(\lambda_i' \) (i.e. measure of variance \(M \) in descending order), having 26 components and with each component a value that indicates amplitude, which explains sharing contribution of its variance mode \(i \). The component \(u_i \) represent the trend or
direction of spatial common features contained in kernel M (partial derivatives of magnetic function with respect to model parameters). Its corresponding eigenvalue \(\lambda_i \) represents energy level. In a similar manner, the components of vectors in model space \(s(m) \) can be explained. The percentage contribution of individual components of \(s(m) \) and \(s(d) \) have been computed through closeness ratio approach (Eq. 20) and are shown in Tables 4 and 5. Eigenvectors derived from the data kernel of present field example have been presented in Figs. 4 and 5 to explore the spatial and model parameter variability. From these Figs. 4 and 5 and Tables 4 and 5 the first four eigenfunctions of \(s(d) \) and \(s(m) \) account for more than 98% of variance relatively dominated by the first function alone. The first function \(u_1 \) and \(v_1 \) contribute 58% of total distribution representing model parameters \(Q \) followed by \(D, w, \) and \(z \) in that order. In general, \(Q \) - an angle, function of \(\theta, \phi, D_m, \) \(i \) and \(\alpha \), contributes to the extent of 45% between stations 18 and 21. Further \(z<w \), indicating that it is thick dyke intrusive. The contribution of remaining three functions in \(s(d) \) and \(s(m) \) is only 2% of total information, and is too insignificant to consider for interpretation.

Therefore the first four energetic spatial and model functions of \(s(d) \) and \(s(m) \) have been used to bring the predictable rich part of the original signal to obtain inverse solution (Fig.3B) by operating GI on magnetic anomaly and for construction of data and model resolution matrices in 3-D form (Figs. 6 and 7). At the end of 21 iterations the results obtained from GI indicate that the width of the dyke intrusive model is 0.72 km at a depth \((Z) \) of 0.12 km from the surface located at \((D) \) 1.44 km away from the reference point and at an angle \((Q) \) of 140° and with intensity of magnetization \((C) \) 225.86 nT (Fig 3B). The optimized value of intensity of magnetization \((C) \) is reasonably comparable with local value (250. nT) \(^{12}\). Computed model anomaly with refined parameter set almost coincides with observed field anomaly to quantify (Fig. 3B). The initial objective function (=111039) is reduced up to (=4645) after 21 iterations, and the corresponding refined model parameter set is considered for interpretation. The refined intrusive dyke model corresponding to minimum objective function is shown in Fig.3B. The Root Mean Square (RMS) error for the field data at zero iteration is 65.35. After 21
iterations it has reduced to 13.36.

Data resolution:

The data resolution matrix is an indication of the information density of the data kernel i.e. it indicates which data contribute independent information to the solution. The diagonal elements of $U_p U_p^T$ are shown in Table 3 for factors 1 to 7. A value of unity indicates contribution of information independent of other observations. From Table 3 one can infer which of the data points contribute strong / poor information resolution. The data resolution is given by $N = M M^T_g = U_p U_p^T$. The data are completely resolved if U_p spans the complete space of data. The small eigenvalues in the data kernel increases the rank of the matrix (i.e. the dimension of activated space) besides amplifying the solution due to the presence of noise. Such a filtered data kernel has been utilized in 3-D form (Fig. 8), which almost represents the original data kernel to build GIO. In Fig. 6 Factor 1 describes the contour map of data resolution matrix $u_1 u_1^T$, where u_1 is the highest spatial energetic mode of $s(d)$. It gives 58.003% variance of the total information i.e. mostly gross features of the kernel (Table 5). High resolution is found at stations 10 and 18 indicating the sudden change at these stations likely indicating the width of the dyke intrusive (Fig. 6 and Tables 3-5)

Model resolution:

The model resolution of the generalised inverse is given by $R = M^T_g M = V_p V_p^T$. Here p indicates number of factors used in SVD, which is less than or equal to the rank of the matrix M. The model parameters will be perfectly resolved if V_p spans the complete space of the model parameters i.e. $V_p V_p^T = I_m$. The model resolution is perfect for the contribution of magnetic anomaly due to Q (Fig. 7, factor 1 and shown in Table 4) and one can conclude that Q is independent of other model parameters and of homogeneous nature which is also reflected in the data resolution Fig. 6, factor 1 at stations 12 and 18 (also see Table 5). Table 4 presents the individual parameter contribution in each of the seven factors. In first factor the contribution of Q is 45.222% out of 58%, and in second factor the contribution of W is 9.7% out of 18.5%, and in third factor z contributes 7.1% out of 13.2% and finally in fourth factor that of D is 5.5% out of 8.1%. The total
contribution of \(Q, w, z \) and \(D \) is 62\% out of 89.8\% from the first four factors.

From the above model and data resolution study, the partial information contained in the data space is adequate enough to reconstruct the approximate model parameters. This reveals the efficacy of natural generalised inverse GI with a least square sense in handling problems of over determinacy.

Acknowledgements:

The authors are thankful to Director, National Institute of Oceanography, Dona Paula, Goa for his keen interest and encouragement.
References

Synthetic Example – Dyke Model:

Table: I (a) **Analysis by generalised inverse**

Magnetic anomalies – due to dyke model

<table>
<thead>
<tr>
<th>ITERATION NUMBER</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>DIS- TANCE</td>
<td>0.0</td>
</tr>
<tr>
<td></td>
<td>83.6</td>
</tr>
<tr>
<td></td>
<td>82.4</td>
</tr>
<tr>
<td>ERROR</td>
<td>1.2</td>
</tr>
</tbody>
</table>

OBJECTIVE FUNCTION IS 2806.

MODEL PARAMETERS

DEPTH TO TOP OF DYKE IS 1.83
HALF THE THICKNESS IS 3.66
THE ORIGIN IS AT 10.00
THETA-PHI IS 90.00
CONST IS 136.09
REGIONAL AT 1ST STATION IS -17.81
REGIONAL GRADIENT IS 1.78

(contd ...)
Table I(a) ITERATION NUMBER 5

<table>
<thead>
<tr>
<th>DISTANCE</th>
<th>OBSERVED ANOMALY</th>
<th>CALCULATED ANOMALY</th>
<th>ERROR ANOMALY</th>
</tr>
</thead>
<tbody>
<tr>
<td>.00</td>
<td>83.6</td>
<td>83.4</td>
<td>.2</td>
</tr>
<tr>
<td>1.00</td>
<td>93.9</td>
<td>93.9</td>
<td>0</td>
</tr>
<tr>
<td>2.00</td>
<td>107.2</td>
<td>107.4</td>
<td>.2</td>
</tr>
<tr>
<td>3.00</td>
<td>125.1</td>
<td>125.4</td>
<td>.3</td>
</tr>
<tr>
<td>4.00</td>
<td>150.3</td>
<td>150.4</td>
<td>.1</td>
</tr>
<tr>
<td>5.00</td>
<td>185.7</td>
<td>184.3</td>
<td>1.4</td>
</tr>
<tr>
<td>5.50</td>
<td>197.5</td>
<td>200.5</td>
<td>3.0</td>
</tr>
<tr>
<td>6.00</td>
<td>208.7</td>
<td>204.7</td>
<td>4.0</td>
</tr>
<tr>
<td>6.50</td>
<td>185.0</td>
<td>188.5</td>
<td>3.5</td>
</tr>
<tr>
<td>7.00</td>
<td>160.9</td>
<td>159.9</td>
<td>1.0</td>
</tr>
<tr>
<td>7.50</td>
<td>130.0</td>
<td>129.3</td>
<td>7</td>
</tr>
<tr>
<td>8.00</td>
<td>100.1</td>
<td>100.3</td>
<td>.2</td>
</tr>
<tr>
<td>8.50</td>
<td>74.0</td>
<td>73.4</td>
<td>.6</td>
</tr>
<tr>
<td>9.00</td>
<td>47.8</td>
<td>48.0</td>
<td>.2</td>
</tr>
<tr>
<td>10.00</td>
<td>0.0</td>
<td>0.0</td>
<td>0</td>
</tr>
<tr>
<td>11.00</td>
<td>-47.8</td>
<td>-48.0</td>
<td>.2</td>
</tr>
<tr>
<td>11.50</td>
<td>-74.0</td>
<td>-73.4</td>
<td>6</td>
</tr>
<tr>
<td>12.00</td>
<td>-100.1</td>
<td>-100.3</td>
<td>.2</td>
</tr>
<tr>
<td>12.50</td>
<td>-130.0</td>
<td>-129.3</td>
<td>7</td>
</tr>
<tr>
<td>13.00</td>
<td>-160.9</td>
<td>-160.0</td>
<td>9</td>
</tr>
<tr>
<td>13.50</td>
<td>-185.0</td>
<td>-188.5</td>
<td>3.5</td>
</tr>
<tr>
<td>14.00</td>
<td>-208.7</td>
<td>-204.7</td>
<td>4.0</td>
</tr>
<tr>
<td>14.50</td>
<td>-197.5</td>
<td>-200.5</td>
<td>3.0</td>
</tr>
<tr>
<td>15.00</td>
<td>-185.7</td>
<td>-184.3</td>
<td>1.4</td>
</tr>
<tr>
<td>16.00</td>
<td>-150.3</td>
<td>-150.4</td>
<td>1</td>
</tr>
<tr>
<td>17.00</td>
<td>-125.1</td>
<td>-125.4</td>
<td>.3</td>
</tr>
<tr>
<td>18.00</td>
<td>-107.2</td>
<td>-107.4</td>
<td>.2</td>
</tr>
<tr>
<td>19.00</td>
<td>-93.9</td>
<td>-93.9</td>
<td>0</td>
</tr>
<tr>
<td>20.00</td>
<td>-83.6</td>
<td>-83.4</td>
<td>2</td>
</tr>
</tbody>
</table>

OBJECTIVE FUNCTION IS 83.

MODEL PARAMETERS

DEPTH TO TOP OF DYKE IS 1.07
HALF THE THICKNESS IS 3.99
THE ORIGIN IS AT 10.00
THETA-PHI IS 90.00
CONST IS 101.68
REGIONAL AT 1ST STATION IS -1.32
REGIONAL GRADIENT IS .13

Table I(b) GI analysis – RMS error details

<table>
<thead>
<tr>
<th>Model</th>
<th>Z</th>
<th>W</th>
<th>D</th>
<th>Q=(θ-ϕ)</th>
<th>CONST.</th>
<th>Reg.</th>
<th>Itr / Obj.fun</th>
<th>RMS err</th>
</tr>
</thead>
<tbody>
<tr>
<td>Exact</td>
<td>1.0</td>
<td>4.0</td>
<td>10.0</td>
<td>90.0</td>
<td>100</td>
<td>0</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>Initial</td>
<td>1.83</td>
<td>3.66</td>
<td>10.0</td>
<td>90.0</td>
<td>136.09</td>
<td>-17.8</td>
<td>0/2806</td>
<td>9.03</td>
</tr>
<tr>
<td>GI Mdl.</td>
<td>1.07</td>
<td>3.99</td>
<td>10.0</td>
<td>90.0</td>
<td>101.68</td>
<td>-1.32</td>
<td>5/83</td>
<td>1.69</td>
</tr>
<tr>
<td>MI Mdl.</td>
<td>1.0</td>
<td>4.01</td>
<td>9.99</td>
<td>89.7</td>
<td>119.2</td>
<td>-23.4</td>
<td>24/468</td>
<td>4.72</td>
</tr>
</tbody>
</table>
Field example - Dyke model:

Table 1: Eigen values and corresponding closeness ratio for Magnetic dyke model – Field Example.

<table>
<thead>
<tr>
<th>Eigen Values</th>
<th>Closeness Ratio</th>
</tr>
</thead>
<tbody>
<tr>
<td>35.97</td>
<td>58.003</td>
</tr>
<tr>
<td>20.36</td>
<td>76.576</td>
</tr>
<tr>
<td>17.18</td>
<td>89.804</td>
</tr>
<tr>
<td>13.45</td>
<td>97.915</td>
</tr>
<tr>
<td>6.60</td>
<td>99.869</td>
</tr>
<tr>
<td>1.32</td>
<td>99.946</td>
</tr>
<tr>
<td>1.09</td>
<td>100.000</td>
</tr>
</tbody>
</table>

Table 2: Diagonal elements of model resolution ($V_pV_p^T$)

<table>
<thead>
<tr>
<th>Model/ Factor</th>
<th>w</th>
<th>z</th>
<th>D</th>
<th>Q</th>
<th>C</th>
<th>A</th>
<th>B</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.0003</td>
<td>0.0001</td>
<td>0.0513</td>
<td>0.9476</td>
<td>0.7807</td>
<td>0.0007</td>
<td>0.21E-6</td>
</tr>
<tr>
<td>2</td>
<td>0.6563</td>
<td>0.3340</td>
<td>0.0535</td>
<td>0.9477</td>
<td>0.0002</td>
<td>0.0083</td>
<td>0.00005</td>
</tr>
<tr>
<td>3</td>
<td>0.9824</td>
<td>0.9996</td>
<td>0.0550</td>
<td>0.9477</td>
<td>0.0002</td>
<td>0.0149</td>
<td>0.00009</td>
</tr>
<tr>
<td>4</td>
<td>0.9876</td>
<td>0.9996</td>
<td>0.9823</td>
<td>0.9968</td>
<td>0.0002</td>
<td>0.0331</td>
<td>0.00009</td>
</tr>
<tr>
<td>5</td>
<td>0.9999</td>
<td>0.9998</td>
<td>0.9999</td>
<td>0.9999</td>
<td>0.0015</td>
<td>0.9927</td>
<td>0.00590</td>
</tr>
<tr>
<td>6</td>
<td>1.0000</td>
<td>0.9999</td>
<td>0.9999</td>
<td>1.0000</td>
<td>0.7568</td>
<td>0.9976</td>
<td>0.24560</td>
</tr>
<tr>
<td>7</td>
<td>1.0000</td>
<td>1.0000</td>
<td>1.0000</td>
<td>1.0000</td>
<td>1.0000</td>
<td>1.0000</td>
<td>1.00000</td>
</tr>
</tbody>
</table>
Table 4: Percentage contribution of individual components of model space $s(m)$

<table>
<thead>
<tr>
<th>Parameters</th>
<th>$v_1%$</th>
<th>$v_2%$</th>
<th>$v_3%$</th>
<th>$v_4%$</th>
<th>$v_5%$</th>
<th>$v_6%$</th>
<th>$v_7%$</th>
</tr>
</thead>
<tbody>
<tr>
<td>W</td>
<td>.837</td>
<td>-9.693</td>
<td>4.972</td>
<td>-.427</td>
<td>.153</td>
<td>.000</td>
<td>.000</td>
</tr>
<tr>
<td>Z</td>
<td>-.186</td>
<td>6.917</td>
<td>7.106</td>
<td>-.046</td>
<td>.021</td>
<td>.001</td>
<td>.000</td>
</tr>
<tr>
<td>D</td>
<td>10.504</td>
<td>.562</td>
<td>-.340</td>
<td>-5.563</td>
<td>-.185</td>
<td>.000</td>
<td>.000</td>
</tr>
<tr>
<td>Q</td>
<td>-45.222</td>
<td>-.108</td>
<td>.009</td>
<td>-1.282</td>
<td>-.078</td>
<td>.000</td>
<td>.000</td>
</tr>
<tr>
<td>Const</td>
<td>.000</td>
<td>-.168</td>
<td>-.026</td>
<td>.000</td>
<td>-.050</td>
<td>.046</td>
<td>-.019</td>
</tr>
<tr>
<td>A</td>
<td>-1.255</td>
<td>1.041</td>
<td>-.714</td>
<td>-.780</td>
<td>1.361</td>
<td>.004</td>
<td>.002</td>
</tr>
<tr>
<td>B</td>
<td>.000</td>
<td>.084</td>
<td>-.061</td>
<td>-.012</td>
<td>.107</td>
<td>-.026</td>
<td>-.033</td>
</tr>
<tr>
<td>Total (%)</td>
<td>58.003</td>
<td>18.573</td>
<td>13.228</td>
<td>8.111</td>
<td>1.454</td>
<td>0.0078</td>
<td>0.054</td>
</tr>
</tbody>
</table>
Table 5: **Percentage contribution of individual component of data space s(d)**

<table>
<thead>
<tr>
<th>Station ID</th>
<th>$u_1%$</th>
<th>$u_2%$</th>
<th>$u_3%$</th>
<th>$u_4%$</th>
<th>$u_5%$</th>
<th>$u_6%$</th>
<th>$u_7%$</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1.004</td>
<td>.079</td>
<td>-.138</td>
<td>.233</td>
<td>.042</td>
<td>-.003</td>
<td>-.006</td>
</tr>
<tr>
<td>1</td>
<td>1.121</td>
<td>.085</td>
<td>-.0157</td>
<td>.245</td>
<td>.054</td>
<td>-.003</td>
<td>-.005</td>
</tr>
<tr>
<td>2</td>
<td>1.223</td>
<td>.095</td>
<td>-.182</td>
<td>.258</td>
<td>.065</td>
<td>-.002</td>
<td>-.004</td>
</tr>
<tr>
<td>3</td>
<td>1.325</td>
<td>.106</td>
<td>-.213</td>
<td>.270</td>
<td>.077</td>
<td>-.001</td>
<td>-.003</td>
</tr>
<tr>
<td>4</td>
<td>1.465</td>
<td>.116</td>
<td>-.251</td>
<td>.284</td>
<td>.088</td>
<td>-.001</td>
<td>-.002</td>
</tr>
<tr>
<td>5</td>
<td>1.618</td>
<td>.137</td>
<td>-.307</td>
<td>.296</td>
<td>.098</td>
<td>.000</td>
<td>-.001</td>
</tr>
<tr>
<td>6</td>
<td>1.821</td>
<td>.169</td>
<td>-.383</td>
<td>.299</td>
<td>.106</td>
<td>.000</td>
<td>-.001</td>
</tr>
<tr>
<td>7</td>
<td>2.076</td>
<td>.227</td>
<td>-.499</td>
<td>.288</td>
<td>.109</td>
<td>.000</td>
<td>-.002</td>
</tr>
<tr>
<td>8</td>
<td>2.420</td>
<td>.349</td>
<td>-.681</td>
<td>.227</td>
<td>.098</td>
<td>-.002</td>
<td>-.003</td>
</tr>
<tr>
<td>9</td>
<td>2.891</td>
<td>.671</td>
<td>-.966</td>
<td>.023</td>
<td>.052</td>
<td>-.003</td>
<td>-.004</td>
</tr>
<tr>
<td>10</td>
<td>3.401</td>
<td>1.612</td>
<td>-1.217</td>
<td>-.526</td>
<td>-.075</td>
<td>.003</td>
<td>-.001</td>
</tr>
<tr>
<td>11</td>
<td>3.070</td>
<td>2.732</td>
<td>-.242</td>
<td>-.757</td>
<td>-.104</td>
<td>.003</td>
<td>-.004</td>
</tr>
<tr>
<td>12</td>
<td>1.554</td>
<td>1.981</td>
<td>.725</td>
<td>-.117</td>
<td>.068</td>
<td>-.003</td>
<td>-.001</td>
</tr>
<tr>
<td>13</td>
<td>.153</td>
<td>1.379</td>
<td>.809</td>
<td>.036</td>
<td>.107</td>
<td>-.006</td>
<td>-.003</td>
</tr>
<tr>
<td>14</td>
<td>-1.006</td>
<td>1.173</td>
<td>.743</td>
<td>-.018</td>
<td>.087</td>
<td>-.006</td>
<td>-.003</td>
</tr>
<tr>
<td>15</td>
<td>-2.089</td>
<td>1.199</td>
<td>.668</td>
<td>-.074</td>
<td>.053</td>
<td>-.003</td>
<td>-.001</td>
</tr>
<tr>
<td>16</td>
<td>-3.184</td>
<td>1.437</td>
<td>.546</td>
<td>-.006</td>
<td>.016</td>
<td>.004</td>
<td>-.001</td>
</tr>
<tr>
<td>17</td>
<td>-4.330</td>
<td>1.892</td>
<td>.107</td>
<td>.415</td>
<td>-.018</td>
<td>.005</td>
<td>-.002</td>
</tr>
<tr>
<td>18</td>
<td>-4.955</td>
<td>1.580</td>
<td>-1.107</td>
<td>.869</td>
<td>-.041</td>
<td>.005</td>
<td>-.001</td>
</tr>
<tr>
<td>19</td>
<td>-4.114</td>
<td>.132</td>
<td>-1.245</td>
<td>.000</td>
<td>-.028</td>
<td>-.006</td>
<td>-.001</td>
</tr>
<tr>
<td>20</td>
<td>-3.210</td>
<td>-.275</td>
<td>-.753</td>
<td>-.456</td>
<td>.016</td>
<td>-.006</td>
<td>-.001</td>
</tr>
<tr>
<td>21</td>
<td>-2.611</td>
<td>-.301</td>
<td>-.464</td>
<td>-.536</td>
<td>.056</td>
<td>-.002</td>
<td>-.002</td>
</tr>
<tr>
<td>22</td>
<td>-2.203</td>
<td>-.264</td>
<td>-.311</td>
<td>-.523</td>
<td>.088</td>
<td>.001</td>
<td>-.001</td>
</tr>
<tr>
<td>23</td>
<td>-1.911</td>
<td>-.227</td>
<td>-.220</td>
<td>-.487</td>
<td>.114</td>
<td>.003</td>
<td>-.001</td>
</tr>
<tr>
<td>24</td>
<td>-1.694</td>
<td>-.190</td>
<td>-.166</td>
<td>-.450</td>
<td>.136</td>
<td>.005</td>
<td>-.000</td>
</tr>
<tr>
<td>25</td>
<td>-1.516</td>
<td>-.164</td>
<td>-.129</td>
<td>-.417</td>
<td>.156</td>
<td>.007</td>
<td>.001</td>
</tr>
<tr>
<td>Total(%)</td>
<td>58.003</td>
<td>18.573</td>
<td>13.228</td>
<td>8.111</td>
<td>1.954</td>
<td>.078</td>
<td>.054</td>
</tr>
</tbody>
</table>
Table 6: INTERPRETATION OF MAGNETIC ANOMALIES DUE TO A DYKE BY GENERALISED INVERSE APPROACH

<table>
<thead>
<tr>
<th>ITERATION NUMBER 0</th>
<th>ITERATION NUMBER 21</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>DISTANCE</td>
<td>OBSERVED ANOMALY (nT)</td>
</tr>
<tr>
<td>0.00</td>
<td>60.</td>
</tr>
<tr>
<td>1.00</td>
<td>55.</td>
</tr>
<tr>
<td>2.00</td>
<td>52.</td>
</tr>
<tr>
<td>3.00</td>
<td>49.</td>
</tr>
<tr>
<td>4.00</td>
<td>40.</td>
</tr>
<tr>
<td>5.00</td>
<td>20.</td>
</tr>
<tr>
<td>6.00</td>
<td>10.</td>
</tr>
<tr>
<td>7.00</td>
<td>-5.</td>
</tr>
<tr>
<td>8.00</td>
<td>-30.</td>
</tr>
<tr>
<td>9.00</td>
<td>-70.</td>
</tr>
<tr>
<td>10.00</td>
<td>-160.</td>
</tr>
<tr>
<td>11.00</td>
<td>-350.</td>
</tr>
<tr>
<td>12.00</td>
<td>-455.</td>
</tr>
<tr>
<td>13.00</td>
<td>-460.</td>
</tr>
<tr>
<td>14.00</td>
<td>-450.</td>
</tr>
<tr>
<td>15.00</td>
<td>-407.</td>
</tr>
<tr>
<td>16.00</td>
<td>-335.</td>
</tr>
<tr>
<td>17.00</td>
<td>-245.</td>
</tr>
<tr>
<td>19.00</td>
<td>35.</td>
</tr>
<tr>
<td>20.00</td>
<td>115.</td>
</tr>
<tr>
<td>21.00</td>
<td>100.</td>
</tr>
<tr>
<td>22.00</td>
<td>110.</td>
</tr>
<tr>
<td>23.00</td>
<td>130.</td>
</tr>
<tr>
<td>24.00</td>
<td>150.</td>
</tr>
</tbody>
</table>

At Iteration 0

| OBJECTIVE FUNCTION IS | 111039. |

At Iteration 21

| OBJECTIVE FUNCTION IS | 4645. |

MODEL PARAMETERS

DEPTH TO TOP OF DYKE IS	2.25 units	0.12 units
HALF THE THICKNESS IS	4.50 units	0.36 units
THE ORIGIN IS AT	16.10 units	1.44 units
THETA-PHI IS	86.05°	140.78°
CONST IS	67.58 nT	225.86 nT
REGIONAL AT 1ST STN. IS	289.63 nT	95.15 nT
REGIONAL GRADIENT IS	-15.39	1.01 nt
ANNEXURE - I

SOFTWARE PROGRAM DETAILS:

Main Program *GIDYKE.FOR*

The main program GIDYKE.FOR in FORTRAN – 77 code form consists of seven routines GIO, SVD, MATMLT, TRNSPZ, ARRANGE, OUTPUT and the seventh DYKE.FOR (DYKE forward model). The necessary input to the main program is given in file DYKEIN.DAT that consists of number of anomaly (data) points: NOBS; number of iterations to carry out: NITER followed by corresponding model details. The difference between observed and model anomaly is computed and stored in array ERROR (K) and sum of squares of these errors is stored as single variable FUNCT (objective function). Now data kernel (coefficient matrix) is generated in matrix P of order (NOBS x M) and column matrix PB of order (NOBS x 1) , consisting of difference between observed and computed anomaly are also stored. The output file DYKEOUT.DAT consists of model parameter details for each iteration and objective function. The main program opens files like DYMRES.DAT & DYDRES.DAT to write model and data resolution details for each iteration.

At this stage subroutine GIO is called to obtain output argument Q as column matrix of order (NOBS x 1) by sending input arguments P and PB. The model parameters are updated and fed to DYKE.FOR to compute forward anomaly and there by FUNCT1 which is the current objective function. In the main program this process is repeated iteratively such that ensemble average of the squares of the difference between estimated field and true field at each point is minimum, to
compute the best model parameters.

Subroutines:

Subroutine GIO: This subroutine GIO takes the data kernel A or order \((N_{\text{obs}} \times M)\) and D is a column matrix of order \((N \times 1)\) consisting of deviation in the anomaly from the main program and calls the subroutine SVD to perform singular value decomposition to get orthonormal matrices U of order \((N_{\text{obs}} \times NF)\), diagonal matrix W of order \((NF \times NF)\) and V matrix of order \((N_{\text{obs}} \times NF)\). It calls subroutine ARRANGE to arrange eigenvalues in descending order and corresponding vectors are arranged in GIO. Then it computes the closeness ratio as described in theory (Eq. 20) after that it generates generalised inverse operator matrix, X. Using U, W and V matrices and it operates on D matrix and computes the inverse solution and stores in column matrix DELC \((N \times 1)\). Also it computes the data resolution, model resolution and returns to the calling program.

Subroutine SVD: This subroutine SVD takes data kernel A \((N_{\text{obs}} \times N)\) from GIO and computes covariance matrix to solve the eigen value problem to perform SVD and to yield orthonormal matrices U, V and diagonal matrix W. The routine LINPACK available in public domain is used in SVD routine.

Subroutine MATMLT: This subroutine MATMLT is called from the calling program to compute the multiplication of two matrices A and B of order \((N_{\text{obs}} \times N)\) and \((N \times P)\) and stores in Matrix C of order \((N \times P)\).

Subroutine TRNSPZ: This subroutine TRNSPZ is called in the calling program many times to compute the transpose of matrix A of order \((N \times N_{\text{obs}})\) and stores in matrix B of order \((N_{\text{obs}} \times N)\).
Subroutine ARRANGE: This subroutine ARRANGE is called in subroutine GIO and arranges eigen values in descending order.

Subroutine OUTPUT: This subroutine OUTPUT is simply an output subroutine that writes the SVD results to an access disk file (SVDOUT.DAT).
ANNEXURE - II

Synthetic model

GIODYKE PROGRAM INPUT AND OUTPUT FILE DETAILS

INPUT - FILE: DYKEIN.DAT

17, 45.0, 90.0, 25
0.0, 1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0
8.0, 9.0, 10.0, 11.0, 12.0, 13.0, 14.0, 15.0
16.0
200.
OUTPUT - FILE: DYKEOUT.DAT

ANALYSIS BY GENERALISED INVERSE

INTERPRETATION OF MAGNETIC ANOMALIES DUE TO A DYKE USING ITERATIVE APPROACH. THE FOLLOWING TABLES PROVIDE INFORMATION ON ANOMALIES AND MODEL PARAMETERS AT THE END OF EACH ITERATION.

ITERATION NUMBER 0

<table>
<thead>
<tr>
<th>DISTANCE</th>
<th>OBSERVED ANOMALY</th>
<th>CALculated ANOMALY</th>
<th>ERROR</th>
</tr>
</thead>
<tbody>
<tr>
<td>.00</td>
<td>-220.</td>
<td>-180.</td>
<td>40.</td>
</tr>
<tr>
<td>1.00</td>
<td>-300.</td>
<td>-250.</td>
<td>50.</td>
</tr>
<tr>
<td>2.00</td>
<td>-370.</td>
<td>-330.</td>
<td>40.</td>
</tr>
<tr>
<td>3.00</td>
<td>-460.</td>
<td>-416.</td>
<td>44.</td>
</tr>
<tr>
<td>4.00</td>
<td>-495.</td>
<td>-469.</td>
<td>26.</td>
</tr>
<tr>
<td>5.00</td>
<td>-340.</td>
<td>-419.</td>
<td>79.</td>
</tr>
<tr>
<td>6.00</td>
<td>-210.</td>
<td>-283.</td>
<td>73.</td>
</tr>
<tr>
<td>7.00</td>
<td>-80.</td>
<td>-126.</td>
<td>46.</td>
</tr>
<tr>
<td>8.00</td>
<td>60.</td>
<td>31.</td>
<td>29.</td>
</tr>
<tr>
<td>9.00</td>
<td>230.</td>
<td>188.</td>
<td>42.</td>
</tr>
<tr>
<td>10.00</td>
<td>390.</td>
<td>346.</td>
<td>44.</td>
</tr>
<tr>
<td>11.00</td>
<td>510.</td>
<td>481.</td>
<td>29.</td>
</tr>
<tr>
<td>12.00</td>
<td>560.</td>
<td>528.</td>
<td>32.</td>
</tr>
<tr>
<td>13.00</td>
<td>450.</td>
<td>473.</td>
<td>23.</td>
</tr>
<tr>
<td>14.00</td>
<td>330.</td>
<td>387.</td>
<td>57.</td>
</tr>
<tr>
<td>15.00</td>
<td>250.</td>
<td>307.</td>
<td>57.</td>
</tr>
<tr>
<td>16.00</td>
<td>200.</td>
<td>238.</td>
<td>38.</td>
</tr>
</tbody>
</table>

OBJECTIVE FUNCTION IS 36863.

MODEL PARAMETERS

DEPTH TO TOP OF DYKE IS 1.82
HALF THE THICKNESS IS 3.64
THE ORIGIN IS AT 7.99
THETA-PHI IS 270.00
CONST IS 399.10
REGIONAL AT 1ST STATION IS 184.45
REGIONAL GRADIENT IS -19.40
*********** AT THE END OF 9 ITERATIONS **********

ITERATION NUMBER 9

<table>
<thead>
<tr>
<th>DISTANCE</th>
<th>OBSERVED ANOMALY</th>
<th>CALCULATED ANOMALY</th>
<th>ERROR</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.00</td>
<td>-220.</td>
<td>-217.</td>
<td>3.</td>
</tr>
<tr>
<td>1.00</td>
<td>-300.</td>
<td>-287.</td>
<td>13.</td>
</tr>
<tr>
<td>2.00</td>
<td>-370.</td>
<td>-375.</td>
<td>5.</td>
</tr>
<tr>
<td>3.00</td>
<td>-460.</td>
<td>-472.</td>
<td>12.</td>
</tr>
<tr>
<td>4.00</td>
<td>-495.</td>
<td>-494.</td>
<td>1.</td>
</tr>
<tr>
<td>6.00</td>
<td>-210.</td>
<td>-204.</td>
<td>6.</td>
</tr>
<tr>
<td>7.00</td>
<td>-80.</td>
<td>-57.</td>
<td>23.</td>
</tr>
<tr>
<td>8.00</td>
<td>60.</td>
<td>82.</td>
<td>22.</td>
</tr>
<tr>
<td>9.00</td>
<td>230.</td>
<td>222.</td>
<td>8.</td>
</tr>
<tr>
<td>10.00</td>
<td>390.</td>
<td>372.</td>
<td>18.</td>
</tr>
<tr>
<td>11.00</td>
<td>510.</td>
<td>515.</td>
<td>5.</td>
</tr>
<tr>
<td>12.00</td>
<td>560.</td>
<td>543.</td>
<td>17.</td>
</tr>
<tr>
<td>13.00</td>
<td>450.</td>
<td>445.</td>
<td>5.</td>
</tr>
<tr>
<td>14.00</td>
<td>330.</td>
<td>342.</td>
<td>12.</td>
</tr>
<tr>
<td>15.00</td>
<td>250.</td>
<td>260.</td>
<td>10.</td>
</tr>
<tr>
<td>16.00</td>
<td>200.</td>
<td>195.</td>
<td>5.</td>
</tr>
</tbody>
</table>

OBJECTIVE FUNCTION IS 3072.

MODEL PARAMETERS

- DEPTH TO TOP OF DyKE IS 1.33
- HALF THE THICKNESS IS 3.86
- THE ORIGIN IS AT 7.73
- THETA-PHI IS 272.90
- CONST IS 332.51
- REGIONAL AT 1ST STATION IS 127.43
- REGIONAL GRADIENT IS -16.16

STOP END OF PROGRAM
SOFTWARE CODING

C GIODYKE.FOR
C TO REFINE DYKE MODEL PARAMETERS BY GENERALISED INVERSE
C TECHNIQUE FROM MAGNETIC DATA
IMPLICIT REAL*8 (A-H,O-Z)
REAL LAMDA,LAMDA1
PARAMETER (NM=17,M=17,N=7,NF=7)
DIMENSION X(17),T(17),TCAL(17),ERROR(17), 1P(17,7),
PB(17), DELC(7),PA(1500),DIF(17)
OPEN(1, FILE='DYUCOMP.DAT', ACCESS='SEQUENTIAL')
OPEN(2, FILE='DYVCOMP.DAT', ACCESS='SEQUENTIAL')
OPEN(3, FILE='DYGENSOL.DAT', ACCESS='SEQUENTIAL')
OPEN(4, FILE='DYMRES.DAT', ACCESS='SEQUENTIAL')
OPEN(5, FILE='DYDRES.DAT', ACCESS='SEQUENTIAL')
OPEN(6, FILE='DYBCAL.DAT', ACCESS='SEQUENTIAL')
OPEN(7, FILE='DYSVDOUT.DAT', ACCESS='SEQUENTIAL')
OPEN(8, FILE='DYRESYL.DAT', ACCESS='SEQUENTIAL')
OPEN(9, FILE='DYGIO.DAT', ACCESS='SEQUENTIAL')
OPEN(10, FILE='DYKEIN.DAT', ACCESS='SEQUENTIAL')
OPEN(11, FILE='DYKEOUT.DAT', ACCESS='SEQUENTIAL')
OPEN(12, FILE='DYPER.DAT', ACCESS='SEQUENTIAL')
OPEN(13, FILE='DYMDIA.DAT', ACCESS='SEQUENTIAL')

C
READ(10,801)NOBS,STRIKE,DM,NITER
READ(10,802) (X(K),K=1,NOBS)
READ(10,803) (T(K),K=1,NOBS)
WRITE(8,2)
WRITE(13,2)
RAD=0.0174532924
NN=7
N2=3
NLAMDA=1
CON=1.0
XFAR1=0.0
XFAR2=0.0
STR=STRIKE*RAD
DMR=DM*RAD
IF(DMR.EQ.0.0)THEN
 DM1=1.57079637
ELSE
 DM1=DATAN(DSIN(STR)/DTAN(DMR))
ENDIF
C LOCATION OF MAXIMUM AND MINIMUM ANOMALIES
CALL MAXMIN(X,T,NOBS,MAX,MIN,XMAX,XMIN,TMAX,TMIN)
C LOCATION OF ORIGIN
IF(TMIN.NE.0.0) THEN
 WIDTH=DABS(XMAX-XMIN)
 D=ORIGIN(X,T,NOBS,MAX,MIN,XMAX,XMIN,TMAX,TMIN)
ELSE
 FAR=0.5
 WIDTH=FMAX(X,T,NOBS,TMAX,FAR,XFAR1,XFAR2)
D=XMAX
ENDIF
C CALCULATION OF INITIAL VALUES OF W, Z AND Q
R=DABS(TMIN/TMAX)
IF(R-0.05)10,15,15
 10 Q=0.0
 Z=WIDTH/4.472
 GO TO 45
 15 IF(R-0.27)20,25,25
 20 Q=30.0
 GO TO 40
 25 IF(R-0.7)30,35,35
 30 Q=60.0
 GO TO 40
 35 Q=90.0
 40 S=DSIN(Q*RAD)
 Z=WIDTH*S/(2.0*DSQRT(1+4.0*S*S))
 45 IF(XMAX-XMIN)50,60,60
 50 IF(TMAX)55,75,75
 55 Q=Q+180.0
 GO TO 75
 60 IF(TMAX)65,70,70
 65 Q=180.0-Q
 GO TO 75
 70 Q=360.0-Q
 75 W=2.0*Z
 Q=Q*RAD
 CONST=1.0
 WRITE(11,911)
 DO 80 I=1,9
 80 PA(I)=0.0
 DO 85 I=1,3
 85 PB(I)=0.0
C CALCULATION OF INITIAL VALUES OF THE SIZE FACTOR A AND B
 DO 95 K=1,NOBS
 XX=X(K)-D
 TCAL(K)=DYKE(XX,W,Z,CONST,Q)
 ERROR(1)=X(K)
 ERROR(2)=1.0
 ERROR(3)=TCAL(K)
 ERROR(4)=T(K)
 DO 90 J=1,N2
 DO 90 I=1,N2
 L=(J-1)*N2+I
 90 PA(L)=PA(L)+ERROR(J)*ERROR(I)
 PB(J)=PB(J)+ERROR(J)*ERROR(I)
 95 CONTINUE
 CALL SIMQ(PA,PB,N2,KS)
 A=PB(1)
 B=PB(2)
 CONST=PB(3)
 FUNCT=0.0
C CALCULATION OF ANOMALIES OF THE INITIAL MODEL

DO 100 K=1,NOBS
XX=X(K)-D
TCAL(K)=DYKE(XX,W,Z,CONST,Q)+A*X(K)+B
DIF(K)=(T(K)-TCAL(K))
DIF(K)=DABS(DIF(K))
100 FUNCT=FUNCT+(T(K)-TCAL(K))**2
C INVERSION SCHEME STARTS

DO 175 ITER=1,NITER
ICOUNT=0
ITER1=ITER-1
QQ=(Q-DM1)/RAD
WRITE(11,908)ITER1
WRITE(11,902)
WRITE(11,903)(X(K),T(K),TCAL(K),DIF(K),K=1,NOBS)
WRITE(11,906)
WRITE(11,900)FUNCT
WRITE(11,901)Z,W,D,QQ,CONST,B,A
IF(FUNCT-NOBS)105,110,110
105 WRITE(11,912)
STOP
110 IF(ITER-NITER)115,115,180
115 DO 120 L=1,NOBS
DO 120 MM=1,NN
120 P(L,MM)=0.0
C=DCOS(Q)
S=DSIN(Q)
Z2=Z*Z
C CALCULATION OF DERIVATIVES

DO 130 K=1,NOBS
R1=X(K)-D
R2=R1+W
R3=R1-W
R4=Z2+R2*R2
R5=Z2+R3*R3
R12=R1*R1
W2=W*W
R45=R4*R5
R6=R12-Z2-W2
R7=R12+Z2+W2
R8=R12+Z2-W2
A1=DATAN(R2/Z)
A2=DATAN(R3/Z)
ERROR(1)=2.0*CONST*(R7*Z*C-R1*S*R8)/R45
ERROR(2)=2.0*CONST*W*(R6*C+2.0*Z*R1*S)/R45
ERROR(3)=2.0*CONST*W*(-R6*S+2.0*Z*R1*C)/R45
ERROR(4)=-S*(A1-A2)-0.5*C*DLOG(R4/R5)
ERROR(4)=ERROR(4)*CONST
ERROR(5)=(TCAL(K)-A*X(K)-B)/CONST
ERROR(6)=X(K)
ERROR(7)=1.0
ERROR(8)=T(K)-TCAL(K)
PB(K)=ERROR(8)
P(K,1)=ERROR(1)
P(K,1)=ERROR(1)
P(K,2)=ERROR(2)
P(K,3)=ERROR(3)
P(K,4)=ERROR(4)
P(K,5)=ERROR(5)
P(K,6)=ERROR(6)
P(K,7)=1.0

C CONSTRUCTION AND SOLUTION OF NORMAL EQUATIONS
130 CONTINUE
135 CONTINUE
 ICOUNT=ICOUNT+1
 DO 155 L=1, NOBS
 DO 150 MM=1, NN
 IF(L.EQ.MM) P(L,MM)=P(L,MM)*CON
 150 CONTINUE
 155 CONTINUE
 CALL GIO(P,PB,DELC,ITER,NITER,ICOUNT)
 IF(KS.EQ.1) THEN
 WRITE(11,904)
 STOP
 ENDIF

C IMPROVEMENT OF THE INITIAL PARAMETERS OF THE MODEL
 WW=0.25*W
 IF(DABS(DELC(1)).GT.WW) DELC(1)=WW*DELC(1)/DABS(DELC(1))
 WD=W+DELC(1)
 ZZ=0.25*Z
 IF(Z.NE.0.0) THEN
 IF(DABS(DELC(2)).GT.ZZ)
 DELC(2)=ZZ*DELC(2)/DABS(DELC(2))
 ENDIF
 ZD=Z+DELC(2)
 DO 160 ID=1,NOBS
 IF(D.GT.X(ID)) THEN
 DX=X(ID+1)-X(ID)
 GO TO 165
 ENDIF
 160 CONTINUE
 DDX=0.25*DX
 IF(DABS(DELC(3)).GT.DDX) DELC(3)=DDX*DELC(3)/DABS(DELC(3))
 DD=D+DELC(3)
 IF(DABS(DELC(4)).GT.0.2618)
 DELC(4)=0.2618*DELC(4)/DABS(DELC(4))
 QD=Q+DELC(4)
 CC=0.50*CONST
 IF(DABS(DELC(5)).GT.CC)
 DELC(5)=CC*DELC(5)/DABS(DELC(5))
 CD=CONST+DELC(5)
 AD=A+DELC(6)
 BD=B+DELC(7)
 IF(ZD.LT.0.0)ZD=0.001
FUNCT1=0.0

C CALCULATION OF THE ANOMALIES OF THE IMPROVED MODEL AND
C OPTIMIZATION
DO 170 K=1,NOBS
 XX=X(K)-DD
 TCAL(K)=DYKE(XX,WD,ZD,CD,QD)+AD*X(K)+BD
 FUNCT1=FUNCT1+(T(K)-TCAL(K))**2
 DIF(K)=(T(K)-TCAL(K))
170 DIF(K)=DABS(DIF(K))
IF (FUNCT1.LE.FUNCT) THEN
 Z=ZD
 W=WD
 Q=QD
 D=DD
 CONST=CD
 A=AD
 B=BD
 FUNCT=FUNCT1
 NLAMDA=NLAMDA-1
 IF (NLAMDA.EQ.0.0)NLAMDA=1
 LAMDA=0.5*(*2**(NLAMDA-1)-1)
 CON=1+LAMDA
 ELSE
 IF (LAMDA.GT.15.0)THEN
 WRITE(11,909)
 STOP
 ENDIF
 LAMDA1=LAMDA
 NLAMDA=NLAMDA+1
 LAMDA=0.5*(*2**(NLAMDA-1)-1)
 CON=1+LAMDA
 WRITE(11,910)ITER,FUNCT1,LAMDA1,LAMDA
 GO TO 135
 ENDIF
175 CONTINUE
180 WRITE(11,905)
WRITE(8,2)
WRITE(13,4)

2 FORMAT(5X, //DIAGONAL ELEMENTS OF DATA RESOLUTION //)
4 FORMAT(5X, //DIAGONAL ELEMENTS OF MODEL RESOLUTION //)
801 FORMAT(I5,2F10.2,I5)
802 FORMAT(8F10.2)
802 FORMAT(8F10.0)
900 FORMAT(5X,'OBJECTIVE FUNCTION IS',F10.0,///5X,
 'MODEL PARAMETERS'//5X,16('-'))
901 FORMAT(5X,'DEPTH TO TOP OF DYKE IS',5X,F10.2/
 *5X,'HALF THE THICKNESS IS',7X,F10.2/
 *5X,'THE ORIGIN IS AT',12X,F10.2/
 *5X,'THETA-PHI IS',16X,F10.2/
 *5X,'CONST IS',20X,F10.2/
 *5X,'REGIONAL AT 1ST STATION IS',2X,F10.2/
 *5X,'REGIONAL GRADIENT IS',8X,F10.2///)
C SUBROUTINE SIMQ SOLVES A SET OF N-LINEAR EQUATIONS.
C THIS IS ADAPTED FROM THE IBM SUBROUTINE PACKAGE.
C
C INPUT
C -----
C A : MATRICES OF COEFFICIENTS STORED COLUMN-WISE
C B : VECTOR OF CONSTANTS
C N : NUMBER OF EQUATIONS AND VARIABLES
C
C OUTPUT
C ------
C B : COLUMN VECTOR OF FINAL SOLUTION VALUES
SUBROUTINE SIMQ(A,B,N,KS)
IMPLICIT REAL*8 (A-H,O-Z)
DIMENSION A(*),B(*)
TOL=0.0
KS=0
JJ=-N
DO 40 J=1,N
 JY=J+1
 JJ=JJ+N+1
 BIGA=0
 IT=JJ-J
 DO 10 I=J,N
 IJ=IT+I
 IF(ABS(BIGA)-ABS(A(IJ))) 5,10,10
5 BIGA=A(IJ)
 IMAX=I
10 CONTINUE
 IF(ABS(BIGA)-TOL) 15,15,20
15 KS=1
 RETURN
20 I1=J+N*(J-2)
 IT=IMAX-J
 DO 25 K=J,N
 I1=I1+N
 I2=I1+IT
 SAVE=A(I1)
 A(I1)=A(I2)
 A(I2)=SAVE
25 A(I1)=A(I1)/BIGA
 SAVE=B(IMAX)
 B(IMAX)=B(J)
 B(J)=SAVE/BIGA
 IF(J-N)30,45,30
30 IQS=N*(J-1)
 DO 40 IX=JY,N
 IXJ=IQS+IX
 IT=J-IX
 DO 35 JX=JY,N
 IXJX=N*(JX-1)+IX
 JX=IXJX+IT
 A(IXJX)=A(IXJX)-(A(IXJ)*A(JJX))
35 B(IX)=B(IX)-(B(J)*A(IXJ))
40 B(IX)=B(IX)-(B(J)*A(IXJ))
45 NY=N-1
 IT=N*N
 DO 50 J=1,NY
 IA=IT-J
 IB=N-J
 IC=N
 DO 50 K=1,J
 B(IB)=B(IB)-A(IA)*B(IC)
IA=IA-N
50 IC=IC-1
RETURN
END

C FUNCTION SUBPROGRAM FMAX CALCULATES THE DISTANCE BETWEEN
C TWO POINTS OF EQUAL ANOMALY, REDUCED FROM THEIR MAXIMUM
C VALUE BY A FACTOR
C
C INPUT
C -----
C N : NUMBER OF ANOMALIES IN THE PROFILE
C X : DISTANCE OF ANOMALY FROM AN ARBITRARY REFERENCE
C G : ANOMALY VALUES
C GMAX : AMPLITUDE OF THE MAXIMUM ANOMALY
C FAR : FACTOR BY WHICH THE ANOMALY SHOULD BE REDUCED
C
FUNCTION FMAX(X,G,N,GMAX,FAR,XFAR1,XFAR2)
IMPLICIT REAL*8 (A-H,O-Z)
DIMENSION X(*),G(*)
GH=FAR*GMAX
K=0
IF (GMAX) 35, 5, 5
5 K=K+1
IF (GH-G(K)) 15, 10, 5
10 XFAR1=X(K)
GO TO 20
15 XFAR1=X(K-1)+(X(K)-X(K-1))*(GH-G(K-1))/(G(K)-G(K-1))
20 K=K+1
IF (GH-G(K)) 20, 25, 30
25 XFAR2=X(K)
GO TO 65
30 XFAR2=X(K-1)+(X(K)-X(K-1))*(GH-G(K-1))/(G(K)-G(K-1))
GO TO 65
35 K=K+1
IF (GH-G(K)) 35, 40, 45
40 XFAR1=X(K)
GO TO 50
45 XFAR1=X(K-1)+(X(K)-X(K-1))*(GH-G(K-1))/(G(K)-G(K-1))
50 K=K+1
IF (GH-G(K)) 50, 55, 50
55 XFAR2=X(K)
GO TO 65
60 XFAR2=X(K-1)+(X(K)-X(K-1))*(GH-G(K-1))/(G(K)-G(K-1))
65 FMAX=DABS(XFAR2-XFAR1)
RETURN
END
C SUBROUTINE MAXMIN CALCULATES THE POSITION AND AMPLITUDES
C OF MAXIMUM AND MINIMUM ANOMALIES ON A MAGNETIC PROFILE
C INPUT
C N : NUMBER OF ANOMALIES IN THE PROFILE
C X : DISTANCE TO ANOMALY POINTS MEASURED FROM AN ARBITRARY REFERENCE (ANY UNITS)
C T : GEOPHYSICAL ANOMALY
C OUTPUT
C MAX : STATION NUMBER CLOSEST TO XMAX
C MIN : STATION NUMBER CLOSEST TO XMIN
C XMAX : POSITION OF THE MAXIMUM ANOMALY
C XMIN : POSITION OF MINIMUM ANOMALY
C TMAX : AMPLITUDE OF MAXIMUM ANOMALY
C TMIN : AMPLITUDE OF MINIMUM ANOMALY
C SUPPORTING SUBPROGRAM: RINT

SUBROUTINE MAXMIN(X,T,N,MAX,MIN,XMAX,XMIN,TMAX,TMIN)
IMPLICIT REAL*8(A-H,O-Z)
DIMENSION X(*),T(*)
C TO FIND THE MAXIMUM ANOMALY
TMAX=0.0
DO 10 K=1,N
 IF(DABS(TMAX)-DABS(T(K)))5,5,10
 5 TMAX=T(K)
 MAX=K
10 CONTINUE
GR1=T(MAX)-T(MAX-1)
GR2=T(MAX+1)-T(MAX)
IF((GR1+GR2).NE.0.0)THEN
 XMAX=0.5*(X(MAX)+X(MAX-1)-GR1*(X(MAX+1)-X(MAX-1))
 TMAX=RINT(X,N,T,XMAX)
ELSE
 TMAX=T(MAX)
 XMAX=X(MAX)
ENDIF
C TO FIND THE MINIMUM ANOMALY
TMIN=0.0
XMIN=X(N)
IF(TMAX)15,15,30
15 DO 25 K=1,N
 IF(TMIN-T(K))20,20,25
20 TMIN=T(K)
 XMIN=X(K)
 MIN=K
25 CONTINUE
GO TO 45
30 DO 40 K=1,N
 IF(TMIN-T(K))40,35,35
35 TMIN=T(K)
 XMIN=X(K)
 MIN=K
40 CONTINUE
45 IF(TMIN)50,100,50
50 GR1=T(MIN)-T(MIN-1)
 GR2=T(MIN+1)-T(MIN)
 IF((GR1+GR2).NE.0.0)THEN
 XMIN=0.5*(X(MIN)+X(MIN-1)-GR1*(X(MIN+1)-X(MIN-1))
 /((GR2-GR1))
 TMIN=RINT(X,N,T,XMIN)
 ELSE
 TMIN=T(MIN)
 XMIN=X(MIN)
 ENDIF
100 RETURN
END

C FUNCTION SUBPROGRAM DYKE CALCULATES THE MAGNETIC ANOMALY
C (IN GAMMAS) OF AN ARBITRARILY MAGNETIZED DYKE
C INPUT
C X : DISTANCE OF POINT OF CALCULATION
C FROM THE CENTRE OF THE DYKE (ANY UNITS)
C W : HALF WIDTH OF THE DYKE (SAME UNITS AS X)
C Z : DEPTH TO THE DYKE (SAME UNITS AS X"
C SIZE : SIZE FACTOR, BEING A FUNCTION OF
C INTENSITY OF MAGNETIZATION, (IN GAMMAS)
C AND DIP OF THE DYKE
C Q : ANGLE, BEING A FUNCTION OF DIRECTION
C OF MAGNETIZATION, DIP OF THE DYKE AND
C THE DIRECTION OF MEASUREMENT (IN RADIANS)
C
FUNCTION DYKE(X,W,Z,SIZE,Q)
IMPLICIT REAL*8 (A-H,O-Z)
PIBY2=1.57079632
R=1.0E-03
C=DCOS(Q)
S=DSIN(Q)
Z2=Z*Z
R1=X+W
R2=X-W
R3=Z2+R1*R1
R4=Z2+R2*R2
ABSX=DABS(X)
IF(Z.NE.0.0)THEN
 ANG=DATAN(R1/Z)-DATAN(R2/Z)
ELSEIF(ABSX.EQ.W)THEN
 ANG=PIBY2
ELSE
 ANG=PIBY2*(1-(ABSX-W)/DABS(ABSX-W))
ENDIF
IF(R3.LT.R)R3=R
IF(R4.LT.R)R4=R
RTERM=DLOG(R3/R4)
DYKE=SIZE*(C*ANG-0.5*S*RTERM)
RETURN
END

C FUNCTION SUBPROGRAM ORIGIN LOCATES THE POSITION OF THE
C DYKE'S CENTRE
C INPUT:
C N : NUMBER OF ANOMALIES IN THE PROFILE
C X : DISTANCE OF ANOMALY FROM AN ARBITRARY REFERENCE
C T : MAGNETIC ANOMALY (GAMMAS)
C XMAX : POSITION OF MAXIMUM ANOMALY
C XMIN : POSITION OF MINIMUM ANOMALY
C TMAX : AMPLITUDE OF MAXIMUM ANOMALY
C TMIN : AMPLITUDE OF MINIMUM ANOMALY
C MAX : STATION NUMBER CLOSEST TO XMAX
C MIN : STATION NUMBER CLOSEST TO XMIN

FUNCTION ORIGIN(X,T,N,MAX,MIN,XMAX,XMIN,TMAX,TMIN)
IMPLICIT REAL*8 (A-H,O-Z)
DIMENSION X(*),T(*)
T0=TMAX+TMIN
IF(XMAX-XMIN)50,5,5
 IF(TMAX)10,30,30
 K=MIN+1
 K=K+1
 IF(T0-T(K))15,20,25
 ORIGIN=X(K)
 GO TO 95
 20 ORIGIN=X(K-1)+(X(K)-X(K-1))*(T0-T(K-1))/(T(K)-T(K-1))
 GO TO 95
 30 K=MIN+1
 K=K+1
 IF(T0-T(K))45,40,35
 ORIGIN=X(K)
 GO TO 95
 40 ORIGIN=X(K-1)+(X(K)-X(K-1))*(T0-T(K-1))/(T(K)-T(K-1))
 GO TO 95
 50 IF(TMAX)55,75,75
 K=MAX+1
 K=K+1
 IF(T0-T(K))70,65,60
 ORIGIN=X(K)
 GO TO 95
 65 ORIGIN=X(K-1)+(X(K)-X(K-1))*(T0-T(K-1))/(T(K)-T(K-1))
 GO TO 95
 70 ORIGIN=X(K-1)+(X(K)-X(K-1))*(T0-T(K-1))/(T(K)-T(K-1))
 GO TO 95
 75 K=MAX+1
 80 K=K+1
 IF(T0-T(K))80,85,90
 ORIGIN=X(K)
 GO TO 95
 85 ORIGIN=X(K-1)+(X(K)-X(K-1))*(T0-T(K-1))/(T(K)-T(K-1))
 GO TO 95
 90 ORIGIN=X(K-1)+(X(K)-X(K-1))*(T0-T(K-1))/(T(K)-T(K-1))

C FUNCTION SUBPROGRAM RINT CALCULATES BY INTERPOLATION
C THE VALUE OF A FUNCTION F(X) FROM TABULATED FUNCTION
C VALUES AT AN INTERMEDIATE VALUE OF X
C
C INPUT :
C ------
C N : NUMBER OF DIGITIZED FUNCTION VALUES
C X : ARRAY OF VALUES OF X AGAINST WHICH X
C
C FX : ARRAY OF VALUES OF F(X)
C XX : VALUE OF X AT WHICH F(X) NEEDS TO BE
C CALCULATED

FUNCTION RINT(X,N,FX,XX)
IMPLICIT REAL*8(A-H,O-Z)
DIMENSION X(*),FX(*)
DO 15 K=1,N
 IF (XX-X(K))5,10,15
5 M=K-1
 GO TO 20
10 RINT=FX(K)
 RETURN
15 CONTINUE
20 IF ((XX-X(M)).GT.(X(M+1)-XX))M=M+1
 IF (M.LE.2.OR.M.GT.(N-2))THEN
 RINT=FX(M)
 RETURN
 ENDIF
X1=X(M-2)
X2=X(M-1)
X0=X(M)
X3=X(M+1)
X4=X(M+2)
T1=FX(M-2)
T2=FX(M-1)
T0=FX(M)
T3=FX(M+1)
T4=FX(M+2)
A=(XX-X1)*(XX-X2)*(XX-X0)*(XX-X4)*(XX-X3)
B=T1/((XX-X1)*(X1-X2)*(X1-X3)*(X1-X4)*(X1-X0))
C=T2/((XX-X2)*(X2-X1)*(X2-X3)*(X2-X4)*(X2-X0))
D=T0/((XX-X0)*(X0-X1)*(X0-X2)*(X0-X3)*(X0-X4))
E=T3/((XX-X3)*(X3-X1)*(X3-X2)*(X3-X4)*(X3-X0))
F=T4/((XX-X4)*(X4-X1)*(X4-X2)*(X4-X3)*(X4-X0))
RINT=A*(B+C+D+E+F)
RETURN
END
SUBROUTINE GIO(A,D,DELC,ITR,NITR,ICOUNT)

C IMPLICIT DOUBLE PRECISION (A-H,O-Z)
IMPLICIT REAL*8(A-H,O-Z)
PARAMETER (NM=26,M=26,N=7,NF=7)
DIMENSION A(NM,NM),W(NM),U(NM,NM),V(NM,NM),RV1(NM)
DIMENSION WW(NM),UU(NM,NM),VV(NM,NM),CT(NM,NM),DELC(NM)
DIMENSION (NM,NM),C(NM,NM),UT(NM,NM),VT(NM,NM),ILT(NM),D(NM)
LOGICAL MATU,MATV
VAR=1.0
MATU=.TRUE.
MATV=.TRUE.
IERR=0
CALL SVD(NM,M,N,A,WW,MATU,UU,MATV,VV,IERR,RV1)
C WRITE(2,*)'Unordered - decomposition '
C CALL OUTPUT(A,UU,VV,WW,NM,M,N,NF)
DO 5 I=1,N
5 W(I)=-WW(I)
ILT(I)=I
CALL ARRANGE(W,ILT,NM,N)
DO 6 I=1,N
6 W(I)=-W(I)
DO 7 J=1,N
K=ILT(J)
DO 7 I=1,M
7 U(I,J)=UU(I,K)
DO 8 J=1,N
K=ILT(J)
DO 8 I=1,N
V(I,J)=VV(I,K)
c*** WRITE(7,*)'ordered - decomposition '
CALL OUTPUT(A,U,V,W,NM,M,N,NF,ITR,NITR)
C Computing the closeness ratio
SUM=0.0
DO 14 I=1,N
14 SUM=SUM+W(I)
SUM1=0.0
DO 100 II=1,NF
100 SUM1=SUM1+W(II)
CR=SUM1/SUM*100.0
IF(ITR.NE.NITR) GO TO 9999
WRITE(3,2)II,CR,ITR,ICOUNT
WRITE(4,2)II,CR,ITR,ICOUNT
WRITE(5,2)II,CR,ITR,ICOUNT
WRITE(6,2)II,CR,ITR,ICOUNT
WRITE(7,2)II,CR,ITR,ICOUNT
WRITE(9,2)II,CR,ITR,ICOUNT
WRITE(12,22)II,CR,ITR,ICOUNT
22 FORMAT(1X,I3,F8.4,1X,I3,1X,I3)
2 FORMAT(/1X,'No. facts considerd = ',I3/1X,
1'Closeness ratio =',F10.3,3X,'ITR:', I3,3X,'ICOUNT:',I3/)
CONTINUE
DO 1 I=1,M
DO 1 J=1,II
1 X(I,J)=U(I,J)*W(J)
CALL TRNSPZ(V,VT,NM,N,II)
CALL MATMLT(X,VT,C,NM,M,N,II)
IF(ITR.NE.NITR) GO TO 8888
WRITE(6,*)'Back calculating matrix'
DO 332 I=1, M
DO 332 j=1, N
332 WRITE(6,333)I,J,C(I,J)
333 FORMAT(1X,I3,1X,I3,1X,E12.5)
8888 CONTINUE
CALL TRNSPZ(U,UT,NM,M,II)
CALL MATMLT(U,UT,C,NM,M,M,II)
IF(ITR.NE.NITR) GO TO 7777
WRITE(5,*)'Data - Resolution matrix'
DO 331 I=1, M
DO 331 J=1, M
331 WRITE(5,333)I,J,C(I,J)
WRITE(8,222) (C(L,L), L=1, M)
222 FORMAT(1X,20F6.3)
7777 CONTINUE
CALL MATMLT(V,VT,C,NM,N,N,II)
IF(ITR.NE.NITR) GO TO 6666
WRITE(4,*)'Model - Resolution matrix'
DO 330 I=1, N
DO 330 J=1, N
330 WRITE(4,333)I,J,C(I,J)
6666 CONTINUE
C Constructing of the generalized inverse operator
C WRITE(7,*)'Generalized inverse operator'
C DO 9 I=1,N
C DO 9 J=1,II
9 X(I,J)=V(I,J)/W(J)
CALL MATMLT(X,UT,C,NM,N,M,II)
IF(ITR.NE.NITR) GO TO 5555
WRITE(9,*) 'GENERALISED INVERSE OPERATOR'
DO 335 I=1, N
DO 335 J=1, M
335 WRITE(9,333) I,J,C(I,J)
5555 CONTINUE
C Computing the generalized inverse solution
C WRITE(7,*)'Generalized inverse solution'
WRITE(7,*)'Generalized inverse solution'
DO 11 I=1,N
DELC(I)=0.0
DO 11 J=1,M
11 DELC(I)=DELC(I)+C(I,J)*D(J)
WRITE(7,12)(DELC(I),I=1,N)
12 FORMAT(7(E10.4,1X))
C Computing the covariance of the solution
WRITE(7,*),'covariance of the solution'
CALL TRNSPZ(C,CT,NM,N,M)
DO 13 I=1,M
 DO 13 J=1,N
 13 X(I,J)=C(I,J)*VAR
CALL MATMLT(X,CT,C,NM,N,N,M)
100 CONTINUE
RETURN
END

SUBROUTINE SVD(NM,M,N,A,W,MATU,U,MATV,V,IERR,RV1)
 IMPLICIT REAL*8(A-H,O-Z)
 DIMENSION A(NM,NM),W(NM),U(NM,NM),V(NM,NM),RV1(NM)
 LOGICAL MATU,MATV
 THIS SUBROUTINE IS A TRANSLATION OF THE ALGOL PROCEDURE SVD,
 NUM. MATH. 14, 403-420 (1970) BY GOLUB AND REINSCH.
 HANDBOOK FOR AUTO. COMP., VOL II-LINEAR ALGEBRA, 134-151 (1971).
 THIS SUBROUTINE DETERMINES THE SINGULAR VALUE DECOMPOSITION
 T
 A=USV OF A REAL M BY N RECTANGULAR MATRIX. HOUSEHOLDER
 BIDIAGONALIZATION AND A VARIANT OF THE QR ALGORITHM ARE
 USED.
 ON INPUT.
 NM MUST BE SET TO THE ROW DIMENSION OF TWO-DIMENSIONAL
 ARRAY PARAMETERS AS DECLARED IN THE CALLING PROGRAM
 DIMENSION STATEMENT. NOTE THAT NM MUST BE AT LEAST
 AS LARGE AS THE MAXIMUM OF M AND N.
 M IS THE NUMBER OF ROWS OF A (AND U).
 N IS THE NUMBER OF COLUMNS OF A (AND U) AND THE ORDER OF V.
 A CONTAINS THE RECTANGULAR INPUT MATRIX TO BE DECOMPOSED.
 MATU SHOULD BE SET TO .TRUE. IF THE U MATRIX IN THE
 DECOMPOSITION IS DESIRED, AND TO .FALSE. OTHERWISE.
 MATV SHOULD BE SET TO .TRUE. IF THE V MATRIX IN THE
 DECOMPOSITION IS DESIRED, AND TO .FALSE. OTHERWISE.
 ON OUTPUT.
 A IS UNALTERED (UNLESS OVERWRITTEN BY U OR V).
 W CONTAINS THE N (NON-NEGATIVE) SINGULAR VALUES OF A (THE
 DIAGONAL ELEMENTS OF S). THEY ARE UNORDERED. IF AN
 ERROR EXIT IS MADE, THE SINGULAR VALUES SHOULD BE
 CORRECT FOR INDICES IERR+1,IERR+2,...,N.
 U CONTAINS THE MATRIX U (ORTHOGONAL COLUMN VECTORS) OF THE
 DECOMPOSITION IF MATU HAS BEEN SET TO .TRUE. OTHERWISE
 U IS USED AS A TEMPORARY ARRAY. U MAY COINCIDE WITH A.
 IF AN ERROR EXIT IS MADE, THE COLUMNS OF U CORRESPONDING
TO INDICES OF CORRECT SINGULAR VALUES SHOULD BE CORRECT.

V CONTAINS THE MATRIX V (ORTHOGONAL) OF THE DECOMPOSITION IF MATV HAS BEEN SET TO .TRUE. OTHERWISE V IS NOT REFERENCED.

V MAY ALSO COINCIDE WITH A IF U IS NOT NEEDED. IF AN ERROR EXIT IS MADE, THE COLUMNS OF V CORRESPONDING TO INDICES OF CORRECT SINGULAR VALUES SHOULD BE CORRECT.

IERR IS SET TO
ZER0 FOR NORMAL RETURN,
K IF THE K-TH SINGULAR VALUE HAS NOT BEEN DETERMINED AFTER 30 ITERATIONS.

RV1 IS A TEMPORARY STORAGE ARRAY.

THIS IS A MODIFIED VERSION OF A ROUTINE FROM THE EISPACK COLLECTION BY THE NATS PROJECT

MODIFIED TO ELIMINATE MACHEP
IERR = 0
DO 100 I = 1, M

DO 100 J = 1, N
 U(I,J) = A(I,J)
100 CONTINUE

......... HOUSEHOLDER REDUCTION TO BIDIAGONAL FORM
.........
G = 0.0D0
SCALE = 0.0D0
ANORM = 0.0D0

DO 300 I = 1, N
 L = I + 1
 RV1(I) = SCALE * G
 G = 0.0D0
 S = 0.0D0
 SCALE = 0.0D0
 IF (I .GT. M) GO TO 210

 DO 120 K = I, M
 SCALE = SCALE + DABS(U(K,I))
120 CONTINUE

 F = U(I,I)
 G = -DSIGN(DSQR(T(S),F)
 H = F * G - S
 U(I,I) = F - G
IF (I .EQ. N) GO TO 190

DO 150 J = L, N
 S = 0.0D0
C
 DO 140 K = I, M
140 S = S + U(K,I) * U(K,J)
C
 F = S / H
C
 DO 150 K = I, M
150 U(K,J) = U(K,J) + F * U(K,I)
C
DO 200 K = I, M
200 U(K,I) = SCALE * U(K,I)
C
W(I) = SCALE * G
G = 0.0D0
S = 0.0D0
SCALE = 0.0D0
IF (I .GT. M .OR. I .EQ. N) GO TO 290
DO 220 K = L, N
220 SCALE = SCALE + DABS(U(I,K))
C
IF (SCALE .EQ. 0.0D0) GO TO 290
DO 230 K = L, N
230 U(I,K) = U(I,K) / SCALE
 S = S + U(I,K)**2
C
F = U(I,L)
G = -DSIGN(DSQRT(S),F)
H = F * G - S
U(I,L) = F - G
C
DO 240 K = L, N
240 RV1(K) = U(I,K) / H
C
IF (I .EQ. M) GO TO 270
C
DO 260 J = L, M
260 S = 0.0D0
C
 DO 250 K = L, N
250 S = S + U(J,K) * U(I,K)
C
 DO 260 K = L, N
260 U(J,K) = U(J,K) + S * RV1(K)
C
DO 280 K = L, N
280 U(I,K) = SCALE * U(I,K)
ANORM = DMAX1(ANORM, DABS(W(I)) + DABS(RV1(I)))

CONTINUE

C ACCUMULATION OF RIGHT-HAND TRANSFORMATIONS

 IF (.NOT. MATV) GO TO 410
C FOR I=N STEP -1 UNTIL 1 DO --
 DO 400 II = 1, N
 I = N + 1 - II
 IF (I .EQ. N) GO TO 390
 IF (G .EQ. 0.0D0) GO TO 360
C
 DO 320 J = I, N
C DOUBLE DIVISION AVOIDS POSSIBLE UNDERFLOW

 320 V(J,I) = (U(I,J) / U(I,L)) / G
C
 DO 350 J = I, N
 S = 0.0D0
 DO 340 K = L, N
 340 S = S + U(I,K) * V(K,J)
C
 DO 350 K = L, N
 V(K,J) = V(K,J) + S * V(K,I)
 350 CONTINUE
C
 360 DO 380 J = I, N
 V(I,J) = 0.0D0
 V(J,I) = 0.0D0
 380 CONTINUE
C
 390 V(I,I) = 1.0D0
 G = RV1(I)
 L = I
 400 CONTINUE
C ACCUMULATION OF LEFT-HAND TRANSFORMATIONS

 410 IF (.NOT. MATU) GO TO 510
C FOR I=MIN(M,N) STEP -1 UNTIL 1 DO --
 MN = N
 IF (M .LT. N) MN = M
C
 DO 500 II = 1, MN
 I = MN + 1 - II
 L = I + 1
 G = W(I)
 IF (I .EQ. N) GO TO 430
C
 DO 420 J = I, N
 420 U(I,J) = 0.0D0
C
 430 IF (G .EQ. 0.0D0) GO TO 475
IF (I .EQ. MN) GO TO 460

DO 450 J = L, N
 S = 0.0D0
 DO 440 K = L, M
 S = S + U(K,I) * U(K,J)
 C DOUBLE DIVISION AVOIDS POSSIBLE UNDERFLOW
 F = (S / U(I,I)) / G
 DO 450 K = I, M
 U(K,J) = U(K,J) + F * U(K,I)
 CONTINUE
 DO 470 J = I, M
 U(J,I) = U(J,I) / G
 CONTINUE
 U(I,I) = U(I,I) + 1.0D0
500 CONTINUE

C DIAGONALIZATION OF THE BIDIAGONAL FORM
C FOR K=N STEP -1 UNTIL 1 DO --
510 DO 700 KK = 1, N
 K1 = N - KK
 K = K1 + 1
 ITS = 0
 C TEST FOR SPLITTING.
 FOR L=K STEP -1 UNTIL 1 DO --
520 DO 530 LL = 1, K
 L1 = K - LL
 L = L1 + 1
 IF (DABS(RV1(L)) + ANORM .EQ. ANORM) GO TO 565
C RV1(L) IS ALWAYS ZERO, SO THERE IS NO EXIT
C THROUGH THE BOTTOM OF THE LOOP
 IF (DABS(W(L1)) + ANORM .EQ. ANORM) GO TO 540
530 CONTINUE
C CANCELLATION OF RV1(L) IF L GREATER THAN 1
540 C = 0.0D0
 S = 1.0D0
 DO 560 I = L, K
 F = S * RV1(I)
 RV1(I) = C * RV1(I)
 IF (DABS(F) + ANORM .EQ. ANORM) GO TO 565
 G = W(I)
 H = DSQRT(F*F+G*G)
 W(I) = H
560 CONTINUE
C = G / H
S = -F / H
IF (.NOT. MATU) GO TO 560

C
DO 550 J = 1, M
 Y = U(J,L1)
 Z = U(J,I)
 U(J,L1) = Y * C + Z * S
 U(J,I) = -Y * S + Z * C
550 CONTINUE
C
560 CONTINUE
C TEST FOR CONVERGENCE
565 Z = W(K)
 IF (L .EQ. K) GO TO 650
C SHIFT FROM BOTTOM 2 BY 2 MINOR
 IF (ITS .EQ. 30) GO TO 1000
 ITS = ITS + 1
 X = W(L)
 Y = W(K1)
 G = RV1(K1)
 H = RV1(K)
 F = ((Y - Z) * (Y + Z) + (G - H) * (G + H)) / (2.0D0 * H * Y)
 G = DSQRT(F*F+1.0D0)
 F = ((X - Z) * (X + Z) + H * (Y / (F + DSIGN(G,F)) - H)) / X
C NEXT QR TRANSFORMATION
 C = 1.0D0
 S = 1.0D0
C
DO 600 I1 = L, K1
 I = I1 + 1
 G = RV1(I)
 Y = W(I)
 H = S * G
 G = C * G
 Z = DSQRT(F*F+H*H)
 RV1(I1) = Z
 C = F / Z
 S = H / Z
 F = X * C + G * S
 G = -X * S + G * C
 H = Y * S
 Y = Y * C
 IF (.NOT. MATV) GO TO 575
 DO 570 J = 1, N
 X = V(J,I1)
 Z = V(J,I)
 V(J,I1) = X * C + Z * S
 V(J,I) = -X * S + Z * C
570 CONTINUE
C
575 \[Z = \text{DSQRT}(F*F+H*H) \]
W(I1) = Z

C \[\ldots \ldots \text{ROTATION CAN BE ARBITRARY IF } Z \text{ IS ZERO } \ldots \ldots \]
IF (Z .EQ. 0.0D0) GO TO 580
C = F / Z
S = H / Z

580 \[F = C * G + S * Y \]
X = -S * G + C * Y
IF (.NOT. MATU) GO TO 600
DO 590 J = 1, M
 Y = U(J,I1)
 Z = U(J,I)
 U(J,I1) = Y * C + Z * S
 U(J,I) = -Y * S + Z * C
590 CONTINUE

C 600 CONTINUE
RV1(L) = 0.0D0
RV1(K) = F
W(K) = X
GO TO 520

C \[\ldots \ldots \text{CONVERGENCE } \ldots \ldots \]
650 IF (Z .GE. 0.0D0) GO TO 700

C \[\ldots \ldots \text{W(K) IS MADE NON-NEGATIVE } \ldots \ldots \]
W(K) = -Z
IF (.NOT. MATV) GO TO 700
DO 690 J = 1, N
 V(J,K) = -V(J,K)
690 CONTINUE
GO TO 1001

C \[\ldots \ldots \text{SET ERROR -- NO CONVERGENCE TO A } \]
C SINGULAR VALUE AFTER 30 ITERATIONS ... 1000 IERR = K
1001 RETURN
END