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Abstract 

The ocean wave system in nature is very complicated and physical model studies on 
floating breakwaters are expensive and time consuming. Till now, there has not been 
available a simple mathematical model to predict the wave transmission through floating 
breakwaters by considering all the boundary conditions. This is due to complexity and 
vagueness associated with many of the governing variables and their effects on the 
performance of breakwater. In the present paper, Adaptive Neuro-Fuzzy Inference 
System (ANFIS), an implementation of a representative fuzzy inference system using a 
back-propagation neural network-like structure, with limited mathematical representation 
of the system, is developed. An ANFIS is trained on the data set obtained from 
experimental wave transmission of horizontally interlaced multilayer moored floating 
pipe breakwater using regular wave flume at Marine Structure Laboratory, National 
Institute of Technology Karnataka, Surathkal, India. Computer simulations conducted on 
this data shows the effectiveness of the approach in terms of statistical measures, such as 
correlation coefficient, root-mean-square error and scatter index. Influence of input 
parameters is assessed using the principal component analysis. Also results of ANFIS 
models are compared with that of artificial neural network models. 
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1. Introduction 

There is a great volume of published work dealing with floating breakwaters ([Bishop, 
1982], [Harms, 1979], [Harris and Webber, 1968], [Homma et al., 1964], [Kennedy and 
Marsalek, 1968] and [Leach et al., 1985]), but it is noticed that there is a lack of a simple 
mathematical model to predict breakwater performance characteristics, such as the 
transmission coefficient. A number of studies has been carried out considering a floating 
breakwater in basic form with some assumptions common in hydrodynamics, which 
shows less improvement.  
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In the last two decades, floating breakwaters ([Mani, 1991], [McCartney, 1985], [Murali 
and Mani, 1997], [Sannasiraj et al., 1998] and [Sundar et al., 2003]) have generated a 
great interest in the field of coastal engineering, as they are less expensive compared to 
conventional type breakwaters. In addition, they have several desirable characteristics, 
such as, comparatively small capital cost, adoption to varying harbour shapes and sizes, 
short construction time and freedom from silting and scouring. Floating breakwaters 
could also be utilized to meet location changes, extent of protection required or seasonal 
demand. They can be used as a temporary protection for offshore activities in hostile 
environment during construction, drilling works, salvage operation, etc. For an effective 
design of floating pipe breakwater, it is necessary to study the hydrodynamic 
performance characteristics of this structure. Hence, a study on wave transmission of the 
floating pipe breakwater would provide a proper configuration to the structure. 

In recent years, the research interest in Artificial Neural Networks (ANN) has increased 
and many efforts have been made on applications of neural networks to various coastal 
engineering problems. An ANN in coastal/ocean engineering is commonly used by the 
researchers to predict ocean wave parameters like wave height, wave period, impact wave 
force, etc. ([Deo et al., 2001], [Deo and Jagdale, 2003], [Gunaydin, 2008] and [Londhe 
and Deo, 2003]). Apart from this, it has provided promising results in the prediction of 
tidal levels (Chang and Lin, 2006), damages to coastal structures (Mandal et al., 2007), 
depth of eroded caves in a seawall (Lee et al., 2009), seabed liquefaction (Jeng et al., 
2004), storm surges (Tseng et al., 2007), etc. The most significant features of neural 
networks are the extreme flexibility, due to learning ability and the capability of 
nonlinear function approximations. This fact leads us to expect neural networks to be an 
excellent tool for solving the motion characteristics of the floating pipe breakwater, while 
overcoming complexity and non-linearity associated with wave-structure interaction. 

Fuzzy inference systems are the most popular constituent of the soft computing area, 
since they are able to represent the human expertise in the form of IF antecedent THEN 
consequent statements. In this domain, the system behavior is modeled through the use of 
linguistic descriptions. Although the earliest work by Zadeh (1965) on fuzzy systems has 
not been paid the attention which it deserved in early 1960s, since then the methodology 
has become a well-developed framework. The typical architecture of fuzzy inference 
systems (FIS) is introduced by (Wang, 1994) and (Wang, 1997), Takagi and Sugeno 
(1985) and Jang et al. (1997). A fuzzy system having generalized bell membership 
function, product inference rule and weighted average defuzzifier has become the 
standard method in most applications. Takagi and Sugeno (1985) change the 
defuzzification procedure, where dynamic systems are introduced as defuzzification 
subsystems. 

Many researchers have developed a hybrid model by combining the neural network with 
fuzzy logic for solving coastal engineering problems ([Bakhtyar et al., 2008a], [Bateni 
and Jeng, 2007], [Chang and Chin, 2006] and [Kazeminezhad et al., 2005]). Ozger and 
Zekai (2006) have adopted dynamic fuzzy approach to identify the effect of wind speed 
on wave characteristics variations in an ocean wave generating system. Bakhtyar et al. 
(2008b) have concluded that the ANFIS model is more flexible than the FIS model, with 
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more options for incorporating the fuzzy nature of the real world system. Sylaios et al. 
(2009) have used Takagi-Sugeno (1985) rule based fuzzy inference system for 
forecasting wave parameters based on the wind speed and direction, and the lagged wave 
characteristics. They used subtractive clustering method to identify the initial and final 
antecedent fuzzy membership functions. Yagci et al. (2005) have used fuzzy logic 
method in breakwater damage ratio estimation. Erdik (2009) has applied the fuzzy logic 
approach in design of conventional rubble mound structures. However, it is observed that 
there are hardly any applications of soft computing tools on the wave transmission of 
floating breakwater. 

In the present paper, the performance of an ANFIS for predicting wave transmission 
coefficient of horizontally interlaced multilayer moored floating pipe breakwater 
(HIMMFPB) is investigated. Influence of input parameters is assessed using the principal 
component analysis (PCA). Results of ANFIS models are compared with that of artificial 
neural network models (Mandal et al., 2009). The paper is organized as follows—Section 
1 starts with the literature associated with floating breakwaters and applications of soft 
computing techniques in coastal engineering. Section 2 details wave transmission of 
floating breakwater and experimental HIMMFPB. Section 3 describes the structure of an 
ANFIS used. Data and application of an ANFIS are described in Section 4. Results and 
discussions are described in Section 5. Conclusions and acknowledgments are presented 
in Sections 6 and 7, respectively. 

2. Wave transmission of floating breakwater 

Floating breakwaters are based on the concept of either reflecting the wave energy or 
dissipating wave energy by an induced turbulent motion. In recent times, many types of 
floating breakwater models have been tested and some have been constructed and their 
prototype performances have been assessed. Floating breakwaters can be subdivided into 
five general types: Box, Pontoon, Mat, Tethered float and Pipe. The prime factor in the 
construction of the floating breakwaters is to make the width of the breakwater (in the 
direction of wave propagation) greater than one half the wavelengths and preferably as 
wide as the incident wavelength; else, the breakwater rides over the top of the wave 
without attenuating it. Also to be effective, the floating breakwater must be moored in 
place with both leeward and windward ties; otherwise it would sag off and ride over the 
incident wave. Pontoon and Box types of floating breakwaters belong to the first 
category, in which the wave attenuation is achieved by reflecting the wave energy. Mat 
and Tethered belong to the other category, in which wave energy dissipation is mainly 
due to drag from the resultant float in motion. Pipe breakwaters mainly dissipate the 
wave energy, and partly reflect and transmit the waves. 

2.1. About experimental HIMMFPB model 

The development of floating breakwaters by various investigations has been influenced 
by certain important features; large masses, large moment of inertia, and the 
combinations of two. Most of the literature indicates that the parameter “relative width” 
influences greatly the wave attenuation characteristics of the breakwater. 
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The details of the HIMMFPB are shown in Fig. 1 ([Deepak, 2006], [Hegde et al., 2007], 
[Jagadisha, 2007] and [Kamat, 2010]). The breakwater comprises of the rigid poly vinyl 
chloride (PVC) pipes. These pipes are placed parallel to each other with certain spacing 
between them in each layer and the adjacent layers are oriented at right angles to each 
other, so as to form an interlacing. Longitudinal pipes are placed along the direction of 
propagation of waves and transverse pipes are placed and tied perpendicular to 
longitudinal pipes. The length of the longitudinal pipes defines the width of the 
breakwater. It is felt that with proper number of layers, spacing of pipes and relative 
breakwater width, it is possible to achieve a considerable and effective attenuation of 
waves. Fig. 1 shows a pictorial representation of the HIMMFPB model in plan and 
section. The wave-specific parameters and structure-specific parameters considered in the 
experiments are shown in Table 1. The experimental study carried out by Kamat (2010) 
shows hydrodynamic characteristics of horizontally interlaced three and five layer 
floating breakwater systems, in which the wave transmission is less for five layer 
systems. These experimental data are divided into two sets, one for training and other for 
testing the ANFIS models (Table 2). 

 
Fig. 1. HIMMFPB model setup. 

Table 1. Range of wave-specific and structure-specific parameters used in HIMMFPB. 
Wave-specific parameters Experimental range 

Incident wave height, Hi (mm) 30, 60, 90, 120, 150, 180 

Wave period, T (s) 1.2, 1.4, 1.6, 1.8, 2.0, 2.2 

Depth of water, d (mm) 400, 450, 500 

Structure-specific parameters Experimental range 

Diameter of pipes, D (mm) 32 

Ratio of spacing to diameter of pipes, S/D 2, 3, 4 and 5 
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Wave-specific parameters Experimental range 

Relative breakwater width, W/L 0.4–2.65 

Number of layers, n 5 

 
Table 2.  Data used for training and testing the network models. 

S/D ratio Data for training Data for testing Total data 

2 609 203 812 

3 576 233 809 

4 366 143 509 

5 581 234 815 

Combined total 2132 813 2945 

 

3. ANFIS architecture 

Inspired by the idea of basing the fuzzy logic inference procedure on a feed forward 
network structure, Jang (1993) proposed a fuzzy neural network model—the Adaptive 
Neural Fuzzy Inference System or semantically equivalent, Adaptive Network-based 
Fuzzy Inference System (ANFIS), whose architecture is shown in Fig. 2. Jang (1993) 
reported that the ANFIS architecture can be employed to model nonlinear functions, 
identify nonlinear components on-line in a control system, and predict a chaotic time 
series. It is a hybrid neuro-fuzzy technique that brings learning capabilities of neural 
networks to fuzzy inference systems. The learning algorithm tunes the membership 
functions of a Sugeno-type Fuzzy Inference System, using the training set of input–
output data. A detailed coverage of an ANFIS can be found in Jang (1993), Jang et al. 
(1997) and Srinivasan and Nigam (2008). The ANFIS, from the topology point of view, 
is an implementation of a representative fuzzy inference system using a back-propagation 
neural network-like structure. It consists of five layers. The role of each layer is briefly 
presented as follows: let denote the output of the node i in the layer l and xi is the ith input 
of the ANFIS, i=1, 2, …, p. In layer 1, there is a node function M associated with every 
node   

l
iO  = iM ( )ix    (1)      
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Fig. 2. ANFIS structure. 

 
The role of the node functions M1, M2, …, Mq here is same as the membership functions 
μ(x) used in the regular fuzzy systems, and q is the number of nodes for each input. 
Generalized bell membership function is the typical choice. The adjustable parameters 
that determine the positions and shapes of these node functions are referred to as the 
premise parameters. The output of every node in layer 2 is the product of all the incoming 
signals 
 

2
iO  = ( ) ( )jjll xMANDxM                                                                                          (2) 

Each node output represents the firing strength of the reasoning rule. In layer 3, each of 
these firing strengths of the rule is compared with the sum of all the firing strengths. 
Therefore, the normalized firing strengths are compared in this layer as 
 

  3
iO  = 

∑i i

i

O
O

2

2

                                                                                                              (3) 

Layer 4 implements the Sugeno-type inference system, i.e. a linear combination of the 
input variables of an ANFIS x1, x2, …, xp plus a constant term c1, c2, …, cp, from the 
output of each IF−THEN rule. The output of the node is a weighted sum of these 
intermediate outputs 
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iO  = 3

iO  ( )∑
=

+
p

j
jjj cxP

1
                                                        (4) 

where parameters P1, P2, …, Pp and c1, c2, …, cp, in this layer are referred to as the 
consequent parameters. The node in layer 5 produces the sum of its inputs, i.e. the 
defuzzification process of the fuzzy system (using weighted average method) and is 
obtained as 

   5
iO  = ∑

i
iO4                                                                                                                   (5) 

The present paper considers the ANFIS structure with first order Sugeno model 
containing 27 fuzzy rules and 3 generalized bell membership functions for ANFIS1, 
ANFIS2, ANFIS3 and ANFIS4 models, whereas for ANFIS5 model 81 fuzzy rules and 3 
generalized bell membership functions are used. At the fuzzification level, all ANFIS 
models use product inference rule and hybrid learning algorithm that combines least 
square method with gradient descent method to adjust the parameter of membership 
functions, whereas weighted average is used as defuzzifier. 

4. Data and fuzzy logic approach 

Data used to train and test all ANFIS models are obtained from physical model 
experiments on HIMMFPB using the regular wave flume at the Marine Structure 
Laboratory, National Institute of Technology Karnataka, Surathkal, India ([Deepak, 
2006], [Hegde et al., 2007] and [Jagadisha, 2007]). The input parameters that influence 
the wave transmission (Kt) of floating pipe breakwater, such as spacing of pipes relative 
to pipe diameter (S/D), breakwater width relative to wave length (W/L), incident wave 
relative to water depth (Hi/d) and incident wave relative to wave length (Hi/L) are 
considered. Based on the above input parameters, six ANFIS models are constructed to 
predict the transmission coefficient of HIMMFPB as shown in Table 3. 

Table 3. ANFIS models with input parameters. 
Model S/D ratio Input parameters 

ANFIS1 2 W/L, Hi/d, Hi/L 

ANFIS2 3 W/L, Hi/d, Hi/L 

ANFIS3 4 W/L, Hi/d, Hi/L 

ANFIS4 5 W/L, Hi/d, Hi/L 

ANFIS5 Total S/D, W/L, Hi/d, Hi/L

ANFIS6 Total S/D, W/L, Hi/d 
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W/L, Hi/d, Hi/L and Kt are used as a training data to train ANFIS1, ANFIS2, ANFIS3 and 
ANFIS4 network having an S/D ratio as 2, 3, 4 and 5, respectively. Experimental analysis 
shows that Kt is better with an increase in S/D ratio, in this regard to study over a range of 
an S/D on Kt, an input parameter, S/D is added to form an ANFIS5 model. An ANFIS6 
model is the same as ANFIS5 model without Hi/L parameter. The number of data used 
for training and testing for all ANFIS models is shown in Table 3. The codes are written 
in MATLAB 7 Release 14. 

From the experimental data, surface graphs are obtained to show the variation of Kt (Z-
axis) with respect to various two parameters (X- and Y-axis) at a time (Fig. 3). The same 
set of data is used to train the ANFIS models. In all these figures, Kt is same and depicts 
the non-linearity and complexity associated in mapping input and output parameters of 
HIMMFPB. 
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Fig. 3. Variation of measured Kt: (a) S/D & W/L, (b) S/D & Hi/d, (c) S/D & Hi/L, (d) 
W/L & Hi/d, (e) W/L & Hi/L and (f) Hi/d & Hi/L.  
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The flowchart of an ANFIS procedure used in the present paper is shown in Fig. 4. In the 
first step, initialization of the fuzzy system is done using genfis1 command, which 
specifies the structure and initial parameters of the fuzzy inference system (FIS) with 
training data matrix, number of membership functions and membership function type 
associated with each input. In the above, the number of membership functions is 
determined by trial and error. In the second step, parameters for learning are set with the 
number of iterations and tolerance. Once the learning parameters are set, an anfis 
command is used for learning, an anfis uses a hybrid learning algorithm to identify 
parameters of sugeno-type fuzzy inference systems. 

 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 

Fig. 4. ANFIS procedure. 
 

 
 

Fig. 4. ANFIS procedure 

An ANFIS distinguishes itself from normal fuzzy logic systems by the adaptive 
parameters, i.e. both the premise and consequent parameters are adjustable. The most 
remarkable feature of the ANFIS is its hybrid learning algorithm. The adaptation process 
of the parameters of the ANFIS is divided into two steps. For the first step of consequent 
parameters training, Least Squares method (LS) is used because the output of an ANFIS 
is a linear combination of the consequent parameters. The premise parameters are fixed at 
this step. After the consequent parameters have been adjusted, the approximation error is 
back-propagated through every layer to update the premise parameters as the second step. 
This part of the adaptation procedure is based on the gradient descent principle, which is 
the same as in the training of the back-propagation neural network. The consequent 
parameters identified by the LS method are optimal in the sense of least squares under the 
condition that the premise parameters are fixed. Therefore, this hybrid learning algorithm 
is more effective than the pure gradient decent approach, as it reduces the search space 
dimensions of the original back propagation method. The pure back propagation learning 

Initialize the fuzzy system 
Use genfis1 or genfis2 commands 
 

Give the parameters for learning 
Number of Iterations (epochs) 
Tolerance (error) 

 
 

Start learning process 
Use command anfis 
Stop when tolerance is achieved 
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With independent data 
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process could easily be trapped into the local minima. When compared with employing 
either one of the above two methods individually, the ANFIS converges with a smaller 
number of iteration steps with this hybrid learning algorithm. Once the tolerance is 
achieved, the learning process is stopped and validation is carried out by testing data set 
to compare the efficiency of the ANFIS model with an actual system. 

In the present paper, three generalized bell membership functions have been assigned to 
each input variables as the initial membership function and is obtained by 

   
i

i

i

A b

a
cX

X

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ −
+

=
2

1

1)(μ                                                                                         (6) 

where {} is the premise parameters set that changes the shape of the membership 
function with maximum equal to 1 and minimum equal to 0 and X is the input variable. 
The physical meaning of the parameters in bell membership function is given in Fig. 5, 
where a=half width of the bell function, b=slope at the crossover point (where degree of 
membership=0.5) and c=center of corresponding membership function. Each input 
variable is classified into three fuzzy categories with linguistic attributes as Lowi, 
Mediumi and Highi (i=1–3 for ANFIS1, ANFIS2, ANFIS3 and ANFIS4 models, whereas 
for an ANFIS5 model, i=1–4). Initial values of premise parameters before learning are set 
in such a way that the centers of the membership functions are equally spaced along the 
range of each input variable. Fig. 6 shows the initial membership function before learning 
for an ANFIS5 model associated with 4 inputs S/D, W/L, Hi/d and Hi/L. As the training 
process takes place values of a, b and c change, the bell shaped function vary 
accordingly, thus exhibiting various forms of membership functions on linguistic 
attributes Ai. Fig. 7 shows the final membership function after training for an ANFIS5 
model. Table 4 lists the linguistic attributes Ai and the corresponding premise parameters 
for an ANFIS5 model. The hybrid learning algorithm that combines least square method 
with gradient descent method is used to adjust the parameters of the membership 
function. 
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Fig. 5. Physical meaning of the parameters in the bell membership function.  
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Fig. 6. Initial membership functions of input parameters (X-axis) for an ANFIS5 model: 
(a) S/D, (b) W/L, (c) Hi/d and (d) Hi/L.  
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Fig. 7. Final membership functions of input parameters (X-axis) for an ANFIS5 model: 
(a) S/D, (b) W/L, (c) Hi/d and (d) Hi/L..  
 

Table 4. Premise parameters for an ANFIS5 model. 
A ai bi ci 

Low1 0.7534 1.9998 2.0027

Medium1 0.7492 2.0001 3.5021

High1 0.7465 2.0003 5.0025

Low2 0.5635 1.9998 0.3999

Medium2 0.5655 1.9998 1.5219

High2 0.5680 1.9997 2.6477

Low3 0.0311 2.0016 0.0645

Medium3 0.1087 2.0017 0.2110
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A ai bi ci 

High3 0.1425 1.9989 0.4232

Low4 0.0122 0.0007 0.0000

Medium4 0.0118 1.9994 0.0449

High4 0.0405 1.9992 0.0874

 

Fig. 8 shows the fuzzy rule architecture for an ANFIS5 model with generalized bell 
membership function. The architecture shown in Fig. 8 consists of 81 fuzzy rules and 3 
generalized bell membership function associated with 4 inputs S/D, W/L, Hi/d and Hi/L, 
whereas ANFIS1, ANFIS2, ANFIS3 and ANFIS4 model consists of 27 rules and 3 
generalized bell membership function associated with three inputs W/L, Hi/d and Hi/L. 
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Fig. 8. Fuzzy rule architecture of the generalized bell membership function for an 
ANFIS5 model. 

In ANFIS models, product inference rules are used at the fuzzification level and weighted 
average is used as defuzzifier. 

The fuzzy THENIF − rules for ANFIS4 model after training is shown in Table 5. 
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Rule1: If W/L is Low and Hi/d is Low and Hi/L is Low then,  
 
Kt = Xc

rr .1           (7) 

where X
r

= [W/L, Hi/d, Hi/L, 1] and icr  is the thi row of the consequent parameter 
matrixC , as shown below. 

 
 
 
 
 
 
 
 
 
 
 
   
.  
 

 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 

 
 

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

=

-0.1971-6.22253.66930.1326-
-0.44602.63072.00680.9720-
-5.59730.1986-0.97027.1512
-1.3002-4.15976.42880.0532
0.7510-2.46106.37360.5506-
4.09872.1870-1.25612.1517-
4.63690.08171.22836.8129
-1.1065-12.453114.90030.0299-
3.1411-16.1056-18.83560.3445-
0.4715-2.44690.82930.1456-
0.065317.9905-2.08540.3424
5.709424.370110.69477.2845-
-0.500312.2483-0.13350.0506
0.7287-20.66454.09680.2997-
2.009782.7353-15.08190.0706-
8.6854-0.4962-17.54334.0613
-0.98579.3327-2.51810.6096
1.539126.72732.61890.6248-
-0.03112.48402.25970.5679-
1.440124.0908-4.86970.0590-
-12.9159-12.181747.16442.8564-
-1.316929.4500-2.56860.8873
1.2034-14.40432.09670.7276-
1.1323-0.08680.88940.3117
0.61220.7491-4.54676.9865
-1.1623-66.738030.46730.0301-
1.917329.4654-9.69060.2681-

C
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Table 5. Fuzzy IF−THEN rules after training for an ANFIS4 model. 
Rule W/L Hi/d Hi/L Kt

1 Low Low Low  

2 Low Low Medium  

3 Low Low High  

4 Low Medium Low  

5 Low Medium Medium  

6 Low Medium High  

7 Low High Low  

8 Low High Medium  

9 Low High High  

10 Medium Low Low  

11 Medium Low Medium  

12 Medium Low High  

13 Medium Medium Low  

14 Medium Medium Medium  

15 Medium Medium High  

16 Medium High Low  

17 Medium High Medium  

18 Medium High High  

19 High Low Low  

20 High Low Medium  

21 High Low High  

22 High Medium Low  

23 High Medium Medium  

24 High Medium High  

25 High High Low  
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Rule W/L Hi/d Hi/L Kt

26 High High Medium  

27 High High High  

 

5. Results and discussion 

To study effectiveness of the approach, statistical comparison of measured and predicted 
values of Kt, correlation coefficient (CC) is used, which is defined as 

       CC = 

( ) ( )

( ) ( )
2

1

2

1

1

∑∑

∑

==

=

−×−

−−

N

i
tptpi
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i
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i
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KKKK
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                                                                                   (8) 

where Ktmi and Ktpi represents the measured and predicted wave transmission coefficient, 
respectively, and are the mean value of measured and predicted observations, N is the 
number of observations. Higher the CC value better is the agreement between the 
measured and predicted values of Kt. Apart from this, other statistical measures computed 
are root-mean-square error (RMSE), and scatter index (SI). These are defined as 
 

                             RMSE = ( )
2

1

1 ∑
−

−
N

i
tpitmi KK

N
                 (9) 

 

                                SI  = 
tmK

RMSE                (10) 

Statistical measures computed using trained and test data are shown in Table 6, trained 
and test data are used to compare the models results, all the ANFIS models have shown 
CCs higher than 0.9600 for trained data, whereas in case of test data it is more than 
0.9500. RMSE is less than or equal to 0.044187 for training data and 0.051074 for test 
data, whereas the SI is less than or equal to 0.087728 for trained data and 0.102296 for 
test data. The trained and test results (CCs) of all ANFIS models are shown in Table 6 
and [Fig. 9], [Fig. 10], [Fig. 11], [Fig. 12] and [Fig. 13]. Experimental data show that Kt 
is better with an increase in S/D values, but it is noticed that the CCs between measured 
and predicted Kt increase with an S/D for ANFIS1, ANFIS2 and ANFIS3 models, 
whereas it is not true in case of an ANFIS4 model. Even though there is an improved 
relation with an increase of an S/D as seen from ANFIS1, ANFIS2 and ANFIS3 (Table 
6). An ANFIS4 shows marginally lower values of CCs. This also indicates that an 
ANFIS3 model shows optimal Kt prediction in the present study. The highest correlation 
coefficient (CC Train=0.9786, CC Test=0.9698) is obtained for an ANFIS3 model. 
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Increase or decrease in an S/D ratio does not show a clear relation in an increase or 
decrease of CCs, RMSE and SI estimated for train and test data. Taking this into view, it 
was decided to study over a range of an S/D on Kt. An input parameter, an S/D is added to 
form an ANFIS5 model (Table 3). 

Table 6.  ANFIS models with statistical measures for train and test data. 

Model CC Train CC Test Train data  Test data  
 

   RMSE SI RMSE SI 

ANFIS1 0.9649 0.9510 0.044187 0.087728 0.051074 0.102296 

ANFIS2 0.9706 0.9528 0.031676 0.059149 0.038682 0.072278 

ANFIS3 0.9786 0.9698 0.026438 0.044892 0.030780 0.053178 

ANFIS4 0.9776 0.9674 0.032783 0.049827 0.039505 0.060767 

ANFIS5 0.9723 0.9635 0.037269 0.065217 0.043068 0.076833 

ANFIS6 0.9469 0.9378 0.05127 0.089716 0.055775 0.099503 
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Fig. 9. Comparison of predicted and measured Kt for an ANFIS1 model: (a) Trained Data 
and (b) Test Data.  
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Fig. 10. Comparison of predicted and measured Kt for an ANFIS2 model: (a) Trained 
Data and (b) Test Data.  
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Fig. 11. Comparison of predicted and measured Kt for an ANFIS3 model: (a) Trained 
Data and (b) Test Data.  
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Fig. 12. Comparison of predicted and measured Kt for an ANFIS4 model: (a) Trained 
Data and (b) Test Data.  
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Fig. 13. Comparison of predicted and measured Kt for an ANFIS5 model: (a) Trained 
Data and (b) Test Data.  
 

In order to assess the influence of input parameters, principal component analysis (PCA) 
is carried out. PCA is simple, non-parametric method for extracting relevant information 
from confusing data sets (Shlens, 2009). It transfers the data set onto different axes 
orthogonal to each other in the data space. The projections of the data on those vectors 
are the principal components and are found by calculating the eigenvectors of the data 
correlation matrix. The corresponding eigen values give an indication of the amount of 
information that the respective principal components represent. Thus by discarding those 
components, which explains a negligible part of the data variance, a high rate of data 
compression can be obtained. 

PCA estimates eigen values and variances of four non-dimensional parameters for each 
component, as shown in Table 7. The first component alone accounts for 84.914% of the 
total variance, the second component alone accounts for 14.431% and the 3rd and 4th 
components together account less than 1%, respectively. According to PCA, the first two 
components together account more than 99%. The factorial weights of the four 
components are shown in Table 8. This shows the first principal component has strong 
relation to the S/D, and the second principal component has strong relation to W/L. In 
fact, first principal component reflect the porosity parameter accounts for 84.914% of the 
total variance and the second principal component reflects the relative breakwater width, 
which accounts for 14.431%. From this study it is observed that Hi/L is the least 
influential parameter. 
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Table 7. Principal component analysis. 
Principal components numbers PC1 PC2 PC3 PC4 

Eigen value 1.35350 0.23002 0.01038 0.00005 

% Variance 84.914 14.431 0.652 0.003 

Cumulative % variance 84.914 99.345 99.997 100.000 

 
Table 8. Factor loading of principal components. 

Input parameters PC1 PC2 PC3 PC4 

S/D −0.99991 0.01327 0.00107 0.00025 

W/L 0.01328 0.99966 −0.02056 −0.00944 

Hi/d 0.00074 −0.02164 −0.99089 −0.13293 

Hi/L 0.00048 0.00661 −0.13310 0.99108 

 
Based on the PCA study considering the first three input parameters, an ANFIS6 model 
shows CC of Kt, for Train=0.9469 and for Test=0.9378 (Table 6 and Fig. 14) 
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Fig. 14. Comparison of predicted and measured Kt for an ANFIS6 model: (a) Trained 
Data and (b) Test Data.  
 

After conducting computer simulation on trained and test data of an ANFIS5 model, CCs 
are calculated between measured and predicted Kt are shown in Table 6 and Fig. 13. An 
ANFIS5 model predictions are very realistic when compared with the measured values 
(CC Train=0.9723, CC Test=0.9635), whereas the RMSE and SI are 0.037269 and 
0.065217 for train data, and 0.043068 and 0.076833 for test data, respectively. An 
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ANFIS5 model performed better than ANFIS1 and ANFIS2 models, whereas the 
performance is almost same when compared with ANFIS3 and ANFIS4 models. 
Performance of an ANFIS model depends upon the input parameters chosen to train the 
model. Considering an S/D as an input parameter, there is a better CC between measured 
and predicted Kt when compared with ANFIS1 and ANFIS2. This clearly proves that an 
S/D plays an important role to train ANFIS5 model to map an input–output relation. 

From ANFIS5 and ANFIS6, CCs of Kt show very little variation as Hi/L is the least 
influential parameter. 

The same data set had been used for estimating Kt using an ANN (Mandal et al., 2009). 
CCs of Kt are shown in Table 9. From Tables 6 and 9, it is observed that the ANFIS 
models yield higher CCs as compared to that of ANN models. 

Table 9. ANN models with correlation coefficients of Kt. 
Model S/D Ratio CC Train CC Test

ANN1 2 0.9552 0.9504 

ANN2 3 0.9506 0.9404 

ANN3 4 0.9642 0.9601 

ANN4 5 0.9672 0.9649 

ANN5 Total 0.9537 0.9488 

 

6. Conclusions 

Prediction of the wave transmission coefficient is necessary in order to design a floating 
breakwater. Researchers have carried out tremendous work dealing with floating 
breakwater, but they failed to give a simple mathematical model for these structures to 
predict the wave transmission. Number of studies has been carried out considering a 
floating breakwater with a simple form by introducing certain simplifying assumptions, 
which shows less improvement. In this paper, ANFIS models are developed to predict the 
wave transmission of HIMMFPB. The input parameters that influence the Kt of 
HIMMFPB such as S/D, W/L, Hi/d and Hi/L are considered. Based on these input 
parameters, six ANFIS models are constructed to predict the transmission coefficient of 
HIMMFPB. In ANFIS1, ANFIS2, ANFIS3 and ANFIS4 structures first order Sugeno 
model containing 27 rules and 3 generalized bell membership functions are used, whereas 
for ANFIS5 structure first order Sugeno model containing 81 rules and 3 generalized bell 
membership functions are used. All ANFIS models use product inference rule at the 
fuzzification level and the weighted average is used as defuzzifier. Hybrid learning 
algorithm that combines least square method with gradient descent method is used to 
adjust the parameters of the membership function. 
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Computer simulation on train and test data of all ANFIS models shows the effectiveness 
of the approach in terms of statistical measures, such as correlation coefficient, root mean 
square error and scatter index. 

Based on the PCA, it is observed that S/D and W/L are the most significant parameters. 
Whereas Hi/L is the least influencing parameter and variation of correlations (ANFIS5 
and ANFIS6 models) is negligible. It is also concluded that S/D and W/L play an 
important role as inputs for training ANFIS models. 

ANFIS models outperformed ANN models for predicting Kt. 

Trained ANFIS can be utilized to provide a fast and reliable solution in prediction of the 
wave transmission for HIMMFPB, thereby making ANFIS as an alternate approach to 
map the wave-structure interactions of HIMMFPB. 
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