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Abstract:  

A filamentous cyanobacterium, identified as Limnothrix sp. VL01, and a novel lytic cyanophage ‘Φ 

L-VL01’ that infects it, were isolated from a shallow freshwater lake located in Goa, India. 

Cyanophage-infected Limnothrix sp. VL01 demonstrated reduced growth and increased 

fragmentation of filaments, compared to uninfected control. Limnothrix sp. is known to form blooms 

in freshwater lakes. Φ L-VL01 could be a significant agent in controlling such blooms.  
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 Cyanobacterial blooms are on the increase worldwide, due to eutrophication of water bodies and 

rising global temperatures [1]. Filamentous cyanobacteria are frequently responsible for blooms, and 

lytic cyanophages are important agents of bloom control [2]. Limnothrix sp. is a common bloom-

forming filamentous cyanobacterium, with a worldwide distribution [3, 4]. It can dominate the 

cyanobacterial community in shallow, eutrophic lakes, often along with other filamentous forms such 

as Planktothrix agardhii. Further, Limnothrix sp. has been identified as a water contaminant, with 

strains proposed to show toxicity [5, 6]. The present study reports the isolation and characterization 

of Limnothrix sp. VL01 and its corresponding lytic cyanophage ‘L-VL01’, from a freshwater lake 

located in Goa, India.  

Water samples were collected from Verna Lake (15.347689, 3.945478) situated in the state of Goa, 

India. Verna Lake is the source of the river Sal, the only river which originates in Goa, and is a site 

favoured by migratory birds. With an average depth of 4 meters, the lake lies proximate to human 

habitation, is utilized in local agriculture and fishery activities, and is on the verge of eutrophication. 

From lake water samples, cyanobacterial cultures were isolated in BG-11 medium [7], purified by 

streaking on BG-11 + 1% agar plates, and made axenic by treatment with Tienam [8]. Cultures were 

maintained at 25°C, under a 16:8 light:dark cycle at irradiance between 10 and 20 μmol m-2 s-1. The 

strain used in the present study was morphologically examined under a compound microscope. 

Molecular-level identification was carried out by amplification of the 16S rDNA gene fragment [9], 

followed by nucleotide BLAST analysis and generation of a Neighbour-Joining phylogenetic tree. 

Water samples collected from Verna Lake were further screened for the presence of phages, using 

the isolated cyanobacteria as host. 0.22 µm-filtered water samples were added to host culture in the 

standard agar overlay technique [10]. Cyanophage plaques obtained on the agar plates were 

subjected to several rounds of purification, and thereafter, the pure phage stock was propagated in 

liquid and solid medium. Lysis of the host cyanobacteria in liquid medium was monitored by 

measuring the chlorophyll a concentration in test and control flasks over a period of 16 days. 

Chlorophyll a was extracted with methanol, measured spectrophotometrically and its concentration 

calculated by the following formula [11]:  

Chla [μg/ml] = 12.9447 (A665 − A720) 

The phage lysate was concentrated with 10% w/v PEG 8000 and purified by cesium chloride density 

gradient ultracentrifugation. 10 µl of purified phage was adsorbed onto a formvar-coated copper grid 

and stained with 2% (w/v) uranyl acetate, followed by viewing with a Jeol JEM 2100 200kV 

transmission electron microscope [12]. Genomic DNA was extracted from the purified phage lysate, 
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by the standard phenol-chloroform method [13]. PCR-amplification of the g20 gene, which encodes 

the portal protein of viruses belonging to the family Myoviridae was carried out with the primers 

CPS1 and CPS 8 [14].  

Cyanophage-infected and uninfected cyanobacterial filaments were observed under 100X and 1000X 

magnification on a Lynx optical microscope. Additionally, the filaments collected on 0.2-µm 

polycarbonate filters, were dehydrated in an ethanol series, mounted on an aluminium stub, sputter-

coated with gold particles and observed under a Zeiss Evo 18 scanning electron microscope.  

The filamentous cyanobacterium obtained in axenic culture was designated strain VL01. Strain 

VL01 comprised non-heterocystous, solitary, unsheathed filaments consisting of narrow, long, 

cylindrical, cells with gas vacuoles (Fig. S1), These morphological features were in concurrence with 

the description of the genus Limnothrix [15]. Nucleotide BLAST analysis of the 16S rDNA sequence 

of strain VL01 (Accession number MN808643.1) demonstrated 99.80% identity with Limnothrix sp. 

Phylogenetic analysis with comparative homologous sequences from GenBank, using the Neighbor-

Joining method, indicated that strain VL01 clustered with Limnothrix redekei (Fig. S2). Thus, the 

strain VL01 was designated Limnothrix sp. VL01. 

The genus Limnothrix is primarily a freshwater form, which has been isolated from rivers, lakes and 

ponds in various locations of the world [16–18]. The Limnothrix strain used in the present study was 

isolated from lake water. The serial dilution method used for establishing a unialgal culture, 

inherently selects for the fastest-growing or most robust form within the specific aquatic niche. This 

indicates Limnothrix sp. VL01 to be a potential bloom-former. Total phosphorus concentrations of 

0.15 mg/l have been observed in Verna Lake, which is six-fold above the threshold of 0.024 mg/l, 

above which increased proliferation of cyanobacterial blooms has been shown to be likely [19, 20]. 

Subsequent screening of lake water samples against Limnothrix sp. VL01 by the agar overlay 

method, resulted in clear plaques, indicating the presence of a lytic phage (Fig 1a). The plaques were 

purified and the isolated phage was designated ‘Φ L-VL01’. Φ L-VL01 demonstrated lysis of host in 

liquid medium (Fig. 1b), with an infective pattern similar to phages of other filamentous 

cyanobacteria [21–23]. Phage-infected host filaments turned from dark green to yellow, indicating 

their degradation. Further, phage-induced lysis of Limnothrix sp. VL01 was incomplete (Fig. 1b), 

and a residual growth of host filaments was observed. Incomplete lysis of filamentous host has been 

reported previously, in phage-infection of Planktothrix agardhii [21] and Aphanizomenon flos-aquae 

[23]. In comparison to the uninfected culture of Limnothrix sp. VL01, phage-infected culture 

demonstrated an 82 percent reduction in growth over 16 days, as indicated by chlorophyll a 
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concentration (Fig. 1c). The difference in growth rate between control and infected culture was 

visible from the second day post-infection. The lysis time reported for phages of filamentous 

cyanobacteria varies from twenty four hours [24] to eight days [21].  

TEM analysis of Φ L-VL01 revealed phage particles having a head-and-tail structure. The 

icosahedral head measured approximately 50 nm in diameter (Fig. 2a). Cyanophages of filamentous 

cyanobacteria reported in literature have depicted a variety of head and tail morphologies (Table 

S1). The g20 gene coding for the portal protein of myoviruses was amplified from the lysate of 

cyanophage L-VL01. Fig. 2b shows the PCR product of expected size around 600 bp. Presence of 

the g20 marker indicates that L-VL01 belongs to the family Myoviridae.  

Under a scanning electron microscope, control filaments of strain VL01 were intact, with cells joined 

end-to-end (Fig. 3a), whereas in the case of virus-infected filaments, cells were detached (Fig. 3b). 

A similar pattern had been observed under an optical microscope as well (Fig. S3). Fragmentation of 

host filaments following phage infection has been reported in several cyanobacterial species, notably, 

Planktothrix sp. [21], Cylindrospermopsis raciborskii [25] and Aphanizomenon flos-aquae [23].  

Fragmentation of cyanobacterial filaments (trichomes) into shorter “hormogonia” is a common mode 

of reproduction in filamentous cyanobacteria [26]. In addition, the formation of hormogonia 

facilitates dispersal. Hence, the phenomenon of fragmentation following viral infection, could be a 

survival strategy of the host cyanobacterium. 

The incidence of cyanobacterial blooms worldwide has increased, due to increased eutrophication 

and global warming. Although Limnothrix sp. is a known bloom former and toxin producer, there 

have been limited attempts to isolate phages infecting members of this genus. The only such report 

was of Φ L-DHS1, infecting Limnothrix planktonica strain DH5, which was isolated from Lake 

Donghu, China [27]. In the context of the present study, the occurrence of Limnothrix blooms would 

be deleterious to the existing aquatic community including fish that thrive in Verna Lake. From this 

perspective, the isolation of a lytic cyanophage which could regulate uncontrolled proliferation of 

Limnothrix sp., assumes significance. The first reported Limnothrix phage, Φ L-DHS1, demonstrated 

structural uniqueness among tailed phages [27]. The present study has highlighted certain functional 

aspects of the isolated phage, Φ L-VL01, such as its infectivity characteristics and potential to 

suppress the growth of its bloom-forming host. Attempts to increase the titre of the phage are in 

progress, which would facilitate its genome analysis, thus giving further insight into the 

characteristics of Φ L-VL01.  
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Although freshwater systems were critical in the discovery of cyanophages [28], a disproportionate 

number of cyanophage studies today have come from marine environments [29]. The study of 

freshwater cyanophages from a functional perspective, is important, as they are distinct from their 

marine counterparts, even though they share the basic viral morphologies [30]. In the Indian context, 

cyanobacterial blooms, though common, have not been extensively researched.  Previous studies 

have largely concentrated on the production of microcystins [31, 32].  

The isolation and characterization of novel viruses is a critical area in aquatic virus research. 

Laboratory studies on individual virus-host systems enable a better understanding of the contribution 

of viruses to the aquatic ecology [33]. At present, in the field of aquatic virology, the primary focus 

is on metagenomic investigations at the ecosystem level. Metagenomic studies are constantly 

uncovering an array of novel viruses. However, one crucial question that is not answered by 

metagenomic discovery is “Who is the host”? [34] The basic information required about a new virus 

is which host it infects. This question is answered by traditional culture-based methods. Thus, 

laboratory isolation of viruses and their hosts would remain relevant, and continue to complement 

metagenomic studies. 
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                                                       Fig. 1 

Lysis of Limnothrix sp. VL01 by Φ L-VL01 in solid (a) and liquid (b) medium 

(c) Growth of control versus virus-infected Limnothrix sp. VL01, over 16 days, measured as 

chlorophyll a concentration 
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Fig. 2 

 

(a) Transmission electron micrograph of Φ L-VL01 

(b) Amplification of g20 gene fragment from genomic DNA of Φ L-VL01 

a 

Lane 1: Amplified g20 fragment from L-VL01 DNA 

Lane 2: 100 bp DNA ladder 

b 

600 bp 
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Fig. 3 

Uninfected (a) and virus-infected (b) filaments of Limnothrix sp. VL01 under a scanning electron 

microscope; 
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Viral infection  
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Fig. S1 Filaments of Limnothrix sp. VL01, viewed under optical microscope (1000X magnification) 

 

 

 

Fig. S2 Neighbour-Joining phylogenetic tree of Limnothrix sp. VL01, generated using 16S rDNA 

sequences. Numbers represent bootstrap values 
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         Fig. S3 Uninfected (a) and virus-infected (b) filaments of Limnothrix sp. VL01 under  

                               an  optical microscope 
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Supplementary Table 1: 

Comparative dimensions of phages of filamentous cyanobacteria reported in literature 

 Cyanophages Host Head diameter 

(nm) 

Observed tails References 

Various Nodularia sp. 53-137 Long [1] 

Pf-WMP4 Phormidium foveolarum 55 Short [2] 

Various Anabaena sp. Not provided Mostly short [3] 

PaV-LD Planktothrix agardhii 76 Tailless [4] 

Cr-LS Cylindrospermopsis raciborskii 70 Long [5] 

Various Anabaena circinalis,  

A. cylindrica 

123-170 Mostly short [6] 

L-DHS1 Limnothrix sp. 72 Long  [7] 

CL131 Aphanizomenon flos-aquae 97 Long [8] 

CrV Cylindrospermopsis raciborskii 65 Long [9] 

PA-SR01 Pseudoanabaena 91 Tailless [10] 

Aa-TR020 Arthronema africanum 50 Short [11] 

L-VL01 Limnothrix sp. 49 Short Present study 
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