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ABSTRACT 

An algorithm to determine the spectral total absorption coefficient of water is presented. The algorithm is based on the
Gershun’s equation of	ܽ =  ா. The spectral underwater average cosine, μ and vertical attenuation coefficient of netܭߤ
irradiance, KE were obtained from radiative transfer simulations using Hydrolight with large in-situ measured data from
the coastal and estuarine waters of Goa. A refined algorithm of spectral μ as in Ref. [1] is used to determine the  spectral 
underwater average cosine. The spectral KE was related to the diffuse attenuation coefficient, Kd. The algorithms to 
derive absorption were validated using an independent NOMAD optical data at wavelengths 412, 440, 488, 510, 532,
555, 650 and 676 nm. The performance of the algorithm was evident from the high R2, low bias and low RMSE. The
values of  R2 at wavelengths 412, 440, 488, 510, 532, 555, 650 and 676 nm were 0.95, 0.95, 0.93, 0.93, 0.88, 0.82, 0.62, 
and 0.65 respectively. The corresponding bias were  -0.0064, 0.0076, 0.0038, 0.0044, 0.0122, 0.0124, 0.0362, and 
0.0093 respectively. The algorithms for μ and KE provide the spectral weighted average within Z90 and have the
advantage of deriving the absorption coefficients from the satellite data.
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1. INTRODUCTION
Inherent optical properties (IOPs) form the basis of radiative transfer equation and helps in understanding the underwater
light fields. These IOPs are difficult to measure and model as compared to the apparent optical properties. The IOPs
depend only on the constituents in waters and often the constituents are used to characterize the IOPs. IOPs such as
absorption, scattering and beam attenuation can be modeled in terms of the constituents and their contributions. Since the
apparent optical properties (AOPs) are easier to measure, AOPs are often used to model the IOPs2.

There are two types of algorithms to determine the total absorption of water, one that total up the contribution from 
various components and the other that determine the total absorption, without separating the contributions of the
components in water. The contributions to total absorptions are from water itself (pure water), algal particles 
(chlorophyll and detritus), dissolved material, and non-algal particles. Most of the available semi-analytical and 
empirical algorithms derive the absorption of these constituents. Since the absorption coefficient like most of the IOPs is
additive, the total absorption is then calculated by summing up the absorption coefficients of all the components. There
are various algorithms available that uses both the approaches3.

One of the earliest method to derive the total absorption coefficient used chlorophyll alone, assuming the co-variations of 
all other components with chlorophyll4. These methods are mostly applicable to Case 1 water types or open ocean and 
often fail for coastal water due to the complex nature of the variations of optical properties and also as chlorophyll do not 
correlate with other components at all times in these coastal waters. 
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Some methods which have gained attention to derive total absorption and claim to be applicable for all water types. 
These methods include the nonlinear statistical method are those by Garver and Siegel5, Maritorena6, the constrained 
linear matrix inversion developed by Hoge and Lyon and modified by Boss and Roesler7,8 and the quasi-analytical model 
(QAA)9. These models derive absorptions of each components. They have been implemented in SeaDAS software and 
are widely used  for deriving absorption from ocean color satellite data. Few algorithms are also available to determine 
total absorption coefficient10,11,12,13, however they are either available for a single wavelength or applicable within a 
specific spectral region of blue or green. 

The available algorithms for deriving total absorption coefficient had some limitations such as being region and 
wavelength specific and these prompted us to develop a new, simple, robust and spectral algorithm to derive total 
spectral absorption. It is based on the relationships derived from the radiative transfer model and can be used to derive 
absorption coefficient from ocean color satellite data. The algorithm described here determines the spectral total 
absorption of water, without finding the absorption of components. This algorithm is based on an explicit methods based 
on rigorous derivations from radiative transfer equation of Gershun14 that relate the IOP, total absorption to AOPs. 

 

2. METHODOLOGY 
2.1 Measurements 

The optical properties were measured from the coastal waters and the two estuaries of Goa, namely Mandovi and Zuari 
during the period 2010-2014 with total of 637 data records. The apparent optical properties were measured using an 
hyper-spectral radiometer Hyper-OCR (Satlantic, Canada) which provided profiles of downwelling irradiance, upwelling 
radiance ,diffuse attenuation coefficients ,surface remote sensing reflectance and surface solar irradiance in the spectral 
range of 350-800 nm. The surface irradiance data were available from a reference sensor mounted at a clear site on the 
boat. The surface remote sensing reflectance was measured deploying the instrument in float mode. The IOP profiles 
were measured using AC-9 (WetLabs, US) which provided spectral absorption and beam attenuation at nine wavelengths 
412, 443, 488, 510, 532, 555, 650, 676 and 715 nm. The Hydrolight simulations were carried-out with inputs from AC-9 
and the solar surface irradiance from the reference sensor of the radiometer. The simulations were carried-out as given in 
Ref [1]. 

 

2.2   Development 

 

 

 
 
 
 
 
 
 
 
 
 
 

       Figure 1 The approach towards the development of the algorithm 

 

Measured IOPs , AOPs and 
ancillary data  

(ߣ)ߤ 	= ,(ߣ)ݏݎܴ)݂	 ,(620)ݏݎܴ (ߠ
Hydrolight simulation 

(ߣ)ாܭ =  ((ߣ)ௗܭ)݂
(ߣ)ܽ = (ߣ)ாܭ(ߣ)ߤ +  (ߣ)ߝ
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Since the objective was to use the new algorithm for the satellite data, all the depth parameters used for the development 
and validation are the weighted averages within the first optical depth, ܼଽ଴(ߣ). The weighted averages were derived 
using the methods developed by Gordon15 and Sokoltesky16 and both matched closely. Since the NOMAD data used for 
validation were the weighted average data obtained using the method of Gordon15, the same method was adopted to 
calculate the weighted average for all the measured profile data. 

To develop a new algorithm, we opted to use the relationship of Gershun (See equation 5). Though the relationship seem 
simple, the measurements on optical parameters (ߣ)ߤ and ܭா(ߣ) were not available. Therefore, both these optical 
parameters (ߣ)ߤ and 	ܭா(ߣ) were first derived using empirical algorithms and then used in the Gershun's equation. The 
new empirical algorithm derived spectral total absorption at eight wavelengths 412, 440, 488, 510, 532, 555, 650 and 
676 nm. The approach is outlined in Figure.1. 

The spectral underwater average cosine (ߣ)ߤ was derived using a refined algorithm1 with larger data set. The new 
coefficients are given in Table 1. The model to derive (ߣ)ߤ is a function of spectral remote sensing,	ܴ(620)ݏݎܴ  ,(ߣ)ݏݎ 
and solar zenith angle, θ.			 (ߣ)ߤ = ଴ܲ+ ଵܲܺ(ߣ) + ଶܲܺ(ߣ)ଶ	 	 	 	 	 (ߣ)ܺ	(1) = ோೝೞ(ఒ)௅௢௚ሾோೝೞ(଺ଶ଴)ାோೝೞ(ఒ)ሿ ଵୡ୭ୱ	(ఏ)		 	 	 	 	 (2)	
 

The vertical attenuation for net irradiance ܭா(ߣ) is given as ܭா(ߣ) = −ௗ(୪୬ሾா೏(ఒ)ି	ாೠ(ఒ)ሿ)ௗ௭       (3) 

Considering  ܧ௨(ߣ) to be relatively negligible compared to ܧௗ(ߣ), ܭௗ(ߣ) is often found to be good  match for  ܭா(ߣ)17. 
Here ܭா(ߣ), which is derived from the Hydrolight simulations is related to  ܭௗ(ߣ) with a simple linear relation.  ܭா(ߣ) = ଴ܭ	  (4)       (ߣ)ௗܭଵܭ	+

Where Ko and K1 are the coefficients and their values are given in Table 2	
Though the exact equation of Gershun without Raman scattering,  is  ܽ(ߣ) =  (5)       (ߣ)ாܭ(ߣ)ߤ	

We have slightly tuned this equation with a bias , (ߣ)ܽ (ߣ)ߝ = (ߣ)ாܭ(ߣ)ߤ	 +  (6)      (ߣ)ߝ

Table 1. Revised coefficients used for deriving spectral underwater average cosine 

Lambda (nm) P0 P1 P2 

412 0.852 109.899 0.651 

440 0.853 119.825 14048.466 

488 0.838 126.575 14510.415 

510 0.839 107.811 9853.532 

532 0.835 98.753 7601.568 

555 0.831 90.895 5893.719 

650 0.836 96.217 6862.377 

676 0.844 92.647 5211.589 
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Table 2. Coefficients to derive KE from Kd  

Lambda 
(nm) 

K0 K1 ε 

412 0.867 0.871 -0.570 

440 0.570 0.866 -0.365 

488 0.294 0.773 -0.173 

510 0.244 0.742 -0.151 

532 0.224 0.659 -0.120 

555 0.190 0.554 -0.084 

650 0.485 0.377 -0.032 

676 0.878 0.502 -0.130 

 

2.3 Validation 

The absorption coefficients used for the validation excluded the contribution from pure water component, ie. ܽ௧(ߣ) (ߣ)ܽ= −	ܽ௪(ߣ). Validations of the algorithms were carried-out using the NOMAD data18. NOMAD is a publicly 
available,  high quality in situ bio-optical data measured from various waters over the globe and has been used often for 
the ocean color algorithm developments and also satellite data product validations. 
(http://seabass.gsfc.nasa.gov/wiki_files/NOMAD/files/nomad_seabass_v2.a_2008200.txt). The error analysis were 
carried out with statistical parameters such as bias, RMSE (root mean square error), coefficient of determination R2 and 
regression between model and NOMAD data (Equation 9).  

 
( )
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∑

      (7) 
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ܽேைெ஺஽(ߣ) = (ߣ)ெ௢ௗ௘௟ܽ(ߣ)݉ +  (9)      (ߣ)ܿ	

 

 

3. RESULTS AND DISCUSSION 
The results of the simulations using Hydrolight provided optical parameters that closely matched the measured data. The 
spectral ܼଽ଴(ߣ) and ܴ(ߣ)ݏݎ compared well with the measured for most of the stations (Fig. 2). This closure assured that 
the optical parameters derived from the Hydrolight that were not measured such as underwater average cosine (ߣ)ߤ, 
scalar irradiance,	ܧ௢(ߣ), attenuation coefficient of net irradiance, ܭா(ߣ) would match and agree closely with the optical 
properties of the same environment.  
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Figure 2. Comparison of the spectral ܴ(ߣ)ݏݎ (left) and	ܼଽ଴(ߣ) (right) derived from the Hydrolight and measurements 

 

The total absorption coefficient derived from the algorithm matched well with the NOMAD data at all eight wavelengths 
(Figure 3 and 4).  Most of the earlier algorithms have not reported its operation in the longer wavelengths and often the 
validation and performance measures are restricted to the green region till 555 nm13,19. 

 

                  
Figure 3. Comparison of the total absorption (excluding water component) derived from the model and the NOMAD 

data at 412 nm( left), 532 nm (middle) and 650 nm (right). 
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Figure 4. Comparison of spectral absorption derived from model and NOMAD data. 

 

Table 3. Error statistics of the absorption model. 

Lambda (nm) R2 Bias RMSE c m 
412 0.95 -0.00642 0.187 -0.00637 1.00076 
440 0.95 0.00760 0.161 -0.01047 0.99856 
488 0.93 0.00382 0.187 -0.01341 1.01707 
510 0.93 0.00441 0.190 -0.00905 1.00517 
532 0.88 0.01226 0.351 -0.03077 1.08687 
555 0.82 0.01243 0.441 -0.03607 1.16575 
650 0.62 0.03618 0.282 -0.04158 1.00357 
676 0.65 0.00930 0.263 -0.06451 1.18736 

 

The algorithm performed very well in the blue and green region while its performance was slightly degraded in red 
region of the spectrum. This could be attributed to the errors in the calibrations of the radiometer, errors in the closures 
of optical parameters derived from Hydrolight and the measured, measurement errors of AC-9 and the errors in 
algorithms to derive (ߣ)ߤ and ܭா(ߣ). This model performed better in the blue region unlike QAA which was reported to 
over-estimate even in the blue region19. 

The new algorithm to derive ܽ௧(ߣ) can be used to derive absorption coefficient using the optical parameters measured 
from the radiometer. To derive ܽ௧(ߣ) from the satellite data, it is first required to derive (ߣ)ߤ and  ܭௗ(ߣ). The selection 
of the best available algorithms to derive ܭ ,(ߣ)ߤௗ(ߣ) and to correct the atmospheric effects will result in the accurate 
estimation of absorption coefficient. The evaluations of various algorithms available to derive ܭௗ(ߣ) from the satellite 
have shown very poor performances of most algorithms to derive ܭௗ(ߣ) at the longer wavelengths20. Similarly, the 
empirical algorithm to determine (ߣ)ߤ have to be robust and determine (ߣ)ߤ with less errors at all wavelengths. Unlike ܭௗ(ߣ) which can be validated with measurements,  (ߣ)ߤ has the disadvantage, as the same cannot be measured and 
validated. 
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4. CONCLUSION 
The algorithm to derive the spectral total absorption coefficient was shown to perform well at all spectral ranges from 
412 to 676 nm. This algorithm has the following advantages: 

• The algorithm can be used for coastal waters and does not find the absorptions of each component to determine 
the total absorptions. 

• The algorithm given here is simple and can be applied to derive from satellite data with ease. 

• This algorithm can derive spectral total absorption at wavelengths in the visible range, from blue to even at 
longer wavelengths.   

Shortcomings of the algorithm 

• Presently can be used only at discrete wavelengths. 

• The absorption derived at lower wavelengths are better and gradually degrade in performance at longer 
wavelengths. 

• Does not evaluate the absorptions of the components. 

• The algorithm does not include the effects of inelastic or Raman processes and the same could also influence 
the errors, particularly at longer wavelengths. (Gordon). Since the Raman effect is more in the clear waters as 
compared to coastal and estuarine waters, the contributions due to this to the errors could be marginal20. 

Improvements and future work : 

• The algorithm needs to be compared with the other algorithms to evaluate its performance. 

• Presently the algorithm is suited for coastal or Case 2 type waters as the data used has been from the coastal and 
estuarine waters and the algorithms will have to be refined with wide range of data. 

• The algorithm will have to cater to hyper-spectral with closer spectral intervals and wider spectral range. This 
will help in the various applications such as retrieval of phytoplankton pigments, study of blooms and bio-
optical models. 

• Require algorithms that will allow determining spectral ܭௗ(ߣ) from satellite data with better accuracy. Earlier 
evaluations of algorithms to derive ܭௗ(ߣ) does not show any promising algorithms that will allow determining ܭௗ(λ)  at longer wavelengths with comparable accuracy as to the lower wavelengths.  

• Include inelastic scattering such as Raman scattering and fluorescence in the Hydrolight simulations and in the 
algorithm. Raman scattering could add to the errors in deriving total absorption using Gershun's relation at 
longer wavelength11. Even with the inclusion of Raman scattering correction the absorption will bear a similar 
form as equation 6 (Gordon 2009). 
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