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ABSTRACT

A software has been developed for numerical refraction study based on finite
amplitude wave theories. Wave attenuation due to shodling, bottom friction, bot-
tom percolation and viscous dissipation has also been incorporated. The software
was successfully used to study the wave convergence causing erosion along the
Campat beach in Goa. It is user-interactive in FORTRAN 77 and can find various
applications.

INTRODUCTION

When deep water waves propagate into shallow water, they undergo
changes in wave height, length, celerity and direction of propagation due to
shoaling, refraction, bottom friction, bottom percolation, viscous dissipa
tion, etc. Coastal engineers are generally supplied with wave characteristics
at deep water or at some intermediate depth. The longshore sediment
transport rate is to be estimated based on the longshore wave energy flux
at breaking. Hence, it is important to accurately estimate wave transforma-
tion to evaluate the breaking wave characteristics. In the present study, a
software has been developed for computing the wave attenuation due to
shoaling, refraction, bottom friction, bottom percolation and viscous dissi-
pation using finite amplitude wave theories.

WAVE THEORY

Wave phenomenon is complex and difficult to describe mathematically.
The wave theories put forward by Airy {1] and Stokes [18] predict the
wave motion reasonably well in the region where the water depth is large
compared to the wavelength. The higher order wave theories [4,18] are
found satisfactory under certain circumstances in describing the waves. For
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shallow water regions, cnoidal wave theory [9] is generally used to predict
the wave form and associated motion. In very shallow regions, solitary
wave theory [2,7,8,11,15] can be used to describe the wave behaviour satis-
factorily. The regions of validity of various wave theories have been indi-
cated by Le Mehaute {10].

Using the third order equations, Miche {12] has given the following rela-
tionship for wave celerity:

c={gT2x)tanh kh{1+ 7 H/L)'K (D

where K=(5+2 cosh2kh+ 2cosh®2kh)A8 sinkt* kh); H=wave height;
{.= wavelength; g=acceleration due to gravity, T=wave period; and A wa-
ter depth.

The cnoidal solution for wave celerity, ¢ has been given by Svendsen
[19]:

c=(gh{1+ Alm))H/R}? L (2)

where

VA(m)=(2/m)— 1 -{3/m)Y E/K).

The wave celerity in solitary wave has been given by Svendsen [19]:

c={gh{1+ H/h)"S . (3)

Wave transformation

The assumptions made in éstimating the nearshore wave transformation
are: i) Waves are long crested and of constant period, ii) curvature of the
wave front is small, so that it has a negligible effect on the velocity of
propagation, iii) effects of wind, current and reflection from ueaches are
negligible, iv) changes in bottom topography are gradual, and v) there is no
crest breaking during propagation.

Figure 1 shows the volume of water enclosed over the full depth be-
tween the two adjacent orthogonals and two vertical sections perpendicular
to these orthogonals. Assuming that no energy propagates across the or-
thogonals:

szﬂ=b1Eﬂ_'AEl'2 '...(4)
where b, =distance between orthogonals at section (1); b,=distance be-

tween orthogonals at section (2); E, =energy flux at section 1; E, =energy
flux at section 2; and A E, , = loss of energy between sections 1 and 2.
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Fig. 1—Energy flux between sections through adjacent wave orthogonals

Shoaling

Assuming that the waves are approaching parallel to the straight and
parallel bottom contours and hence no refraction is encountered, we have
b= b,. Assuming the equation for wave energy flux wave energy flux (E
[20]:

K‘ ={ (‘“/2,],(.){).5

where n=0.5(1 +(2kh5sinh 2kh)) and K, = shoaling coefficient.

Refraction

Considering section 1 at deep water (h,; > 0.5 L;) and section 2 at de-
sired depth A

H/H[l = K,\'{bﬂ’fb)“ﬁ = K!'Kr v (6

where K,, the refraction coefficient =(b,/b)"3. For given bottom topogra-
phy and deepwater wave characteristics, the refracted orthogonals can be
plotted by geometrical procedure [16] or numerical methods [5,6,13,14,17|.

Considering that the dissipative forces are due to bottom friction. -
tom percolation and viscous dissipation, the mean energy flux betv  n the
orthogonals O, and O, in Fig, 2 is given by:

E,D;=(pgH?/16) ¢{1+ G) D, LT

‘where D, is the elementary length of wate front between the orthogonals.
Taking the ratio between Eq. (7) and the energy flux at deep-water arbit-
rary starting point:
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Fig. 2—System of wave orthogonals and fronts

H/H, =K, K, K 4 .. (8)
where
Kdis'__KprKv (9)

K., K, K, K,, K, are the shoaling, refraction, bottom fraction, bottom
percolation and viscous dissipation constants.

Numerical wave refraction

Based on the results of Skovgaard et al[17] Fig. 2 shows two adjacent
orthogonals O,, O, and two consecutive wave fronts F|, F, separated by
time interval dt. At point A, the infinitesimal distances between orthogon-
als and fronts are D,and D, respectively, where

D.=cdt . {10)

The distance s is taken as positive in the direction of wave propagation
and the positive direction of fis such that D, and D, form a right hand co-
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ordinate system. 6 is the angle from the X-axis to the orthogonal, positive
in anti-clockwise direction.

The basic equations for the wave orthogonal become:

dx/de=c cos Lo (1
dy/dt= csin# ... (12)
d8/dt={(dc/dx) sin@—{dc/dy) cos O L {13)

For the calculation of wave heights along the orthogonal, Munk and Ar-
thur [13] have derived a second order homogeneous ordinary differential
equation for the orthogonal separation factor (8), which can be written in
time fas:

(d® B/der)+ pln) (dB/dt)+ q{r) B=0 (1)
where

dc | _dc
p(t)—-Z(COSGEC—SIHBa—y) L 118)
g(t)=d(sin?83°c/ax*)—sin B @*c/dc dy)+(cos>6 9°c/dy*)] ... (16)
p=D,/Dst=K;? 7

Eqgs (11), {12), (13} and (14) with Eqs {15} and {16} can be solved numeri-
cally with proper initial boundary conditions.

Bottom friction, bottom percolation and viscous dissipation

The nonlinear first order differential equation [19] for bottom friction is:

8 dc ’
dKf/d!__(iﬁ)amfer L {18)
where
de ¢ G
—=- ... (19
dh hl+G (19)

The nonlinear first order differential equation [19] for bottom percolation
is:
dK 1 de

P kD=L
di C,dn'’” - 20)
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The nonlinear first order differential equation [19] for viscous dissipation
is:

dK, 4 ic:sinh2kh

" ) 21
dr TVah ST (21)

Formulation of nearshore wave transformation model

Numerical model TARANGAM has been developed for computing the
wave alteration due to bottom friction, percolation and viscous dissipation
in addition to shoaling and refraction effects. The model has been applied
to Goa coast and the results are discussed. The flow chart of the model
TRANGAM is shown in Fig. 3. For a given deep water wave characteris-
tics (H,, T, 6) and nearshore bathymetry, it computes the wave characteris-
tics at breaking or at any intermediate depth [3].
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Fig. 4—System of grids
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In using the finite amplitude wave theory, the selection of appropriate
wave theories for the different regions is classified according to the relative
water depth as shown below:

/L, Wave theory
>0.2 Stokes 11T order
0.2> =h/L,>0.05 Cnoidal

0.05> =h/L,>hb/L,  Solitary

Eqgs (1) to {3) were used for computing the wave celerity according to
different regions of wave theory. Eq. {(5) was used for computing wave
shoaling. The differential equations [Eqs (11) to ( 16}] were used for the nu-
merical estimation of wave refraction. The grid system is shown in Fig, 4,
where X-axis is parallel to the coastline, Y-axis is perpendicular to the
coastline and  is the angle of the wave orthogonal with the X-axis. The
differential equations [Eqgs (19)to (21)] are solved for obtaining bottom fric-

Fig. 5—Wave refraction—Goa coast
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tion, bottom percolation and viscous dissipation. The various inputs for the
model are given in Appendix-1.

Verification of the model

Figure 5 shows the part of Goa coast in Aguada Bay, where erosion is
reported during southwest monsoon near Youth Hostel and part of Caran-
zalem beach. The present model is used to identify the wave refraction and
the wave energy distribution along this coast. This nearshore bathymetry is
taken from the hydrographic survey carried out at the National Institute of
Oceanography, Goa. The inputs are the predominant wave direction WSW,
H,=2m, T=8s. The output shows convergence of wave orthogonals near
Youth Hostel and part of the Caranzalem beach, confirming actual field
observations, indicating concentration of wave energy leading to severe er-
osion of the shoreline. ’

CONCLUSION

The present study indicates that the use of finite amplitude wave theory
in the nearshore region is found to be appropriate. In addition to bottom
friction, the effects of bottom percolation and viscous dissipation are also
considered in the calculation of wave height dissipation. The percolation
loss may be considerable at certain segments of the Indian coast, where the
seabed consists of gravel for which KD>0.0005 m/s. Viscous dissipation
is considerable, especially along the Kerala coast, where the phenomenon
of mud bank occurs during monsoon. The numerical model TARANGAM
can be used for estimating nearshore wave characteristics from known
deep water wave parameters. ~
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APPENDIX~1

Figure -+ shows the grid system adopted and accordingly the following inputs have to be ar-
ranged:

1.
. Total number of grids in Y direction =JYEND

. Contour depths at nodal points = D{IXEND.JYEND)
. Distance between the grids (metres)= SCA

. Slope of the seabed = SLOPE

. Starting point of wave orthogonal in X direction =X

. Starting point of wave orthogonal in Y direction=Y

. Deep water wave height im}=H

. Wave period (s)=T

. Direction of wave crest with X axis (deg)=THE

=RV R R e NV N SOV

11.
12.
13.
14.
15.

16

Total number of grids in X direction =IXEND

{wave crest 1o X axis anti-clockwise positive)
Wave theory = HIGHER
Timestep=T
Stop computation at = BREAKING/GIVEN DEPTH
Nikuradse roughness parameter = AKN
Permeability coefficient = AKD
Kinematic viscosity of water = ANU
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The computation stops if one of the following conditions arises
1. Wave steepness: H/L=0.172 tank kh
2. Breaking depth: db=1.28 Hb

3. Orthogonal reaches the sides/ shore/required depth.
The output of the model consists. of grid locations of the ortho

deformed wave crest direction, shoaling, refraction,
sipation coefficient and the resultant wave height.

gonals at different times,
friction, percolation and viscous dis-




